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ABSTRACT

This paper proposes a step-stress partially aedebkfife test model from Pareto lifetime
distribution under progressive type-l hybrid ceirspr Maximum likelihood estimators
(MLEs) of the distribution parameters and accelematfactor are derived by using
Newton-Raphson algorithm. In addition, the appratenfisher information matrix is
calculated for constructing the approximate comfadeintervals of the parameters and
acceleration factor. The approximate confidenceruatls (ACIs) are derived based on
normal approximation to the asymptotic distributioh MLEs. Optimal step-stress
partially accelerated life test plan is developgdiinimizing the generalized asymptotic
variance (GAV) of the MLEs of the model parameté&igally, a Monte-Carlo simulation
study is carried out to illustrate the effectivesnethe proposed methods.

Keywords: Step-stress partially accelerated life test, pregjue type-| hybrid censoring,
parameters estimators, optimal plan, Pareto digtah, Monte-Carlo simulation

1. Introduction

With the continual improvement in manufacturingjsitmore difficult to obtain failure
data for high reliability items under normal usenditions. This makes the lifetime
testing under these conditions very costly, takeng time. To get the information about
the lifetime distribution of these items, the cafsp schemes are preferred to be used in
manufacturing industries and lifetime test to abti@ilure data in a short period of time.
The two most common censoring schemes are termégpad and type-ll censoring
schemes. One of the drawbacks of them is thatdbeayot allow for removal of units at
points other than the terminal point of the experiin Sulabh Dube et al.[1] considered
the parameters estimation of log-normal distributivith hybrid censoring. One
censoring scheme known as the progressive censacheme had become very popular
in the last few years. Fernandez [2] discussed¥penential based on progressive type
Il censored. Ragab et al. [3] presented the priedidor Pareto distribution based on
progressively Type-ll censored samples. Recentlpew type of censoring schemes:
progressive hybrid censoring scheme (PHCS) has pesosed by Kundu and Joarder
[4]. The PHCS have an advantage: it allows to oo removal of a prespecified
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number of un-failed test items at the end of tgstime at each stage. The PHCS has
become quite popular for analyzing highly reliallata. Kuang et al. discussed the
reliability analysis for accelerated life-test witnogressive hybrid censored data by using
Geometric proceds].

Besides, accelerated life test (ALT) are aredyin terms of a model to relate life
length to stress for the product in reliability asutvival analysis. Wang [6] derived the
exact confidence intervals for the exponential stiepss ALT model. N. Balakrishnan, Q.
Xie [7-8] applied exact inference for a simple sséfess model with type-I and type-ll
hybrid censored data from the exponential distiiloutLi and Xu [9-10] discussed the
parameters inferences and obtained optimal holdstiom the simple step-stress model in
ALT with progressive type-I hybrid censoring. Fathmore, the constant-stress ALT was
studied by several authors. Kim & Bai [11] and Vifask& John [12] discussed the ALT
with two failure models and type-ll censoring, resjively. Other related studies see
References [13-16].

Pareto distribution was originally introduceq fPareto as a model for the
distribution of income, but is now used as a madelreas involving business, economics
applications and reliability engineering. Its majelsually in two different forms known
as Pareto distribution and Lomax distribution, hbgen studied in Ref.[17]-[20]. Ismail,
Abdel-Ghaly[17] considered the case of constamtsstrpartially ALT when two stress
levels are involved under type-lI censoring. Hasshamdi[18] studied the optimum
design in step stress accelerated life testing.onax distribution. Wang [19] studied
Bayesian analysis of two-parameter Pareto distdhutunder progressively first-
failure-censored data.

It may be mentioned that although the progressyliti censoring scheme seems to
be an important censoring scheme, not mach worloéas done on the inference for the
ALT under Type-l progressive hybrid censoring. Thaper investigates the SSPALT
model that is subject to Type-I PHCS. The modelthedbasic assumptions are described
In Section 2. The MLEs for the distribution paraemstand acceleration factor are
obtained in Section 3. In Section 4, the approxém@nfidence intervals are developed.
The optimal plan for SSPALT in Section 5 . Sectfocontains the simulation results that
demonstrate and evaluate the performance of thmaists based on the proposed
censoring schemes. Conclusions are provided indpect

2. Modé description and basic assumptions

2.1 Step-stressPALT

The step-stress PALT under type-1 PHCS can be itbestas follows: supposadentical
items are put on a test under use stress $veletr, T,, mandr,,---,r, (7<T,,m<n) be
pre-fixed constants. At the first failure tirvier, items are randomly removed from the
remainingn-1litems. Similarly, at the second failure tivier, items are randomly
removed from the remaining-r, -2 items, and so on. At théth failure timey, r,
items are randomly removed from the remaining-i-r-r,—...-r_, items
(i=1,2,--,n). The test is continued until time (72Y,), wherenis the number of
failure items before time. At the timer , all of the surviving items are put on accelerated
stress leve to continue the life test. At théth failure time Y, (n, <k<m), r, items
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are randomly removed from the remaining itemshéf inth failure timey,, occurs before
the predetermined tinme, then the test stops at the tifje and all the remaining
r,=n-m-(r,+---+r_,) items are removed. On the other hand, if théh failure does
not occur before timeand only d failure occurred §<d <m), then at the timeg, all
r.=n-d-(r, +---+r,) remaining items are removed and the test termsnateime, .
Therefore, in step-stress PALT under Type-1 PHGS8 abserved failure time are.

Y, <Y, <. <Y, s7<Y, < <Y, <T,, if Y, <7, or,

Y, <Y, <..<Y, ST<LY, <L Y, 0f Y <T <Y,

n+l

2.2 Basic assumptions
Al: Two stress levelss, and S (S, <S) are used in step-stress PALT. The lifetime of

the tested items follow a two-parameter Paretoribigion with probability density
function (PDF)
f(t;a,0)=a6t" a>0t=26> 0,
whereg andg are the scale parameter and the shape paramstfectisely.
A2: There is at least one tested items failure usttess levels ands .
A3: The lifetimeY of the tested item in SSPALT follows a tampereddmn variable
model (see [19]), that is

_ T, T<r,

_{r+,6"1(T—r), T>r1.
where T is the lifetime of the tested item under use sttegslS,, 7 is the stress change
time ands > 1is the acceleration factor.
Based on this assumption, the PDF and reliabilibcfion of ther can be written as

_ f(y)=a8"y ™, y<T,
f(y)= ) o
t,(y) =ape[r+ By-D ™, y>.
R(y):{ RW=(//6)°,  yst,
RM=IT+By-D)1 60, y>r.

Letn, denote the failure number of tested items undeelacated stress levgl then

under the Type-l progressive hybrid censoring seheame of the following data is
observed.

Case Iy, <Y,<---<Y, <7<Y,,, < <Y, <T,, if Y, <T,
Case Iy, <Y, <. <Y, s7<Y, < <Y, <T,, if Y, <T <Y,

n+n, n+n,+1”

Note that n +n, =mfor Case I, ang, ., .,.---.Y,,are not observed for Case II.
3. Maximum likelihood estimation

Lety, <y, <--<Y, ., denote Type-I progressive hybrid censored samipés the likelihood
function can be written as follows

L= L(yia.0,6)= [] 00RO [] LONROATRCTY’

i=n +1

n n+n,
- a,r';l+n20na/8n2 |—J yif(1+a+ar,)‘ I—l [T + ﬁ( yi _ T)]—(1+a+an { T+ ATO _ T)] -ar .

i=n +1
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wherer=0for Case Ir=r, for Case Il. The logarithm of likelihood functios i

|n|_:(nl+n2)|na+naln6?+nzlnﬂ—i(1+0/+0/ﬁ)|”yi
—nfz @+a+ar)In[r+ By, —r)]-arin[t+ZT,-1)] .

i=n+1
Maximum likelihood estimators af ,#andg are solutions to the system of equations
obtained by letting the first partial derivativefstbe total log likelihood to be zero with
respect toa ,8andg, respectively. Therefore, the system of equatisfas follows:
dinL

m+n;

:(nl+n2)/a'+nln9—i(1+ri)lnyi - z (@+r)In[r+ By, —)]-rIn[r + BT, -71)] . (1)

a i=1 i=n +1

olnL _

30 =nal@ (2)
Ol _ ) p="S" @ra+an)y, - 1) 1[0+ Bly, - D -ar(T, ) [[1+ AT, ~1)] . 3)

alg i=n+1

From Eq.(2), the MLE ofg is easily given asd =Y,. By substituting/ =Y, into Eq. (1),
and letting Eq.(1) and (3) to be zero, the systémgoations is reduced to the following
two equations

n n+n, ~
a=(n+n)[y A+r)ny + 3 @)z + By, -0l +rin[r+ AT, -l -nn g+, (4)

i=n+1

n+n,
B=n{ > Q+a+ar)(y,-D/[r+ Ay, -Dl +a((T,-D/[ 1+ AT, ]} . (5)

i=n+1

By substituting Eq.(4) into (5), the MLE off can be calculated by adopting such an
iterative procedure as Newton-Raphson algorithnmerically. Once the value ofis

determined, « is easily obtained from Eq. (4).

4. Approximate confidence intervals

The approximate confidence intervals of distribntiparameters and accelerated factor
are derived based on the approximate Fisher infiomanatrix. Let the elements of the
Fisher information matrix bg (1) = E{-0°In L/ 0404}, i j =1,2,3, whered =(,,1,,4,) =
(a,68,B). Since the exact expression of the above expentéivery difficult to obtain,

the approximate Fisher information matrix is thixeg by | =[1,(A)] =[-0%In L/ 0A0A],
i,j =1,2,3. The elements of matrixcan be expressed as follows:
o°InL _ _n+n, 62InL:n ’InL _ " @A+n)y-7)_ r(,-7)
da’® a?* ' 0006 © o 0a0p S r+ply,-1) 1+B 1)
L _ g OINL_g 2L _ n, XE(+a+an)(y 1), ar(-1)’
06’ 0S8 0B B [r+BLy -0 [T+ AT, -0)°

Note that; (1) =1, (4). We know that the asymptotic distribution of ML&Ss A is given
by

56



Estimation and Optimal Planin ....... Pareto Disttibn

(@-a),(6-6),(8-B) - N,(0,1 " @ ,0.B)),
wherel *(a,8,8)is the inverse matrix of the Fisher information rxat, 1,,™ = -de/ A,
l,,* =—(ae-c?)/A , 1, ' =—(ad-b*/A , a=Il, , b=1l, , c=l,, d=1,, , e=l, ,
A—eb2+dc -ade . Thus, the 100(1-y)% approximate confidence intervals for
a,0 andg are respectively given by

@-z, \in gz, 1), @-z,1m8+2,712), B-2,inB+2,\l5),

wherez , is the uppefy/2)th percentile of a standard normal distribution.

5. Optimal SSPALT plan

To determine the optimal plan for SSPALT, the GAMlte MLEs of the parameters is
considered as the optimality criterion, which ig tieciprocal of the determinant of the
Fisher information matrik, namely, GAV(a,8,8)=|I [*, wherd1 |is the determinant of
Fisher information matrix . Taking into account the overall parameter spdbis
optimality criterion is relatively better than otBenvhich only take into account a subset
from the parameter space in that it helps enhdreedtimation accuracy.

The optimal plan for SSPALT is to find the optimtness change timé such that the
GAV of the MLEs of the parameters is minimized by sajviequatio@GAV /dr =0,
which is reduced |1 | /07 = 0.The|l |can be calculated By | 1,1 ,,l ;5= 1,J 5 -1 21 ..

We can get

ol
_T:|33 (lllI 22+| 2)+2| 13 1& 27

Where | —1 _de/A |22—1 _(ae CZ)/A , |33 - nlzriz 2(1+B'+B'r| )yl (yl B ) jB’I’T (]—0 r)

Ec N LN CRts) u+&T -7]°

I r_ g Yi (1+ ri) _ I’T
P S+ By -0l [T+ AT, -]
Stress change time’ can be derived from the following equation.
g, o Yi (1+ ri) + rTo fa (1+ fi )(yi _T)+ r(To _T) ]
ST Bl 1) @+ BT, =) i T+ By, 1) r+%m—n
_n+n, +ng " (1+B+Qr Wiy - ) BrT (T, - =0 ©6)
ab  &h o @By -1) u+%n—m
By employing an iterative method such as NewtonHRap algorithm, stress change
time r”can be obtained numerically.

c=ly,,d=1,,e=l,,A=eb’+dc’—ade

Ill’

137

6. Simulation study

In this section, simulation studies are carriedfoutllustrating the theoretical results of
the estimation problem. The performance of the MBEd confidence intervals of the
parameters has been considered in terms of abdukge(AB) and mean square error
(MSE), and covering percentage (CP) for confidemuervals of the parameters,
respectively. Furthermore, the optimal stress chaimge and optimal numbers of failure
items are obtained under use stress level as veelbhcaelerated stress level. The
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simulation procedure can be described as follows:

Sep 1: Random samples of different sizes are generated Rareto distribution, which
can be achieved by using the transformagiem®@-u)™”, ify <7. But ify >7, then

using the transformatiog =7-6r/g+6@-u)" /g ,i=1:-,n .where u,---,u, are a
random sample from uniform distribution(@1).

Step 2: Under progressive type-l hybrid censoring, thesoging timer,and the stress
change time are chosen with different combinations of parameédues fowr,6 andg .

The censoring schemes are selected in the follofeimgs:

CSLirn=-=r,_,=1r,=n-2m+1;
CS2: r,=r,=--=r,_,=1r,=r,=---=r,_,=0,[r, =n-1.5n,
CS3: r,=n-15m+1r,=r,=---=r, = 0f,=rg=---=r,_,= 1

Sep 3: The estimations ofz,# andg are obtained from equatiods Y,, and Eq. (4) and
(5) based on the observed data.

Sep 4: Repeat the previous steps 2000 times and the averfathese estimations are
taken as the MLEs of the parameters.

Sep 5. The AB, MSE and covering percentage with configdelewell—y =0.95 of the
estimations are computed.

Sep 6: The optimal stress change timé obtained by numerically solving equation (6)
using the results of step 4. In addition, the valtien, (optimal number of failure items
under use stress levgl) and n, (optimal number of failure items under accelerated
stress leves) are calculated.

Tables 1-5 represent the AB, MSE for paramete#sandg , and covering percentage for
the confidence intervals with different combinagaof initial values of a,6, 3,T,andr .
According to the values of AB and MSE for MLE an@ Gf the confidence intervals for
parameters in Tables 1-5, it can be see that tHerpence of the MLEs under CS1, CS2
and CS3 is better. Also, as the sample size ahadgiroportion increase, the accuracy of
the estimations increases. Table 6 represents ghimal stress change timeand the
corresponding values afandn;under CS1, where choices of initial values arectete
as follows:

IV1. f=150=6a0=18],= 30 = |
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IV2:5=1260=50=15],= 40 =
IV3:8=1360=7a=2],= 40r = &

The result indicates that the optimal stress chatiger and the corresponding
proportion of n;in total numbers of failure items tend to increaseéhe sample size and

failure proportion increase.

Table 1. The AB, MSE of MLE and CP of the confidence intésvar parameterg,8,a
(B=126=14g= 2],= 306= 152y= 0.9
CP (%) AB (MSE)

B 6 a B 6 a
CS1 9050 9358 92.06 0.0371(0.1321) 0.0925(0.016%).3299(0.1319)
(80,40) CS: 90.1C 93.6] 92.3: 0.C180(0.145§) 0.0861(0.0175) 0.253((0.1638)
CS3 91.10 92.60 91.94 0.0173(0.1643) 0.0884(0.0198).2423(0.1461)
CS1 9251 96.06 95.06 0.0166(0.1253) 0.0820(0.015%).2360(0.1152)
(80,50) CS2 91.28 95.84 92.84 0.0123(0.1309) 0.0812(0.0162).1977(0.1315)
CS: 90.8C 94.9¢ 91.2¢ 0.0155(0.1508) 0.0€34(0.015))  0.1601(0.1257)
CS1 9157 9350 93.02 0.0352(0.1156) 0.0696(0.0094).2704(0.1757)
(100,40) CS2 90.68 93.31 92.14 0.0155(0.1417) 0.0708(0.011%).2077(0.1682)
CS: 904C 93.8¢ 9103 0.1420.109 0.07040.C127  0.161£0.145))
CS1 953€ 98.1( 97.2¢ 0.121(00914) 0.0€14(0.0(87)  0.2225(0.1381)
(100,60) CS2 93.97 97.26 95.61 0.0134(0.1048) 0.0709(0.0102).2008(0.1595)
CS: 924t 95.21 93.9C 0.0129(00978 0.06(5(0.009§)  0.1523(0.1319

(n,m) CS

Table 2: The AB, MSE and CP of the confidence intervalsgarameterg,g,a
(B=158=14g= 2], = 3G = 154y= 0.9

CP (%) AB (MSE)

B I2] a Jii I a
CS1 89.23 93.02 92.61 0.0801(0.1097) 0.0779(0.017&p025(0.1317)
(80,40) CS: 9220 9501 96.6¢ 0.01440.1687 0.089¢0.01€9) 0.3373(0.1551)
CS3 9255 94.96 93.43 0.0204(0.1882) 0.0791(0.0185P544(0.1714)
CS1 91.6C 955¢ 94.83 0.031%(00952) 0.C774(0.015) 0.21640.091F)
(80,50) CS2 9439 97.31 96.59 0.0108(0.1273) 0.0862(0.0136P685(0.1229)
CS3 9313 96.30 95.79 0.0197(0.1755) 0.0792(0.016MP375(0.1451)
CS1 9379 9565 93.12 0.0208(0.2417) 0.0698(0.009BPR298(0.0856)
(100,40) CS: 94.06 97.04 96.71 0.0/25(0.245€) 0.0724(0.C116) 0.212€(0.1C73)
CS3 92.87 96.15 94.89 0.0461(0.2799) 0.0655(0.01458121(0.1213)
CS1 9514 97.49 98.10 0.0201(0.1724) 0.0624(0.009BB071(0.0769)
(100,60) CS: 9619 9806 97.62 0.C339(0.277S) 0.0892(0.C108) 0.207€(0.0943)
CS: 9492 9712 96.5¢ 0.C346(0.2044) 0.0690(0.C137) 0.138¢0.1192)

Table 3: The AB, MSE and CP of the confidence intervalsgarameterg,6,a
(B=1.20=120=1.8,= 30G;= 144y= 0.9
CP (%) AB (MSE)

B 7 a B 2] a

CS1 91.74 9534 93.07 0.0154(0.1909) 0.0807(0.0188Bp063(0.1639)
(80,40) CS2 93.06 96.35 94.81 0.0189(0.1797) 0.0837(0.0182)317(0.1571)
CS: 9144 959t 9518 0.0174(0.1695) 0.0£18(0.0148) 0.117%0.1537)
(80,50) CS1 92.98 96.65 94.94 0.0121(0.1806) 0.WBAE37) 0.1056(0.1417)

(n,m) CS

(n,m) CS
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CSz 9426 97.2C 9578 0.0143(01671) 0.C731(0.0146) 0.103((0.15:0)
CS: 93.1¢ 965C 9553 0.0167(0.157€) 0.0€01(0.0141) 0.1135(0.1601)
CS1 91.89 9658 94.25 0.0158(0.1598) 0.0652(0.009BP530(0.1796)
(100,40) CS2 93.15 9622 9545 0.0162(0.1120) 0.0872(0.013¥)020(0.1567)
CS: 9227 9547 9498 0.0(85(0.101€) 0.0690(0.0(89) 0.06540.1€09)
CS1 9351 97.80 95.89 0.0112(0.1439) 0.0568(0.009MP461(0.1614)
(100,60) CS2 94.01 98.36 96.56 0.0129(0.1325) 0.0714(0.01G5P983(0.1349)
CS3 95.84 97.96 96.23 0.0078(0.1218) 0.0614(0.008BP584(0.1421)

Table4: The AB, MSE and CP of the confidence intervalsgarameterg,6,a
(B=1.20=12g=15],= 30;= 144y= 0.9

CP (%) AB  (MSE)

£ 1] a B I2] a
CS1 89.42 9226 93.25 0.0146(0.2022) 0.1003(0.0202p196(0.2307)
(80,40) CS:z 9127 94.05 9404 0.C1870.2153) 0.10160.019) 0.114¢(0.1804)
CS: 9056 91.69 9284 0.103(02152) 0.09740.0190) 0.1058(0.174¢)
CS1 9053 9356 94.96 0.0121(0.1769) 0.0990(0.0191)1294(0.1873)
(80,50) CS2 92.19 96.87 9541 0.0165(0.2043) 0.0981(0.017®)L024(0.1612)
CS: 9179 9482 96.3C 0.097(0.193€) 0.0979(0.0180) 0.0983(0.1571)
CS1 9071 9358 95.02 0.0153(0.1914) 0.0807(0.013ML725(0.2363)
(100,40) CS2 92.70 95.82 93.46 0.0154(0.2075) 0.0789(0.01aB)L039(0.1334)
CS: 91.36 9323 9587 0.0138(0.2035) 0.081¢0.013¢) 0.1604(0.2757)
CS1 9161 94.94 96.15 0.0172(0.1522) 0.0712(0.0112)1065(0.1843)
(100,60) CS2 93.18 97.15 96.51 0.0161(0.1980) 0.0808(0.01@1LPI94(0.1297)
CS: 9246 95.87 97.0¢ 0.004{0.2010. 0.08040.0125) 0.070%0.231€)

(n,m) CS

Table5: The AB, MSE and CP of the confidence intervalsgarameterg,6,a
(B=1.20=13p=18,= 3q;= 144y= 09

CP (%) AB  (MSE)

B 6 a B 6 a

CS1 90.12 93.07 92.15 0.0152(0.1473) 0.0901(0.0162p457(0.1846)
(80,40) CS2 91.25 9437 92221 0.0082(0.2001) 0.0924(0.016B)265(0.1949)
CS: 91.97 93.3: 91.0¢ 0.024§02117) 0.089%0.015¢ 0.197¢0.1715)
CS1 9127 9457 93.01 0.0142(0.1135) 0.0942(0.0188p217(0.1659)
(80,50) CS2 92.07 96.07 9578 0.0064(0.1917) 0.0900(0.0141P876(0.1529)
CS3 9275 9655 9510 0.0143(0.1745) 0.0897(0.014¥P142(0.1603)
CS1 91.05 9463 93.05 0.0145(0.0961) 0.0720(0.0112p282(0.1524)
(100,40) CS2 9244 9595 94.95 0.0074(0.0862) 0.0729(0.01GB)L772(0.1712)
CS: 9127 935¢ 9267 0.387400695) 0.0731(0.0107) 0.1310.1456)
CS1 9242 9578 94.08 0.0129(0.0461) 0.0761(0.01G2)934(0.1387)
(100,60) CS2 93.81 97.17 96.73 0.0086(0.0408) 0.0729(0.009B)L569(0.1416)
CS: 931C 9545 96.3¢ 0.022((0.031F) 0.071§0.C089 0.1181(0.1245)

(n,m) CS

Table 6: The results of optimal plans with different samgilees, failure proportions, and
choices of initial values in SSPALT

* *

(n,m) Initial values T n n,
(AVAR 7.2466 19 6

(50,25) V2 7.7290 18 7
V3 9.0607 22 3

(50,30) V1 20.9838 16 14
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V2 12.1384 20 10
V3 37.2389 18 12
V1 8.8571 32 8
(80,40) V2 6.9054 29 11
V3 8.6607 32 8
V1 19.8794 30 30
(80,60) V2 35.6349 30 30
V3 21.0704 28 32

7. Conclusions

This paper studies the parameter estimation arichabplan for the step-stress partially
accelerated life test with progressive type-lI hgtoénsoring. The test items are assumed
to follow Pareto distribution. The MLEs togethertlwithe asymptotic confidence
intervals of the parameters are obtained, and tmiformances are evaluated by AB,
MSE and CP, respectively. The optimal plan was ttooted via the stress change
timer” from normal use condition to accelerated condités.is shown in the numerical
results, appropriate censoring times and schemaslhsis relatively large sample sizes
and failure proportions contribute much to a hig¥el of estimation accuracy.
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