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ABSTRACT 
This paper proposes a step-stress partially accelerated life test model from Pareto lifetime 
distribution under progressive type-I hybrid censoring. Maximum likelihood estimators 
(MLEs) of the distribution parameters and acceleration factor are derived by using 
Newton-Raphson algorithm. In addition, the approximate fisher information matrix is 
calculated for constructing the approximate confidence intervals of the parameters and 
acceleration factor. The approximate confidence intervals (ACIs) are derived based on 
normal approximation to the asymptotic distribution of MLEs. Optimal step-stress 
partially accelerated life test plan is developed by minimizing the generalized asymptotic 
variance (GAV) of the MLEs of the model parameters. Finally, a Monte-Carlo simulation 
study is carried out to illustrate the effectiveness of the proposed methods. 
 
Keywords: Step-stress partially accelerated life test, progressive type-I hybrid censoring, 
parameters estimators, optimal plan, Pareto distribution, Monte-Carlo simulation 
 
1. Introduction 
With the continual improvement in manufacturing, it is more difficult to obtain failure 
data for high reliability items under normal use conditions. This makes the lifetime 
testing under these conditions very costly, take a long time. To get the information about 
the lifetime distribution of these items, the censoring schemes are preferred to be used in 
manufacturing industries and lifetime test to obtain failure data in a short period of time. 
The two most common censoring schemes are termed as type-I and type-II censoring 
schemes. One of the drawbacks of them is that they do not allow for removal of units at 
points other than the terminal point of the experiment. Sulabh Dube et al.[1] considered 
the parameters estimation of log-normal distribution with hybrid censoring. One 
censoring scheme known as the progressive censoring scheme had become very popular 
in the last few years. Fernandez [2] discussed the exponential based on progressive type 
II censored. Raqab et al. [3] presented the prediction for Pareto distribution based on 
progressively Type-II censored samples. Recently, a new type of censoring schemes: 
progressive hybrid censoring scheme (PHCS) has been proposed by Kundu and Joarder 
[4]. The PHCS have an advantage: it allows to continual removal of a prespecified 



Yimin Shi and Xiaolin Shi 

54 

number of un-failed test items at the end of testing time at each stage. The PHCS has 
become quite popular for analyzing highly reliable data. Kuang et al. discussed the  
reliability analysis for accelerated life-test with progressive hybrid censored data by using 
Geometric process [5].  
    Besides, accelerated life test (ALT) are analyzed in terms of a model to relate life 
length to stress for the product in reliability and survival analysis. Wang [6] derived the 
exact confidence intervals for the exponential step-stress ALT model. N. Balakrishnan, Q. 
Xie [7-8] applied exact inference for a simple step-stress model with type-I and type-II 
hybrid censored data from the exponential distribution. Li and Xu [9-10] discussed the 
parameters inferences and obtained optimal hold times on the simple step-stress model in 
ALT with progressive type-I hybrid censoring. Further more, the constant-stress ALT was 
studied by several authors. Kim & Bai [11] and Watkins & John [12] discussed the ALT 
with two failure models and type-II censoring, respectively. Other related studies see 
References [13-16]. 
    Pareto distribution was originally introduced by Pareto as a model for the 
distribution of income, but is now used as a model in areas involving business, economics 
applications and reliability engineering. Its models, usually in two different forms known 
as Pareto distribution and Lomax distribution, have been studied in Ref.[17]-[20]. Ismail, 
Abdel-Ghaly[17] considered the case of constant-stress partially ALT when two stress 
levels are involved under type-I censoring. Hassan,Ghamdi[18] studied the optimum 
design in step stress accelerated life testing for Lomax distribution. Wang [19] studied 
Bayesian analysis of two-parameter Pareto distribution under progressively first- 
failure-censored data. 

It may be mentioned that although the progressive hybrid censoring scheme seems to 
be an important censoring scheme, not mach work has been done on the inference for the 
ALT under Type-I progressive hybrid censoring. This paper investigates the SSPALT 
model that is subject to Type-I PHCS. The model and the basic assumptions are described 
In Section 2. The MLEs for the distribution parameters and acceleration factor are 
obtained in Section 3. In Section 4, the approximate confidence intervals are developed. 
The optimal plan for SSPALT in Section 5 . Section 6 contains the simulation results that 
demonstrate and evaluate the performance of the estimators based on the proposed 
censoring schemes. Conclusions are provided in Section 7.  

 

2. Model description and basic assumptions 

2.1 Step-stress PALT 
The step-stress PALT under type-I PHCS can be described as follows: supposen identical 
items are put on a test under use stress level0S . Let 0,Tτ , m and 1, , mr rL ( 0Tτ < , m n< ) be 
pre-fixed constants. At the first failure time1Y , 1r items are randomly removed from the 
remaining 1n − items. Similarly, at the second failure time2Y , 2r  items are randomly 
removed from the remaining 1 2n r− −  items, and so on. At the i th failure time iY , ir  
items are randomly removed from the remaining 1 2 1... in i r r r −− − − − −  items 

( 11,2, ,i n= L ). The test is continued until time τ (
1nYτ ≥ ), where 1n is the number of 

failure items before timeτ . At the timeτ , all of the surviving items are put on accelerated 
stress level1S to continue the life test. At the k th failure time kY ( 1n k m< < ), kr  items 
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are randomly removed from the remaining items. If the m th failure time mY occurs before 
the predetermined time0T , then the test stops at the timemY , and all the remaining 

1 1( )m mr n m r r −= − − + +L  items are removed. On the other hand, if the m th failure does 
not occur before timeτ and only d  failure occurred (0 d m< < ), then at the time0T , all 

* 1( )dr n d r r= − − + +L  remaining items are removed and the test terminates at time 0T . 
Therefore, in step-stress PALT under Type-I PHCS, the observed failure time are. 

1 11 2 1 0n n mY Y Y Y Y Tτ +< < < ≤ < < < ≤L L , if 0mY T≤ , or, 

1 11 2 1... ...n n dY Y Y Y Yτ +< < < ≤ < < ≤ , if 0 1d dY T Y +< < .  

2.2 Basic assumptions  
A1: Two stress levels 0S  and 1S ( 0 1S S< ) are used in step-stress PALT. The lifetime of 
the tested items follow a two-parameter Pareto distribution with probability density 
function (PDF) 

( 1)( ; , ) , 0, 0f t t tα αα θ αθ α θ− += > ≥ > , 
whereθ andα are the scale parameter and the shape parameter, respectively. 
A2: There is at least one tested items failure under stress levels0S and 1S . 
A3: The lifetimeY of the tested item in SSPALT follows a tampered random variable 
model (see [19]), that is  

1

, ,
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Y
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τ
τ β τ τ−

≤
=  + − >

                                 

where T is the lifetime of the tested item under use stress level 0S ,τ is the stress change 
time and 1β > is the acceleration factor.  
Based on this assumption, the PDF and reliability function of theY can be written as 
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Let 2n denote the failure number of tested items under accelerated stress level1s , then 
under the Type-I progressive hybrid censoring scheme, one of the following data is 
observed.  
Case I:

1 11 2 1 0n n mY Y Y Y Y Tτ +< < < ≤ < < < ≤L L , if 0mY T≤ , 

Case II:
1 1 1 21 2 1 0n n n nY Y Y Y Y Tτ + +< < < ≤ < < < ≤L L , if 

1 2 1 20 1n n n nY T Y+ + +≤ < . 

Note that 1 2n n m+ = for Case I, and
1 2 1, ,n n mY Y+ + L are not observed for Case II. 

3. Maximum likelihood estimation 

Let
1 21 2 n nY Y Y +< < <L denote Type-I progressive hybrid censored sample, then the likelihood 

function can be written as follows 
1 1 2

1

1 1 2 2 2 0
1 1

( ; , , ) ( )[ ( )] ( )[ ( )] [ ( )]i i

n n n
r r r

i i i i
i i n
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where =0r for Case I, *=r r for Case II. The logarithm of likelihood function is  
1

1 2 2
1

ln ( ) ln ln ln (1 ) ln
n

i i
i

L n n n n r yα α θ β α α
=

= + + + − + +∑  

 
1 2

1

0
1

(1 ) ln[ ( )] ln[ ( )]
n n

i i
i n

r y r Tα α τ β τ α τ β τ
+

= +
− + + + − − + −∑ . 

Maximum likelihood estimators ofα ,θ andβ are solutions to the system of equations 
obtained by letting the first partial derivatives of the total log likelihood to be zero with 
respect to α ,θ andβ , respectively. Therefore, the system of equations is as follows: 

1 1 2

1

1 2 0
1 1

ln
( ) / ln (1 ) ln (1 ) ln[ ( )] ln[ ( )]

n n n

i i i i
i i n
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n n n r y r y r Tα θ τ β τ τ β τ
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= = +
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∂ ∑ ∑ .    (1) 
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1
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n n
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i n
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∂ ∑ .        (3) 

 

From Eq.(2), the MLE of θ  is easily given as $ 1Yθ = . By substituting$ 1Yθ =  into Eq. (1), 
and letting Eq.(1) and (3) to be zero, the system of equations is reduced to the following 
two equations 

� � � $
1 1 2

1

1
1 2 0

1 1

( )[ (1 ) ln (1 ) ln[ ( )] ln[ ( )] ln ]
n n n

i i i i
i i n

n n r y r y r T nα τ β τ τ β τ θ
+

−

= = +
= + + + + + − + + − −∑ ∑ ,    (4) 

� � � � � �
1 2

1

1
2 0 0

1

{ (1 )( ) / [ ( )] ( ) / [ ( )]}
n n

i i i
i n

n r y y r T Tβ α α τ τ β τ α τ τ β τ
+

−

= +
= + + − + − + − + −∑ .           (5) 

By substituting Eq.(4) into (5), the MLE of β can be calculated by adopting such an 

iterative procedure as Newton-Raphson algorithm, numerically. Once the value of �β is 

determined, �α is easily obtained from Eq. (4). 
 
4. Approximate confidence intervals 
The approximate confidence intervals of distribution parameters and accelerated factor 
are derived based on the approximate Fisher information matrix. Let the elements of the 
Fisher information matrix be 2( ) { ln / }, , 1,2,3ij i jI E L i jλ λ λ= −∂ ∂ ∂ = , where 1 2 3( , , )λ λ λ λ= =  

( , , )α θ β . Since the exact expression of the above expectation is very difficult to obtain, 

the approximate Fisher information matrix is thus given by 2[ ( )] [ ln / ],ij i jI I Lλ λ λ= = −∂ ∂ ∂  

, 1,2,3i j = . The elements of matrixI can be expressed as follows: 
2

1 2
2 2

ln n nL

α α
+∂ = −

∂
,  

2 ln
/

L
n θ

α θ
∂ =
∂ ∂

,  
1 2

1

2
0

1 0

(1 )( ) ( )ln

( ) ( )

n n
i i

i n i

r y r TL

y T

τ τ
α β τ β τ τ β τ

+

= +

+ − −∂ = − −
∂ ∂ + − + −∑ , 

2
2

2

ln
/

L
nα θ

θ
∂ = −

∂
, 

2 ln
0

L

θ β
∂ =
∂ ∂

, 
1 2

1

2 22
02

2 2 2 2
1 0

(1 )( ) ( )ln

[ ( )] [ ( )]

n n
i i

i n i

r y r TnL

y T

α α τ α τ
β β τ β τ τ β τ

+

= +

+ + − −∂ = − + +
∂ + − + −∑ . 

Note that ( ) ( )ij jiI Iλ λ= . We know that the asymptotic distribution of MLEs of λ is given 

by 
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� $ � 1
3(( ), ( ), ( )) (0, ( , , ))N Iα α θ θ β β α θ β−− − − → , 

where 1( , , )I α θ β− is the inverse matrix of the Fisher information matrix I , 1
11 / ,I de− = − ∆  

1 2
22 ( ) /I ae c− = − − ∆ , 1 2

33 ( ) /I ad b− = − − ∆ , 11a I= , 12b I= , 13c I= , 22d I= , 33e I= ,
2 2eb dc ade∆ = + − . Thus, the 100(1 )%γ−  approximate confidence intervals for 

,α θ andβ are respectively given by 

� �
1 1

11 11/2 /2( , )Z I Z Iγ γα α
− −

− +$ $ , $ $
1 1

22 22/2 /2( , )Z I Z Iγ γθ θ
− −

− +$ $ , � �
1 1

33 33/2 /2( , )Z I Z Iγ γβ β
− −

− +$ $ , 

where /2Zγ is the upper( / 2)γ th percentile of a standard normal distribution. 

5. Optimal SSPALT plan 

To determine the optimal plan for SSPALT, the GAV of the MLEs of the parameters is 
considered as the optimality criterion, which is the reciprocal of the determinant of the 

Fisher information matrixI , namely, � $ � 1( , , ) | |GAV Iα θ β −= , where| |I is the determinant of 

Fisher information matrixI . Taking into account the overall parameter space, this 
optimality criterion is relatively better than others which only take into account a subset 
from the parameter space in that it helps enhance the estimation accuracy. 

The optimal plan for SSPALT is to find the optimum stress change time*τ  such that the 
GAV of the MLEs of the parameters is minimized by solving equation / 0GAV τ∂ ∂ = , 
which is reduced to| | / 0I τ∂ ∂ = .The| |I can be calculated by 2 2

11 22 33 22 13 12 33| |I I I I I I I I= − − . 
We can get 

2
33 11 22 22 13 13 22

| |
= ( ) 2
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I I I I I I I
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Stress change time *τ can be derived from the following equation. 
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By employing an iterative method such as Newton-Raphson algorithm, stress change 
time τ ∗ can be obtained numerically. 

6. Simulation study 

In this section, simulation studies are carried out for illustrating the theoretical results of 
the estimation problem. The performance of the MLEs and confidence intervals of the 
parameters has been considered in terms of absolute bias (AB) and mean square error 
(MSE), and covering percentage (CP) for confidence intervals of the parameters, 
respectively. Furthermore, the optimal stress change time and optimal numbers of failure 
items are obtained under use stress level as well as accelerated stress level. The 
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simulation procedure can be described as follows: 

Step 1: Random samples of different sizes are generated from Pareto distribution, which 
can be achieved by using the transformation 1/(1 )i iy u αθ −= − , if iy τ≤ . But if iy τ> , then 
using the transformation 1// (1 ) /i iy u ατ θτ β θ β−= − + − , 1, ,i n= L .where 1, , nu uL are a 

random sample from uniform distribution U(0,1). 

Step 2: Under progressive type-I hybrid censoring, the censoring time 0T and the stress 

change timeτ are chosen with different combinations of parameter values for ,α θ andβ . 

The censoring schemes are selected in the following forms: 

CS1: 1 1 1, 2 1m mr r r n m−= = = = − +L ; 

CS2: 1 3 1 2 4 21, 0, 1.5m m mr r r r r r r n m− −= = = = = = = = = −L L ; 

CS3: 1 2 4 3 5 11.5 1, 0, 1m mr n m r r r r r r −= − + = = = = = = = =L L . 

Step 3: The estimations of ,α θ andβ are obtained from equations$ 1Yθ = , and Eq. (4) and 

(5) based on the observed data. 

Step 4: Repeat the previous steps 2000 times and the average of these estimations are 

taken as the MLEs of the parameters. 

Step 5: The AB, MSE and covering percentage with confidence level1 0.95γ− =  of the 

estimations are computed. 

Step 6: The optimal stress change time*τ is obtained by numerically solving equation (6) 

using the results of step 4. In addition, the value of *
1n (optimal number of failure items 

under use stress level0S ) and *
2n (optimal number of failure items under accelerated 

stress level1S ) are calculated. 

Tables 1-5 represent the AB, MSE for parameters,α θ andβ , and covering percentage for 

the confidence intervals with different combinations of initial values of 0, , ,Tα θ β andτ . 

According to the values of AB and MSE for MLE and CP of the confidence intervals for 

parameters in Tables 1-5, it can be see that the performance of the MLEs under CS1, CS2 

and CS3 is better. Also, as the sample size and failure proportion increase, the accuracy of 

the estimations increases. Table 6 represents the optimal stress change time*τ and the 

corresponding values of*1n and *
2n under CS1, where choices of initial values are selected 

as follows: 

1IV : 01.5, 6, 1.8, 30, 8Tβ θ α τ= = = = = ;  
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2IV : 01.2, 5, 1.5, 40, 7Tβ θ α τ= = = = = ; 

3IV : 01.3, 7, 2, 40, 9Tβ θ α τ= = = = = . 

The result indicates that the optimal stress change time *τ and the corresponding 
proportion of *

2n in total numbers of failure items tend to increase as the sample size and 
failure proportion increase. 

Table 1. The AB, MSE of MLE and CP of the confidence intervals for parameters, ,β θ α  

0( 1.2, 14, 2, 30, 15,1 0.95)Tβ θ α τ γ= = = = = − =  

( n , m ) CS 
CP (%) AB  (MSE) 

β  θ  α  β  θ  α  

(80,40) 
CS1 90.50 93.58 92.06 0.0371(0.1321) 0.0925(0.0165) 0.3299(0.1319) 
CS2 90.10 93.65 92.32 0.0180(0.1458) 0.0867(0.0175) 0.2530 (0.1638) 
CS3 91.10 92.60 91.94 0.0173(0.1643) 0.0884(0.0198) 0.2423(0.1461) 

(80,50) 
CS1 92.51 96.06 95.06 0.0166(0.1253) 0.0820(0.0153) 0.2360(0.1152) 
CS2 91.28 95.84 92.84 0.0123(0.1309) 0.0812(0.0162) 0.1977(0.1315) 
CS3 90.80 94.93 91.29 0.0155(0.1598) 0.0834(0.0151) 0.1601(0.1257) 

(100,40) 
CS1 91.57 93.50 93.02 0.0352(0.1156) 0.0696(0.0094) 0.2704(0.1757) 
CS2 90.68 93.31 92.14 0.0155(0.1417) 0.0708(0.0115) 0.2077(0.1682) 
CS3 90.40 93.89 91.03 0.0142(0.109) 0.0703(0.0127) 0.1618(0.1451) 

(100,60) 
CS1 95.36 98.10 97.28 0.0121(0.0914) 0.0614(0.0087) 0.2223(0.1381) 
CS2 93.97 97.26 95.61 0.0134(0.1048) 0.0709(0.0102) 0.2008(0.1595) 
CS3 92.45 95.21 93.90 0.0129(0.0978) 0.0695(0.0098) 0.1523(0.1319) 

 

Table 2: The AB, MSE and CP of the confidence intervals for parameters, ,β θ α  
 0( 1.5, 14, 2, 30, 15,1 0.95)Tβ θ α τ γ= = = = = − =  

( n , m ) CS 
CP (%) AB  (MSE) 

β  θ  α  β  θ  α  

(80,40) 
CS1 89.23 93.02 92.61 0.0801(0.1097) 0.0779(0.0175) 0.6025(0.1317) 
CS2 92.20 95.01 96.68 0.0144(0.1687) 0.0898(0.0169) 0.3373(0.1551) 
CS3 92.55 94.96 93.43 0.0204(0.1882) 0.0791(0.0185) 0.0544(0.1714) 

(80,50) 
CS1 91.60 95.58 94.83 0.0317(0.0952) 0.0774(0.0153) 0.2164(0.0915) 
CS2 94.39 97.31 96.59 0.0108(0.1273) 0.0862(0.0156) 0.2685(0.1229) 
CS3 93.13 96.30 95.79 0.0197(0.1755) 0.0792(0.0160) 0.0375(0.1451) 

(100,40) 
CS1 93.79 95.65 93.12 0.0208(0.2417) 0.0698(0.0093) 0.2298(0.0856) 
CS2 94.06 97.04 96.71 0.0425(0.2456) 0.0724(0.0116) 0.2126(0.1073) 
CS3 92.87 96.15 94.89 0.0461(0.2799) 0.0655(0.0145) 0.3121(0.1213) 

(100,60) 
CS1 95.14 97.49 98.10 0.0201(0.1724) 0.0624(0.0098) 0.3071(0.0769) 
CS2 96.19 98.06 97.62 0.0339(0.2779) 0.0892(0.0108) 0.2076(0.0943) 
CS3 94.92 97.12 96.56 0.0346(0.2044) 0.0690(0.0137) 0.1389(0.1192) 

Table 3: The AB, MSE and CP of the confidence intervals for parameters, ,β θ α   
0( 1.2, 12, 1.8, 30, 14,1 0.95)Tβ θ α τ γ= = = = = − =  

( n , m ) CS 
CP (%) AB  (MSE) 

β  θ  α  β  θ  α  

(80,40) 
CS1 91.74 95.34 93.07 0.0154(0.1909) 0.0807(0.0158) 0.2063(0.1639) 
CS2 93.06 96.35 94.81 0.0189(0.1797) 0.0837(0.0152) 0.1317(0.1571) 
CS3 91.44 95.95 95.18 0.0174(0.1695) 0.0818(0.0148) 0.1175(0.1537) 

(80,50) CS1 92.98 96.65 94.94 0.0121(0.1806) 0.0846(0.0137) 0.1056(0.1417) 
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CS2 94.26 97.20 95.78 0.0143(0.1671) 0.0731(0.0146) 0.1030(0.1550) 
CS3 93.14 96.50 95.53 0.0167(0.1576) 0.0801(0.0141) 0.1135(0.1601) 

(100,40) 
CS1 91.89 96.58 94.25 0.0158(0.1598) 0.0652(0.0098) 0.0530(0.1796) 
CS2 93.15 96.22 95.45 0.0162(0.1120) 0.0872(0.0137) 0.1020(0.1567) 
CS3 92.27 95.47 94.98 0.0085(0.1016) 0.0690(0.0089) 0.0652(0.1609) 

(100,60) 
CS1 93.51 97.80 95.89 0.0112(0.1439) 0.0568(0.0090) 0.0461(0.1614) 
CS2 94.01 98.36 96.56 0.0129(0.1325) 0.0714(0.0105) 0.0983(0.1349) 
CS3 95.84 97.96 96.23 0.0078(0.1218) 0.0614(0.0056) 0.0584(0.1421) 

 
Table 4: The AB, MSE and CP of the confidence intervals for parameters, ,β θ α  

0( 1.2, 12, 1.5, 30, 14,1 0.95)Tβ θ α τ γ= = = = = − =  

( n , m ) CS 
CP (%) AB   (MSE) 

β  θ  α  β  θ  α  

(80,40) 
CS1 89.42 92.26 93.25 0.0146(0.2022) 0.1003(0.0202) 0.2196(0.2307) 
CS2 91.27 94.05 94.04 0.0187(0.2153) 0.1016(0.0195) 0.1146(0.1804) 
CS3 90.56 91.69 92.84 0.0103(0.2152) 0.0979(0.0190) 0.1058(0.1749) 

(80,50) 
CS1 90.53 93.56 94.96 0.0121(0.1769) 0.0990(0.0191) 0.1294(0.1873) 
CS2 92.19 96.87 95.41 0.0165(0.2043) 0.0981(0.0176) 0.1024(0.1612) 
CS3 91.79 94.82 96.30 0.0097(0.1938) 0.0979(0.0180) 0.0983(0.1571) 

(100,40) 
CS1 90.71 93.58 95.02 0.0153(0.1914) 0.0807(0.0130) 0.1725(0.2363) 
CS2 92.70 95.82 93.46 0.0154(0.2075) 0.0789(0.0126) 0.1039(0.1334) 
CS3 91.36 93.23 95.87 0.0138(0.2035) 0.0816(0.0136) 0.1604(0.2751) 

(100,60) 
CS1 91.61 94.94 96.15 0.0172(0.1522) 0.0712(0.0112) 0.1065(0.1843) 
CS2 93.18 97.15 96.51 0.0161(0.1980) 0.0808(0.0104) 0.0994(0.1297) 
CS3 92.46 95.87 97.04 0.0048(0.2010) 0.0804(0.0125) 0.0709(0.2316) 

 
Table 5: The AB, MSE and CP of the confidence intervals for parameters, ,β θ α   

0( 1.2, 13, 1.8, 30, 14,1 0.95)Tβ θ α τ γ= = = = = − =  

( n , m ) CS 
CP (%) AB  (MSE) 

β  θ  α  β  θ  α  

(80,40) 
CS1 90.12 93.07 92.15 0.0152(0.1473) 0.0901(0.0162) 0.3457(0.1846) 
CS2 91.25 94.37 92.21 0.0082(0.2001) 0.0924(0.0168) 0.1265(0.1949) 
CS3 91.97 93.32 91.06 0.0248(0.2117) 0.0895(0.0159) 0.1976(0.1715) 

(80,50) 
CS1 91.27 94.57 93.01 0.0142(0.1135) 0.0942(0.0158) 0.2217(0.1659) 
CS2 92.07 96.07 95.78 0.0064(0.1917) 0.0900(0.0141) 0.0876(0.1529) 
CS3 92.75 96.55 95.10 0.0143(0.1745) 0.0897(0.0147) 0.0142(0.1603) 

(100,40) 
CS1 91.05 94.63 93.05 0.0145(0.0961) 0.0720(0.0112) 0.2282(0.1524) 
CS2 92.44 95.95 94.95 0.0074(0.0862) 0.0729(0.0106) 0.1772(0.1712) 
CS3 91.27  93.59 92.67 0.3874(0.0695) 0.0731(0.0107) 0.1319(0.1456) 

(100,60) 
CS1 92.42 95.78 94.08 0.0129(0.0461) 0.0761(0.0102) 0.1934(0.1387) 
CS2 93.81 97.17 96.73 0.0086(0.0408) 0.0729(0.0096) 0.1569(0.1416) 
CS3 93.10 95.45 96.39 0.0220(0.0315) 0.0718(0.0089) 0.1181(0.1245) 

 

Table 6: The results of optimal plans with different sample sizes, failure proportions, and 
choices of initial values in SSPALT 

(n,m ) Initial values *τ  
*
1n  *

2n  

(50,25) 
1IV  7.2466 19 6 
2IV  7.7290 18 7 
3IV  9.0607 22 3 

 (50,30) 1IV  20.9838 16 14 
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2IV  12.1384 20 10 
3IV  37.2389 18 12 

(80,40) 
1IV  8.8571 32 8 
2IV  6.9054 29 11 
3IV  8.6607 32 8 

(80,60) 
1IV  19.8794 30 30 
2IV  35.6349 30 30 
3IV  21.0704 28 32 

 
7. Conclusions 
This paper studies the parameter estimation and optimal plan for the step-stress partially 
accelerated life test with progressive type-I hybrid censoring. The test items are assumed 
to follow Pareto distribution. The MLEs together with the asymptotic confidence 
intervals of the parameters are obtained, and their performances are evaluated by AB, 
MSE and CP, respectively. The optimal plan was constructed via the stress change 
time *τ from normal use condition to accelerated condition. As is shown in the numerical 
results, appropriate censoring times and schemes as well as relatively large sample sizes 
and failure proportions contribute much to a high level of estimation accuracy. 
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