Please use this identifier to cite or link to this item:
https://ir.vidyasagar.ac.in/jspui/handle/123456789/847
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Dey, Kalyan Kumar | |
dc.contributor.author | Paul, Akhil Chandra | |
dc.date.accessioned | 2016-12-22T17:23:52Z | - |
dc.date.available | 2016-12-22T17:23:52Z | - |
dc.date.issued | 2011 | |
dc.identifier.issn | 0972-8791 (Print) | |
dc.identifier.uri | http://inet.vidyasagar.ac.in:8080/jspui/handle/123456789/847 | - |
dc.description | 59-64 | en_US |
dc.description.abstract | Let M be a prime gamma ring. Let d : M → M be a semiderivation associated with a function g : M → M. We prove that d must be an ordinary derivation or of the form d(x) = pδ(x − g(x)) for all x∈M, δ∈Γ, where p is an element of the extended centroid of M. We have also seen that g must necessarily be an endomorphism. | en_US |
dc.language.iso | en_US | en_US |
dc.publisher | Vidyasagar University , Midnapore , West-Bengal , India | en_US |
dc.relation.ispartofseries | Journal of Physical Science;Vol 15 [2011] | |
dc.subject | Semiderivation | en_US |
dc.subject | Γ-prime ring | en_US |
dc.subject | commuting mapping | en_US |
dc.subject | extended centroid | en_US |
dc.title | On Semiderivations in Prime Gamma Rings | en_US |
dc.type | Article | en_US |
Appears in Collections: | Journal of Physical Sciences Vol.15 [2011] |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
M15Art7.pdf | 178.36 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.