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ABSTRACT
This paper presents the constant-stress and sess-stccelerated life tests model with
two stress levels under the progressively Typegirid censoring. The optimal test
design plans for accelerated life tests are studliéslassumed that the lifetime of the
items follow the exponential distribution. The d@gftlconditional density functions of
order statistics under progressively Type-Il hylméthsoring scheme are given to obtain
the expected Fisher information matrix. The optiteat design plan with the minimum
asymptotic variance of the mean life under thestisess level is determined. The test
units allocated to each stress in constant-stissexated life test and the changing time
to severer accelerated stress in step-stress eateeldife test are obtained. Finally, a
numerical example is presented by the Monte Caralation to illustrate the optimal
test design plan. It is shown that the step-st@iesslerated life test is a better choice.

Keywords: Accelerated Life test, Optimal design plan, Progivedy Type-Il Hybrid
Censoring, Asymptotic variance

1. Introduction

For high reliable products, accelerated life tedt ) are usually used to assess their
reliability. In the ALT, test units are put to atmsated stress conditions such as
temperature, pressure and voltage to accelerdteefashorten the total testing time and
reduce the test cost. For simple operation andegsipment, the experimenters often
adopt constant-stress accelerated life test (CSAdD) step-stress accelerated life test
(SSALT). Grouped units are tested under differemelerated conditions in CSALT. In
SSALT, the test stress will changed to higher stiegel when some failures take place
or when the test lasts for some time. Until prefixailures and censored time, the
SSALT is terminated. Many key references on stasikinference are referred to CSALT
and SSALT (Nelson [1], Meeker and Escobar [2], Goathal. [3]; Balakrishnan and Xie
[4]).

In fact, according to test purpose and propertietest units, experimenters often
need to determine test plans, for example, thetitest, the failure number, the stress
levels and the accelerated models, before CSALT @8ALT. These problems in
designing optimal ALT have received much concentesithe ALT is widely applied in
reliability engineering and other practical arediller and Nelson [5] studied the
optimum test plan for simple SSALT with exponentiétime distribution under the
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complete failure data and proposed the cumulathpesure (CE) model. Yang [6] dealt
with optimal design of 4-level CSALT with Type-lensoring data. Zhang [7] gave the
comparison of optimum plans of simple CSALT and §5Ainder Type-I censoring and
indicated that the optimum SSALT was better thatinggm SSALT. Other related

studies see References [8-10].

The above literature referred to in CSALT and SSAdr& based on complete failure
data, Type-l and Type-Il censoring, hybrid censpand progressive Type-I and Type-ll
censoring scheme, which are classical censoringnseb for testing units. With rapid
development in technology, classical censoring mesegradually display the drawbacks
in ALT, for example, the experimenters cannot fidxiterminate the ALT under the
progressive Type-l and Type-ll censoring. Therefaailds et al. [11] proposed the
progressively hybrid censoring scheme (PHCS), diol Type-l PHCS and Type-ll
PHCS, which integrates hybrid censoring and praivesType-Il censoring. Also,
Childs et al. [11] gave the important results fe1GS.

Since PHCS was put forward, parametric inference been studied by some
authors. Ma and shi [12] considered the parampeterence for Lomax distribution based
on progressively Type-ll hybrid censored data. Liak [13] gave the MLE and
approximate confidence intervals based on CE mdalelthe simple SSALT under
progressively Type-l hybrid censoring scheme. Zebwal. [14] considered MLE and
bootstrap confidence intervals for the constanesstraccelerated life model with
increasing stress levels from Geometric process.piiint and interval MLEs of Weibull
parameters and acceleration factor were discussddrurype-I PHCS for step-stress
partially accelerated test by Ismail [15]. Zha@kt{16] constructed simple CSALT with
Burr Type-XII lifetime distribution and obtainede¢hMLE and approximate confidence
intervals under Type-l PHCS. Wu et al. [17] studied MLE, asymptotic confidence
intervals, Bayesian estimates and approximate ldeeditervals of Weibull parameters in
constant-stress accelerated competing risks matimiever, there are few literature
associated to the optimal accelerated life tesgdasder Type-Il PHCS.

In this paper, we study the optimum design for $ingonstant-stress and step-stress
accelerated life tests based on the progressivghe-Tl hybrid censoring data. The rest
of the paper is organized as follows: the staifticodel and assumptions in CSALT and
SSALT under Type-ll PHCS are described in Sectiofte likelihood function and the
marginal density function of order statistics undeme-ll PHCS are obtained. The
expected Fisher information matrix and the asynipteariance of the mean life in
constant-stress and step-stress accelerated lifgelsnaare presented in Section 3.
Numerical results are shown in Section 4 to ilastrthe rationality of the optimum
accelerated life test plan. The conclusions ar¢agoed in Section 5.

2. Some assumptions and model description

2.1. Some assumptions

In order to establish the simple constant-stregsségp-stress accelerated life tests model

under the Type-Il PHCS, we first give following asgptions.

Al There are two stress levels and S, in simple ALT, and, <S <S,, where S
is the use stress level.

A2 For any stress level, the lifetime distribution aftest unit is distributed as the
exponential distribution.
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A3 A cumulative exposure model holds: the remainifey d¢if tested units depends only
on the current cumulative failure probability aheé turrent stress, regardless of how
the probability is accumulated.

A4 At stress level S (i=1,2), the mean life of a test unit is a log-indunction of stress

given by
log(d)=a+bg(S) 1)
where a and b are unknown parameterg(S) is a known decreasing function of
stress S. When stressS is the temperature conditior(S)=S™ is Arrhenius model
and when stresss is the voltage conditiong(S) = -log(S) is inverse power model.

2.2. Test procedure under Type-ll PHCS
Assume thatn units are tested in simple ALT which is ended befthe censored
timeT , the description below shows the test proceduresrple CSALT and SSALT.
(1) Test procedure of CSALT
Put n =nz units into the accelerated str&s®ri=1,2. The ris the expected

failure number and {R,.i=12,..5} are expected removal scheme with
n :Z:,‘zl(1+ R,). At the failure timex ;, R units are removed from the remaining
survived units. In fact, The test undg is finally terminated atmin(x , ,T) in Type-|
PHCS and the final failure numbér has random valugs, =1,2,...,r} . The final
censored unitsR, ., at timeT can be expressed as

Rﬁd‘ﬂ:Zj:d‘ﬂ(uR,j), if d =1,2,..5,~ IR,,,= Of d =r.
Therefore, we have the data ={0 <x, <x ,<..<x, <T}i=12.

(2) Test procedure of SSALT
Firstly put n units into the accelerated stress. r is the expected failure number

before T and {C,,i=12,.,r} are expected removal scheme withr Z'j:l(l+cj). At
the failure timey,, C, units are removed. Untitl, failure units occur before the time
r, the test withn, = n—2?=1(1+ R) units switches to the higher accelerated strgss
Under the accelerated stress, C,,,,I =1,2,...r —d, units are removed at the failure
time y,, until d, failure units beforeT. The SSALT is ended atin(y,,T) in

Type-lI PHCS. The final failure numbed =d, +d, have random value$d =1,2,...,r}.
The final censored unit€;,, attime T can be given by

Cin= 2, (1+C)), ifd=12,.r-1C;, = Of d=r

j=d+1
Then, we have the datay={0<y, <Yy, <..<Y, 1<V <T<Yu.1 << VYyuq, <T} IN
SSALT. Note thatd, >0 and d, >0.

2.3. Model description
Under the assumption A1, the probability densityction (pdf) and distribution function
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of a test unit for simple constant-stress acceddrlife model are given by, respectively

f(x8)=(/g)expt-x/8}, F(x8) =L-exp{-x/}, x> >0,i =12. @)
As S<S,, 4 >6,, From the Assumptions Al and A2, the cumulativetritistion
function (cdf) of a test unit in SSALT can be exgzed as

=F/(x8),0
G(X): gl(x) ~ l(x’ 1)1 <.X<T! . (3)
,() =1-S,(x~7:6,)S,(7:6,), x> 7,

where S(x;8) =1-F (x;8).,i =1,2. Substituting equation (2) into equation (3), wevéha
the pdf and cdf of a test unit in SSALT

0,(X) =(1/8)exp{-x/6},0<x<r,
9(x) ={ _ . ~ 4)
0,(X)=(@/6,)exp{-(x-1)/60,-1/6}, x=T.
6 :{gl()() il— expf-x/6},0<x<r, )
,(X) =1-exp{~(x-1)/6,-1/6},x 2T.

3. Likelihood function and conditional density function

3.1. Likelihood function

As there exist unknown parametess and b, we first present the maximum likelihood
estimatesa and b so that we can determine the optimum test plaseBan above
assumption A3, accelerated models and failure diagalikelihood functionL_(a,b) in
CSALT is given by

L.(ab)d eXp{_dl @+bg,)-d,@+bg, )_i exd_a_b¢i}1—i} : (6)
d

where ¢, =¢(S).T =2 (1+R,)x,+R_T.i=12and the likelihood function,(a,b)in

i=1

SSALT is proportional to
Ls(a,b) O exp{~d; @+bg, )-d, @+bg,)- exd-a-bg} W,+n7s )

xexp{ - exq{-a-bg,} W,} , ()

d, d,

where W, =3 (1+C,)y, W, :{Z(1+Cdl+j )(Ya.; =7)*+C., (T -1)|. So the MLEs4&, and
j=1 j=1

b. in CSALT, & and b. in SSALT of parametersa and b are obtained by

equations (6) and (7), which are respectively esged as

{éc =[(nT,~Ind)¢,~(InT,~Ind )¢ ]/[¢,-¢] (®)
be =[(InT,~Ind) ¢, -(InT,~Ind,)]/[,-¢]
and
{e}s =[[IN(W, +n,7) =In d] @, —(In W,—In d) ¢1/[ ¢ ,— @], )
bs =[[IN(W, +n,7) =In d ] ~(In W, —In d)1/[ ¢,- ¢}

3.2. Expected Fisher information matrix
From equations (6) and (7), we can obtain the esgimas of the expected Fisher
information matrix I. and 1, respectively based on the constant-stress anesstgs
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accelerated life models under Type-l PHCS. Theegftite expected Fisher information
matrix I, for CSALT is given by

|C - 2i=1 i=1 D(g\: Ec] (10)
2OTHET Y 676 ET, c
i=1 i=1
where g =expfa+bg},i=1,2 andsol, for SSALT has the following expression
_ [51_1E(VV1 +n,7)+6,'EW, 6'EW,+n7)+6;EW j ! (As Bs]
* GEW, +n,1)+6'EW, OEW,+nJ)+6,'EW,) |B, C,
Because of the random failure numbeis and d, in CSALT, we haveE(d,)=r,
andE(d,) =r,. Similarly, we have E(d,)=nF,(r) and E(d,)=r-nF(r) in SSALT.
Finally, we have following expectations

r-1

ET ZZEG |d =DF; (d =D)+E( |d =r )R, d =r),

(11)

E(W +n,7) =3 (1+C)ELy;I (y, <1)+7l (y, <7)],
j=1
r-n-1
EW, = Z EW,|d,=1)P;d,=1)+EW,|d,=r-TJP(d,=r-T), (12)
=1
where 7, =nF,(7), I (y, <7)=1-1(y, <7), I(y, <7) is the indicator function. Fof =12,
the probability mass function (pmf) of, in CSALT is R, (d, =1,2,...;; ) and the pmf
of d, under the stresss, in SSALT is R,(d, =1,2,...r -T;).

3.3. Conditional probability density function

The likelihood function is important to calculatetMLEs, regardless of the coefficients.
Virtually, we can find that there are two indepemtdife tests with progressively Type-I

hybrid censoring data in CSALT from the likelihofuhction (6). Correspondingly, from

equation (7) in SSALT, the life test under streSsis equal to that with progressive

Type-l censoring scheme. As for the life test undgrbased on progressively Type-|
censoring data in SSALT, it is independent witht tbader stresss. Therefore, the

explicit probability density functions of order stdics and probability mass functions of
discrete random variables in CSALT and SSALT candbdaved and the expectation
values in equation (12) also can be computed.

In order to calculate the expectation values, lfirgresent two lemmas. The proof of
Lemma 3.3.1 can be found in [18] and Lemma 3.3.2 raved by Childs et al. [11].

Lemma 3.3.1. (a) Let f(x) and F(x) denote the pdf and the cdf of an absolutely
continuous random variable X and laf >0 forj=1,2...r. Then for 21, we have

[ II'] ()8 F O g, = 36, ()8 - F(x )} -R 1) =7 (13)

i=0
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r-i+j

whered, =(a,a,....2 ), ¢, (@) = () A[] 2t aH [1a>e @ bl a :__i a |

i-1
n which we adopt the usual conventions trﬁt?:ldj =1 and ;dj =0.
(b) Let f(x) and F(x) denote the pdf and the cdf of an absolutely cootiis
random variable X. The density function of (1< s<ms<n) with R, removal units in

progressive censoring scheme is given by

() =CMEY 6L (R+L.R L+ DF & JI=F ()P
where - < x <o and ZT=1(1+ R)=n.

. (1+R;)

(14)

Considering the Type-l PHCSp units are put on test with censoring scheme
(R,R,,...,R,) and the test is terminated at the timén{X_,T} with the ordered failure

time X <X,<..<X,. Suppose the final failure number is D, then the

R, = Y, (1+R) units are censored at time. Therefore we have the Lemma 3.3.2.
j=D+1

Lemma 3.3.2. (a) For d =1,...,m-1, the conditional joint density ofxX,X,,...,X
given D=d,is

FO4 %% ID=d)=' 0 d ){1—F(r)}R;"1/P(D=d)]|] FOOR = FO)} ™,

m?

(15)
-0 <X <X, <..<X <T,
where c'(n,d):n?zlz:lj (R +1) for d=1,2...m.
(b) The conditional joint density oK, X,,...,X,,, given D=m, is
f(x,%,..., D= =k'n, P = mf '1—F'RJ,
(X, X5, %, [D=m)= ' (r,m)/P O m)]l,-_:l x;)f (%)} (16)

-0 <X <X, <.<x,<T.

Theorem 3.3.1. (a) For d=1,...,m-1,given D=d, the conditional marginal density
function of X;,1<j<d, is

f,, (% [D=d)=[c(nd)iL - F(M}*/ RD =d]
XY D Pl )L = FD} ™ & F0)f — ROy 2
where 0<x <T,4d,, =(R,+LR,,+1..R, +1)a_ =(R+LR,+1..R_+ 1),
bll,d—j (ad—j) = Zld:d_il_l(R +1)
P(il’iz) = Cll,d—j (Rj+1+1’Rj+2+1""’Ri + 1)<C|2 j-1 R1+ 1R2+ 1"'Rj—1+ 1
Klipi) =R +X 0 (R+D+Y 7 (R +1).

Especially, givenD =d, the conditional marginal density functions of, and X, are
expressed as, respectively.

(17)
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fy, (1D =d) = [C(n,d)/ P(D = )Y 26 g a(Ro +L, R, + Dt F ()5 T
x £ (L~ FOg ¥ 2=
f,, (% D =d)=[¢(n,d)L - F(T)}*/ A D =d)]
x3 e (R+L..R_,+ f & HI-F (x, e B.

i=0 1.d

(18)

where 0<x <T and O0<x, <T.
(b) Given D =m, the conditional marginal density function of,1< j <d, is
fy, (% |D=m)=[c'(n,d)/P(D = m)]

XY > Pl = (T S SO — RO} 2 0 <x <T
Also, f, (x|D=m) and f, (x,|D=m) can be formed similarly with equation (18)
as R,,,=0.
Proof. Using Lemma 3.3.1(a), Part (a) is obtained bytlfirmtegrating out the variables
X X, X, in equation (15) with the suppofx; <x;,, <...<x}. Thatis

jHLr N ja2rte

(19)

f(% %X ID=d)= € O.0)-F O /PO =d)f .| [ [ 7008~ RO} o 0,
i i i ]=

=[¢(n d)fL ~F(T)} **/ R D=9] [Zi;’;qhd-x A -RT S d -F ) deﬂ‘w}

i
*[ FOOR-FOMT 0<x << <x <T. (20)
When j=1 inequation (20), f, (x |D=d) in equation (18) is proved.
Secondly to integrate out the remaining variabksXx,,...,X,, in equation (20) with
the support{0 <x <x, <..<x}. Then we have

fy, (X |D=d)= ¢'(n,d){L-F(T)}*/ A(D =d)
XL o YL FDE ) () =R ) 2 (21)

] 0RO ki, 0<x, <T.

When j=d in equation (21), f, (x,|D=d) in equation (18) holds. Taking the result

in Lemma 3.3.1(a) into equation (21), Part (a) i®vpd. Part (b) is similarly
straightforward to be obtained from equation (Faally, Theorem 3.3.1 holds.

Theorem 3.3.2. As D is a random variable with possible valugs,...,m} in Type-I
PHCS, the probability mass function @f is

P(D =d) =c'(n,d)Zd:c,,d (R+LR,+1,..R, + DI-F T JorrZiew® 2192 m-1

P(D =m)=c'(n, m)zm:clym(Rl FLR+1.R + D= F T )P B, (22)
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Proof. In Lemma 3.3.2, we have the property of equatidy) that is expressed as

Then
* X3 X d
P(D =d) =c'(n,d){l - F(T)} ¥ jOTjO jo I_l F(xML = F(x)} © dxdx,.. dx, (23)
=
The Lemma 3.3.1(a) gives the expression of muliipiegration in equation (23). In the

similar way, P(D =m)can be obtained as equation (22). Therefore, The@s.2 is

proved.
As for the exponential distributiorF(x) and exponential densifyx) with mean

life & of the jth order statistics in Type-l PHCS, we have the foiilg results,
according to equations (17), (18) and (22),
E(X;|D=d)=c'(n,d)expt-6" T}/ P(D =d)
Yy P(iy,i,)0{L —exp{~6 1+ K(i,i,)]T} —6 1L +K(i, i )] Texp{-6 {1 +K(i,i )] T} ’
[+ K (i) expf8 [Ryua + 31, , (R +D)IT}

PD=d)=c(nd)Y 6, (R+LR+ 1R + Dexptd” R +3" R+ 1T} (24)

Then, in progressive Type-l1 censoring scheme withdensored timer , from Lemma
3.3.1 (b), to estimateE(W, +n,r), we have the result

E(x , L oo exp6 L+ Y"1+ R}
) =c'(ns) ¢ ,(R+1..,R_+1) =l :
(e ZCOIL R gL+ WHR)P

When D=m, R, =0 in equation (24). Substituting equations (24) g28) into
equation (12), the expected information matfix and 1, can be calculated.

(25)

3.4. V-Optimality
To determine the optimum ALT under Type-ll PHCS, wénimize the asymptotic
variance of mean life under the use stress. Ie githe expected information matril,

and I, the asymptotic variance valu&s and Vv, of mean life under the use stress
S, in CSALT and SSALT are respectively given by

V. (1) =Var(ing,) = (1 ¢0)|gl(; J =[Ad>-2B.¢,+C.1/[AC. - B7],
(1
Vo) =Var(ing) =L 4, ;[(b j =[Ag,2-2B.g,+C.]/[AC. - B2]. (26)

Ultimately, find the optimal 7 in CSALT and r in SSALT to satisfy
Vc(”f)zomi“ch(”l) and Vs(r*):gniqu(r). In order to illustrate the procedure of

optimum test design, a numerical example is givethé following section.

4. Numerical example
As the asymptotic variance values of mean life urtthe use stress in CSALT and
SSALT cannot be explicitly given, it is necessapypresent the numerical results and
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make comparison between the simple constant-saedsstep-stress accelerated life
models under Type-l PHCS. Considering the streswlition is the temperature in
assumption A3, that is,¢(S)=S". Suppose thata=2,b=20, two stress levels
S =200°C,S, =435C and the use stress levg =80°C in simple accelerated life test
with n test units and prefixed censored time In simple CSALT, the allocated rate to
S is7z0(0,1). In simple SSALT, the changing time frorg to S, is rJ(0,T). In
addition, for i =1,2, we assumen, test units put into the accelerated stress legel
and r, failures take place with the expected removal sEhén PHCS determined by
R, =ln-r)/r],1=12,..r.

Finally, for z and 7 with uniformly discrete values, by calculating teepected
Fisher information matrix and the asymptotic vatewalues, the optimal allocated rate
7 and changing timer’ for different n and T can be obtained in Table 1. The

numerical results in Table 1 show that the asynpi@riance in SSALT is smaller than
the variance in CSALT.

CSALT SSALT
(nT) 7 Ve (78) r Vs(7)
(20, 0.8) 0.5070 5.1131 0.3064 5.3150
(20, 1.5) 0.3500 4.8308 0.3587 4.6712
(30, 2.0) 0.2300 9.9352 0.3771 3.1859
(40, 2.0 0.700( 2.067¢ 0.200( 2.843.

Table 1. Optimal CSALT and SSALT for different and T

5. Conclusions
In this paper, we investigate the optimum designsfmple accelerated life test. When

the failure time follows exponential distributiaine exact conditional joint and marginal
density functions and expectations of order stesisinder progressively Type-I hybrid
censoring scheme are given by explicit expressidfsng variance optimality, the
optimum allocated rate in CSALT and the changimgetin SSALT can be numerically
calculated. The numerical results show that SSALT better choice.
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