Journal of Physical Sciences, Vol. 20, 2015, 19-34
ISSN: 2350-0352 (printywww.vidyasagar.ac.in/journal
Published on 24 December 2015

Ranking and Unranking Algorithm for Neuronal
Treesin B-order
Mahdi Amani *? and Abbas Nowzari-Dalini *

! Department of Computer Science, School of Matharsa8tatistics, and Computer
Science, Colleague of Science, University of Tehiiatran, Iran
?Dipartimento di Informatica, Universita di Pisas®i Italy
E-mail: m_amani@di.unipi.jthowzari@ut.ac.ir

Received 7 September 2015; accepted 11 Novembgr 201

ABSTRACT
In this paper, we present two new ranking and udngnalgorithms for neuronal trees in
B-order. These algorithms are based on a generalgmnithm which is given for integer
seguences corresponding to neuronal trees by Patleuronal tree is a rooted tree with
n external nodes (leaves) whose internal nodes aileast two children. These trees are
used in computational neuroscience for modeling dbienections between neurons in
brain, and are also called neuronal dendritic tr&lgsto our knowledge no other ranking
and unranking algorithms are given for integer seges corresponding to neuronal trees
in B-order. The time complexity of the presentedkiag and unranking algorithms for
neuronal trees with leaves ar@(n) andO(n log n), respectively.

Keywords: Tree Generation, Ranking, Unranking, B-order, neakrdéree, dendritic tree.

1. Introduction
Trees are one of the most important basic and sirdpta structures for organizing
information in computer science. Trees have manplieations including database
generation, decision table programming, analysislgbrithms, string matching [15],
switching theory, theoretical VLSI circuit desig29], image processing [25, 28],
maintaining data [19], and as auxiliary structufescompressing data [13]. Trees are
also widely used for showing the organization @fl kgorld data such family/geneaology
trees [23], taxonomies, and modeling of the conaestbetween neurons of the brain in
computational neuroscience [6, 7, 18]. In addititm exhaustive generation of all trees
of a certain type is often useful; for examplejsa &f all trees with a given number of
nodesn, may be used to test and analyze algorithm coritglend prove the correctness
of an algorithm [15]. Therefore, the problem of gating trees has been thoroughly
investigated in the literature and many papers Hean published which deal with the
generation of all trees. For example, we can merttie generation of binary trees in [2,
11, 30, 32]k-ary trees in [3, 10, 12, 14, 24, 34, 35], treehwinodes anan leaves in
[21, 27], neuronal trees in [4, 22, 30], non-regutaes in [33], AVL trees in [16], and
spanning trees in [8, 20].

In most of these algorithms, trees are encodeditager sequences and then these
sequences are generated with a certain order, amsguently their corresponding trees
are also generated in a specific order. The moditkwmewn orderings on trees are

19

Mahdi Amani and Abbas Nowzari-Dalini

A-order and B-order [35], and the orderings on shquences are lexicographical [35],
cool-lex [9], and Gray code [14, 17].

Beside the generation algorithm for trees, rankind unranking algorithms are also
important in the concept of tree generation [1, 331, 35]. Given a specific order on the
set of trees, the rank of a tree (or correspongatgience) is its position in the exhaustive
generated list, and the ranking algorithm compthiesrank of a given tree (or sequence)
in this order. The reverse operation of rankingalbed unranking; it generates the tree (or
sequence) corresponding to a given rank. Usualy generation papers present ranking
and unranking algorithms for tree generation athari Ranking and unranking
algorithms also have many applications. For examiplgraditional tree compression
algorithm, for encoding the tree to code sequemckedecoding the code sequence back
to a tree, the ranking and unranking algorithmshmnsed.

In this paper, we consider neuronal (dendriticedreNeuronal trees of sizeare
rooted trees witlm external nodes (leaves) which internal nodes aaleast two children.
These trees are known with regard to their numbérawes [22]. Neuronal trees are used
for modeling the ‘dendrites of a nerve cell’ in thain [5, 22].

Generation of neuronal trees is first studied bjoH22]. He introduced an integer
sequence codeword for encoding these trees anénpeelsan efficient algorithm for
generating the integer codewords of all neuronaeégrwithn external nodes. The
corresponding trees are generated in B-order andeheration algorithm h&¥n) worst
case time complexity. He presented a generatiasritign, but no ranking and unranking
algorithms were presented.

An encoding of lengtm over six letters for a neuronal tree withleaves and a
generation algorithm on this encoding in A-ordee aiven by Vajnovszki [30]. The
presented generation algorithm t@@) time complexity in the worst case aB@dlog n)
average time complexity. He also presented an umgnalgorithm with the time
complexity ofO(n®) but no ranking algorithm was presented. Aftett,thanew encoding
on three letters for neuronal trees witleaves is presented by Amagtial [4]. The size
of encoding is equal to the number of nodes oftthe (less tha2n and greater than
n+1). They also presented a generation algorithm @nethcoding with constant average
time andO(n) time complexity in the worst case. In this altjom, the trees were
generated in A-order. Due to the given encodingh lbanking and unranking algorithms
were also presented wi(n) andO(n log n) time complexity, respectively.

To our best knowledge, no ranking and unrankingritlyns are designed for
neuronal tree in B-order. In this paper, we predam new ranking and unranking
algorithms for codewords corresponding to neurtreg withn external nodes generated
in B-order based on the Pallo [22] generation atlgor. The time complexity of the
ranking algorithm i€O(n) and it isO(n log n) for the unranking algorithm.

The remaining of the paper is organized as follo®sction 2 introduces the
definitions and notions that are used further. Padlo [22] encoding and generation
algorithm for neuronal trees in B-order are presénin Section 3. Based on Pallo
generation algorithm, the ranking and unrankingo@dilms are given in Section 4.
Finally, some concluding remarks are offered intidac.

2. Definitions
Formally, arooted treeis a connected and undirected graph without amjecwith a

20

Ranking and Unranking Algorithm for Neuronal Trée®-order

special node called thmot. In a rooted tree, every node is connected tortla¢ by
exactly one path. For two connected nodes, the nedeest the root is called tharent
and the other node called @hild. Each child of a node is the root of a tree callelltree
of this node. A rooted tree where the children aflenode have a designated order is
calledorderedtree The children of the same parent are knowsilsigngs and thedegree
of a node is defined as the number of its childfanexternal noddor leaf) is a node that
has no children, and the other nodes (that do blaldren) are known asternal nodes
According to the structure of neurons, dendritesafrons have splits such that each
branch in the splits is connected to at least tth@robranches except the terminal ones.
Therefore, the termeuronal tred@s used to refer to a tree in which each interoalenhas
at least two children; in other words a neuronakétis a tree whose nodes are either
leaves or have at least 2 children [22, 30]. Theses are known with regard to their
number of leaves. For example the tree given in Figan be regarded as a neuronal tree
with n = 13 leaves. Recall from [22], that in dendritic tarology, the root of a neuronal
tree is taken to be the axon hillock and the extenodes are the tips of the terminal
segments. The order of magnitude of branching atode may be described as
dichotomous if the degree of that node is 2, tlichwus if the degree is 3, and so on [7].
Formally, a neuronal tree can be defined as follows

Definition 1. A neuronal tre€T is defined as a finite set of one or more nodeh $hat:
1. T has a distinguished nodgcalledroot of this tree, and i has more than
one node, thenis connected tp> 2 neuronal tree$;, Ty, . . ., Tand each
treeT; (1 <i <j), is called thesubtreeof T.
2. The root ofT; (1 <i <j) is considered asahild of r.
3. T, is theleftmost subtreeand its root is thieftmost childofr.
4. T,is therightmost subtre@nd its root is theghtmost childof r.

Figure 1. A sample neuronal tree with 5 internal nodes éhdxternal nodes.

Let S,denotes the set of neuronal trees witkxternal nodes. The number of trees

in S, is denoted by, (i.e, S, =|S, |); it corresponds to the well-knownt' Schréder
number [26] and can be computed by a linear recaeréormula.

Theorem 1. [26] The Schréder number counts the trees of theSetas follows.

21

Mahdi Amani and Abbas Nowzari-Dalini

_3@-95.-(m 38, o1 s 2),
n

S
S=S=1

It is also proved in [30] thatS, >5" for n>57 and S, <6" for n>1.

As mentioned, any generation algorithm imposesrdering on the set of trees. In
these algorithms trees are encoded as integer rsmzgi@nd then these sequences are
generated with a certain order and consequentiy¢beresponding trees are generated in
a specific order. Two such natural orderings arerder and B-order [30, 31, 35] which
are defined for neuronal trees as follows.

Definition 2. LetTand T' be two neuronal trees antk = max dedT) , do(T)} ,
we say thal is less thanT"' in B-order(T < T"), iff

« deg(T)< deg(T) or

. deg(T)=degT), and[] : [] T =T, anfi<; T},

<isk jO{L,2,...,6-1)}
where dedl) is defined as the degree of root of the free

Definition 3. LetTand T' be two neuronal trees antk = max dedT) , do(T)} ,

we say thaf is less thanT" in A-order(T <, T"'), iff
« ITI<T | or
. deg(T)=degT), and[] : [] T, =T, anfi<, T},
l<i<k jO{L,2,....6-1)}
where T| (size ofT) is defined as the number of leaves in the Tree

The most well-known ordering for integer sequensethe lexicographic ordering
that is defined as follows.

Definition 4. Two integer sequenceg=(\V,, \,,--,y,)and v'=(V',V',,--- V) are
in lexicographic orde(denotedby v < V'), if there exists1<i < min(n,m), such that
1. v, =v, foralll<j<i,
2. V. <V,.

The Pallo’s generation algorithm [22], generatesitheger sequences corresponding
to neuronal trees in lexicographical ordering, #relr corresponding trees are generated
in B-order.

As mentioned before, besides the generation algorifor trees, ranking and
unranking algorithms are also important in the emhof tree generation [10, 24, 35]. Let
us consider an arbitrary class of trees of gjzbe elements of this set can be listed based
on any defined ordering such as A-order or B-or@éith respect to the ordering..

22

Ranking and Unranking Algorithm for Neuronal Trée®-order

A-order or B-order), the ‘position’ of tre€ in that class is calledank of T, therank
function determines the rank &f;, the inverse operation of ranking usranking for a
positionr, theunrank functiorgives the tred@ corresponding to this position.

3. Encoding and generation algorithm

In this section, we review the neuronal trees eimgpdnd generation algorithm for these
trees presented by Pallo in [22]. As mentioned,ntiaén point in generating trees is to
choose a suitable encoding to represent them, mastdaid of generating trees, their

corresponding codewords are generated. Pallo edceaigh neuronal tree in the s8t
by an integer sequence as follows [22].

Definition 5. Given a neuronal treeT with n external nodes, the S-sequences
S:{ S, S §} corresponding toT is obtained as follows. Each internal node of

tree T is labeled with its degree minus one ancheadernal node with zero, then the
labels are listed in pre-order traversal oF as sequence s.

For example, the S-sequence corresponding to tlema treel shown in Fig. 1 is
the sequence=1{2,2,0,3,0,0,0,0,0,0, 3,0, 0, 2,0000}. An S-sequenceis called
feasibleif there is a treeT JS such thats is the S-sequences corresponding .taVe

also denote the S-sequence correspondifightp S(T) . The feasibility of an S-sequence
corresponding to a neuronal tree is studied iffdhewing theorem [22].

Theorem 2. An integer sequences:{q, §§} is a feasible codeword of a
neuronal tree iffs, =0, and Ok O[1, ¢ -1]:

2.5 >I{i0MLK: § =0}.

Clearly, there is a one to one correspondence eat@eneuronal tree and a feasible
codeword. With respect to the above theorem, thetheof the feasible sequences alters
betweenn+1to 2n— 1 In the corresponding lexicographic ordering & Brsequences,
the first S-sequence is

{11 0111 0! 11HCD}
2n-2

with length 2n—1, and the last is
{n-1,0,0,0,...,p
n

with length n+1. Actually, the first sequence corresponds to atr@pain binary tree
with n—=1 internal nodes and external nodes, and the last sequence corresporals

n-ary tree with one internal node andexternal nodes. Therefore, we can present the
following theorem [22].

Theorem 3. Given two neuronal tree§J and T'in S, Tis less thanT 'in B-order

23

Mahdi Amani and Abbas Nowzari-Dalini

(T =g T"),iff S(T) is lexicographically less thars(T") (i.e., S(T)< {T)).

Based on the above theorem, the generation of &egegs in lexicographical
ordering corresponds to the generation of neurbaak in B-order. As an example, a list
of 11 neuronal trees witm =4 external nodes in B-order, and their corresponding
S-sequences in lexicographical order are illustratd-ig. 2.

The Pallo’s generation algorithm [22] returns thecessor of a given sequence

S :{ S, S §} with length/ = O(n). In this algorithm, the sequensé scanned from

right to left, the first non-zero element is obtdn and its position is assignedkolf

k =1, then this sequence corresponds to the last sequamd there is no successor.
Otherwise, the successor is computed as followst, Ehe length of the new sequence is
evaluated and this length is kept ih Later, the (k —1)™ element is incremented and a

subsequence corresponding to a right-chain subtittesize (S, —1)is replaced by the

last (s, —1)elements in the sequence and the elements krtan/ —2s, +1 are set to

zero. In fact, this process is similar to the reptaent of the right-most child of the node
k by a right-chain binary subtree, and the appropnmatmber of external nodes is added
as the first children of thé" node.

The pseudocode for Pallo’s algorithm [22] is présdnin Fig. 3. The algorithm
generates each sequence in constant average firaeinie complexity of this algorithm
in the worst case 9(n).

4. Ranking and unranking algorithms

By having a generation algorithm in a specific ordee ranking of algorithm is desired.
To represent a neuronal tree as an integer, we toekdow its index in the exhaustive
generated list by the generation algorithm. Thieinis called the rank of the neuronal
tree (or corresponding S-sequende; the rank of an S-sequence corresponding to a
neuronal tree with respect to some ordering is ribmber of previously generated
codewords in that ordering. This is achieved bxiramalgorithm: The ranking algorithm
receives an S-sequence as the input and returrisdée of the S-sequence. The reverse
operation of the ranking is called unranking. Arramking algorithm determines the
S-sequence corresponding to a neuronal tree havpagticular rank. As mentioned, for
neuronal trees in B-order, no ranking and unrankiigprithms are presented in the
literature. In this section, ranking and unrankatgorithms for neuronal trees in B-order
based on S-sequences are given.

24

Ranking and Unranking Algorithm for Neuronal Trée®-order

No. 1 2
£ DN
A A
S-sequence 1010100 1011000
3 4 5
£, AN e
/5™ A 3N
o
102000 1100100 1101000
6 7 8
3 : A5y
¢ | &
{ ﬁ
£
1110000 120000 200100
9 10 11
i_"‘) (o1 9
2% A A
201000 210000 30000

25

Figure 2: List of the trees i, in B-order and their corresponding S-sequences.

Mahdi Amani and Abbas Nowzari-Dalini

Procedure Pallo-Gen-Seq (s: S-seq; {: Integer) ;
Var ¢, j, t,q: Integer ;

Begin
i=1{,
While (i > 1) And (s; = 0) Do

ii=1—1;
If (= 1) Then Exit ;
If (siiy=0) Then qg:=¢(—i+1;
Else g¢:=1(—1i;
ti=s5—1; s;_1:=8_1+1;
li=i+t+qg—1; s5,:=0;
For j:=1To t Do Begin
Sp—aji=1; 549501 :=0;
End ;
For j:=1¢To {—2t—1 Do
s5;:=0;

End ;

Figure 3: Pallo S-sequences generation algorithm.

Ranking and unranking algorithms usually use a@rmted table of the number of
a subclass of given trees with some specified ptigseto achieve efficient time
complexities; these precomputations will be donty @amce and stored in a table for
further use [4, 16, 27, 33]. For designing the magkand unranking algorithms of
neuronal trees, we need some theorems and defimitiche following theorem presents

another way for calculating the cardinality &, .

Theorem 4. For the cardinality of the set of neuronal treeshwi leaves, , we have:

n-2
%=ZZ$$-i+ P2 1S Sl
i=1
Proof. See [4].

Theorem 5. Let S, | be the number of neuronal trees with n leaves whios root has
degree equal to mA< m< n). Then we have:

n-1
1. if m=2, then§,= $,=D. $
i=1
n-m+l

2. ifm>2 then§ = > $Sim

i=1
Proof. Let T be a neuronal tree withleaves and the root of degn@ethen we have two
cases.

1. If m=2, thenT has two childrenT, and T,, if |T, Fi then the number of
such trees is equal t& S_; . Sincei can change from 1 to— 1, we have:

26

Ranking and Unranking Algorithm for Neuronal Trée®-order

n-1
S.=).S$%
i=1
2. If m > 2, thenT hasm subtreesT,, T,,...,T.. If |T,[Ei, then the number of
possible cases fof; is equal to S, and the number of cases for the other

subtrees (,...,T,) isequal to S, ., (by ignoringT,, the remaining subtrees

form a neuronal tree witth—i leaves and with a root of degrem—1).
Therefore we haveS § ; ,_,trees. In this casecan change from 1 to —m+1,

so the number of neuronal trees is equal to:
n-nm+l

; S %—i m-1*

Hence, the proof is complete.

Theorem 6. Let N, . be the number of neuronal trees with n leaves wifiiost child
has degree less than or equal to Bx{m< n). Then we have:
m n-2
Nn,m = 2(22 Sj,i %—j + §—1,i)'
i=2 j=
Proof. Let T be a neuronal tree satisfying the above condition, let the first child of
be T,. Letdeg(T,) =i,2<i<m, and the number of leaves iy bej, j can change

between andn-1.
First, let us assume=n—1, we will have a neuronal tree whose first child)(has

degred and] =n-1 leaves, soT, has just one brother which is a leaf. Therefdre, t
number of such trees is equal 8§ ,; §= .4
Now, let us assume < j <n —2, we will have a neuronal tree whose first child ha

degreei andj leaves and other children (brothers Bf) have all togethem— j leaves.

We have two different cases:
1. T has just two childrenl; with j leaves andT, with n — | leaves. T, is a

neuronal tree with the root of degrieand;j leaves andT, can be any neuronal
tree withn —j leaves. Therefore, the number of such trees ialéqu

n-2
Zs“ SHY
j=i
2. T hask > 2 children T, T,,...,T, such thatT, hasj leaves andT,,T;,..., T,

have all togethern— j leaves. Sincé > 2, if we ignoreT,, a neuronal tree with

n- jleaves remainsT, is also a neuronal tree with the root of degreedj
leaves. Therefore the number of such trees is agpial to:

27

Mahdi Amani and Abbas Nowzari-Dalini

n-2
2.5 S
j=i
Therefore in total we have:
m n-2
Ny m= 2(22 Sj,i %—j + 5—1,i)-
i=2 j=
Hence, the proof is complete.
For the ranking and unranking algorithms we neecbtopute in advances,, S, .

and N, .. These computation can be performed in ti@@) and O(nd. Now, with

regard to the above theorems and definitions weptasent a new formula to compute
the rank.

Theorem 7. Let T be a neuronal tree with n leaves whose sebti@e defined by
Tl,TZ,...,Tj ,andfor1<i<j: |T Fn ,deg(Ti) =d, and zi':lni =n, we have:
Rank T,1)=1,

Rank(T, r):é(NH_Z;WA_1+2(Rank,T -1 n_%:lkqn‘).

Proof. One way to compute the rank of tr@eis to enumerate the number of trees
generated beforé.

The number of neuronal trees witheaves whose first subtree is smaller thhis
equal to:

Nyort2(Rank T,)-1) §, .

and the number of neuronal trees witleaves whose first subtree is equalTp but the
second subtree is smaller thdpis equal to:

Nn—nl,dz—l + Z(RanK -E’ 9)_ 1) $—(nl+nz)’
similarly, the number of neuronal trees witHeaves whose first(i —1) subtrees are

equal to T, T,,...,T_, and thé" subtree is smaller thaif; is equal to:

N o, oo *2ARBKT, -1 S

Therefore, regarding the above enumeration we have:
Rank T,1)=1,

Rank T, 9= (N

So the proof is complete.

2

1+2(Rank; T h—1) n%i, 0)-

‘Zil:l”«’q"

28

Ranking and Unranking Algorithm for Neuronal Trée®-order

Function Calculatel, (Beg: Integer; Var Fin: Integer);
Var T'mp, Sum, Cur : Integer;

Begin
Cur := Bey;
Sum = 0;

For i :=1 To C[Beg] + 1 Do Begin
If C[Cur] = 0 Then Begin

L[Cur] := 1;
Cur .= Cur+1;
End

Else Begin
L[Cur] := CalculateL(Cur, Tmp);
Cur = Cur + Tmp;
End;
Sum = Sum + L[Cur];
End;
Fin = Cur+1;
Return(Sum);
End;

Figure 4. Algorithm for calculating the number of leavesaisubtree.

For computing the rank of an S-sequence stored iar@yC, we need an auxiliary
arrayL[i] which keeps the number of leaves in the subtreese root is labeled by]i]

and corresponds ta, in the above formula. This array is computed by akgorithm

CalculateLgiven in Fig. 4. In this algorithmBed' is a variable that shows the position of
the first character in the arr&y (when this algorithm is called for first time, tihtial
value for ‘Bed' is 1), and Fin” is a “call by reference variable” that return thosition
of the last leaf in the subtree whose root is lathddyC[Bed. We need to emphasis that
“Tmg is just a local variable used to store the retdrmalue ofin after each recursive
call. This algorithm is recursive and in each dalf,an S-sequence stored in global array
C, the number of leaves of the subtree roote@[Bed with the last leaf inC[Fin] is
calculated. This algorithm is executed just ondereecalling the ranking algorithm.

Considering Theorem 7 and the algorit@alculatel, the ranking algorithm is given
in Fig. 5. In this algorithm the variableBéd' and “Fin” are similar to the variables used
in the algorithmCalculatel, and “Beg” is initially set to 1. As we can sdastalgorithm
computes the rank of S-sequence correspondingnéuii@nal tree using auxiliary array
and S-sequence arr@y this algorithm recursively returns two importamatues: first, the
Rankof the subtree rooted Beg and second, call-by-reference variabie (position of
the last leaf in the subtree whose root is labbled[Beq).

29

Mahdi Amani and Abbas Nowzari-Dalini

Function Hank(Beg: Integer; Var Fin: Integer);
Var R, N, Point, PointFin, Leaves, n: Integer;
Begin
n := L[Beg|;
If (n = 1) Then Begin
Fin := Beg;
Return(1);
End
Else Begin
Point := Beg + 1; R :=0; Leaves := (;
While (Leaves < n) Do Begin
R:=R+ "!\’rii—LCG{‘F-&\("[["O{N?]—1
+ 2(Rank(point, PointF'in)—1) XS,_jcqves—L[Point];
Leaves = Leaves + L[Point] ;
If L[Point] = 1 Then
Point := Point + 1;
Else
Point == Point Fin + 1;
End,;
Return(R + 1);
End;
End;

Figure5: Ranking algorithm.

Now the time complexity of this algorithm is dissed. Obviously the time
complexity of the procedureCalculatel” (shown in Fig. 4), which computes the number
of leaves in each subtree@n). This algorithm is executed just once beforeinglthe
ranking algorithm and it has no more time effeatstibe ranking algorithm, also the

arraysS,, S, ,,, and N, were precomputed in advance. Therefore we shoutdlate
the time complexity of the ranking algorithm givenFig. 5. LetT be a neuronal tree

with n leaves whose subtrees are definedyT,,...,T; and for 1<i < j :|T, |F nand

> ij=1 n, = n, and lefT(n) be the time complexity of the ranking algorithiaeg in Fig. 5,
then we haveT(n)=T(n)+ T(n)+...+ T(n)+a (where ais a constant value

and @ j is the time complexity of the non-recursive paftshe algorithm). In [4 (see the
proof for Theorem 5)], Amanét.al, with a simple induction, show that for the above
recursive formula, T(n)=O(n). Therefore our ranking algorithm has the time

complexity ofO(n) in the worst case.

If a and b are integer numbers, lefa div b)and (a modb) denoteinteger
division and remainder of the division of a and b, respectively
(a=(adiv b)x b+ (amod b)). Before giving the description of the unranking

algorithm we need to define two new operators. Wefind (a div'b) and
(a mod'b)as follows.

30

Ranking and Unranking Algorithm for Neuronal Trée®-order

1. If b|a,then (a div'b) = (adiv -1, and (a mod'b)= b.

2. Otherwise, (a div'b) = (adiv b), and (a mod'b)= (a modb .
In the unranking algorithm, for a given rafRk we have to find an S-sequenCe
corresponding tol such thatRanKT, n) = R. For unrankingR, in each step of the

algorithm we need to find the minimup» 0 such thatN, ; =2 R. Then the number of

leaves in the first subtree @fis(j —1). Then we have to build the S-sequence for the

first subtree recursively and updae Considering the above discussion, the unranking
algorithm is given in Fig. 6. In this algorithrR, is the inputBegis a variable used to
show the position of the first character in thebglloarrayC and initially is set to 1. The
generated S-sequence is hold in the ataVhe variablen is the number of leaves of the
neuronal tree corresponding 6. As mentioned before, it is assumed that the

precomputed arraysS,, S, ,, andN, ., are computed and stored in advance, therefore,
with regard to the non recursive and recursivespaftthe unranking algorithm, for a
given neuronal tre& whose subtrees are defined Ay, T. 'I'J , if the time complexity
for unranking algorithm is shown [¥n), we have:

T(N=OQ(logn+logn+..+logn } T(p} T(pa)} ..++ T(n)
In [4 (see the proof for Theorem 6)], it has beeoved that for the above recursive
formula, T (n) = O(nlog). Therefore the time complexity of our presentechoking

algorithm is O(n log n).

5. Conclusions

In this paper, we have introduced two new ranking) @nranking algorithms for neuronal
trees in B-order. The generation algorithm for oeaf trees in B-order is presented by
Pallo. The time complexities of the presented nagland unranking algorithms a@%n)
andO(n log n), respectively.

Acknowledgements

This research was patrtially supported by UniversityTehran and Italian Ministry of
Education, University, and Research (MIUR) underINPRO12C4E3KT national
research project AMANDA.

31

Mahdi Amani and Abbas Nowzari-Dalini

Function UnRank (R, Beg, n: Integer);
Var Point, Deg, j: Integer ;
Begin
If ((n=0) or (R=0)) Then
Return (Beg — 1)
Else Begin
If (n = 1) Then Begin

C[Beg] = 0;
Return (Beg);
End

Else Begin

Point := Beg+1;

Deg :=0;

While (n > 1) Do Begin
Deg := Deg + 1:
7 :=min{i|N,; > R};
R:=R—- N,
Point := UnRank ((divT(R,2S,_;) + 1), Point, j) +1;
R := mod* (R, 25,_;);

i = T 5
End;
C|Beg| := Deg;
Return(Point —1);
End,;
End;

End;

Figure 6: Unranking algorithm.
REFERENCES

A. Ahmadi-Adl, A. Nowzari-Dalini and H. Ahrabian, @king and unranking
algorithms for loopless generation of t-ary trdesgic Journal of IGPL.19 (2011)

33-43.

H. Ahrabian and A. Nowzari-Dalini, On the generatiof binary trees in A-order,
International Journal of Computer Mathemati@4, (1999) 351-357.

H. Ahrabian and A. Nowzari-Dalini, Parallel Genévatof t-ary trees in A-order,
Computer Journal50 (2007) 581-588.

Amani, Mahdi, Abbas Nowzari-Dalini, and Hayedeh &lhian, Generation of
Neuronal Trees by a New Three Letters EncodBmmnputing and Informati¢83(6)

(2015) 1428-1450.

R. Alberich, G. Cardona, F. Rossell6 and G. Vabdemin algebraic metric for
phylogenetic tree#\pplied Mathematics Letter&2 (2009) 1320-1324.

S. Berger and L. Tucker, Binary tree representatihn three-dimentional,
recosytruted neuronal trees: a simple, efficiegbathm, Computer Methods and
Programs in Biomedicine3 (1986) 231-235.

M. Berry and P. Bradley, The application of netwahalysis to the study of
branching patterns of large dendritic fielBsain Research109 (1976) 111-132.

E. Boros, K. Borys, V. Gurvich and G.Rudolf, Gerimig 3-vertex connected
spanning subgraphBjscrete Mathemati¢cs808 (2008) 6285-6297.

S. Durocher, P.C. Li, D. Mondal, F. Ruskey, andWilliams, Cool-lex order and

32

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Ranking and Unranking Algorithm for Neuronal Trée®-order

k-ary Catalan structuredpurnal of Discrete Algorithm4. 6 (2012) 287-307.

M.C. Er, Efficient generation of k-ary trees in uvatl order,Computer Journal35
(1992) 306-308.

S.K. Ghosh, J. Ghosh, and R.K. Pal, A new algoritbrepresent a given k-ary tree
into its equivalent binary tree structurdgurnal of Physical Science42 (2008)
253-264.

S. Heubach, N. Li, and T. Mansour, Staircase tfirand k-Catalan structures,
Discrete Mathemati¢cs308 (2008), 5954-5964.

J. Katajainen and E. Makinen, Tree compressionamtithization with application,
International Journal of Foundations of Computefebce 1 (1990) 425-447.

J.F. Korsh and P. LaFollette, Loopless generatibiGay codes for k-ary trees,
Information Processing letterg0 (1999) 7-11.

D.E. Knuth, The Art of Computer Programming, Vol.1: Fundamemtidorithms
2nd Ed, Addison-Wesley, Reading, MA, 1973.

L. Li, Ranking and unranking AVL tree§IAM Journal of Computingl5 (1986)
1025-1035.

J. Lucas, D. R.V. Baronaigien, and F.Ruskey, Oatimis and the generation of
binary treesJournal of Algorithms15 (1993) 343-366.

S. Mandal and M. Pal, A sequential algorithm toseaiext-to-shortest path problem
on circular-arc graphdournal of Physical Sceince®0 (2006) 201-217.

0.0. Olugbenga, E.F. Adebiyi, S. Fatumo and A.DawddQ trees, consecutive
ones problem and applicationgternational Journal of Natural and Applied
Sciences4 (2008) 262-277.

S.K. Pal, S. Sen, and P. Manna, Spanning tree basexhalytical perspective of
degree sequencéournal of Physical Sceinces3 (2009) 209-216.

J. Pallo, Generating trees with n nodes and m fdwernational Journal of
Computer Mathematic®1 (1978) 133-144.

J. Pallo, A simple algorithm for generating neutodandritic trees,Computer
Methods and Programs in Biomedicir33 (1990) 165-169.

K.D. Queiroz and J. Gauthier, Phylogeny as a ckmgrimciple in taxonomy:
Phylogenetic definitions of taxon nam&gstematic Zoologg9 (1990) 307-322.

F. Ruskey, Generating t-ary trees lexicographic&8lAM Journal of Computing?
(1978) 424-439.

H. Samet and R.E. Webber, Hierarchical data strestand algorithms for computer
graphicsJEEE Computer Graphs & Application8 (1988) 67-75.

E. Schroder, Vier combinatorische problefeijtschrift f'ur Angewandte Mathematik
und Physik15 (1870) 361-376.

E. Seyedi-Tabari, H. Ahrabian and A.Nowzari-Dalifh new algorithm for
generation of different types of RNAlnternational Journal of Computer
Mathematics87 (2010) 1197-1207.

I.P. Stewart, Quadtrees: storage and scan conweG@nputer Journal29 (1986)
60-75.

T. Uehara and W.M. Cleemput, Optical layout of cnfosctional arrays|EEE
Transaction on Computerg (1981) 305-312.

V. Vajnovszki, Listing and random generation of remal trees coded by six letters,
The Automation, Computers, and Applied Mathemadi¢4995) 29-40.

33

31

32.

33.

34.

35.

Mahdi Amani and Abbas Nowzari-Dalini

. V. Vajnovszki and J. Pallo, Generating binary tréesA-order from codewords
defined on four-letter alphabekpurnal of Information and Optimization Sciend®
(1994) 345-357.

R. Wu, J. Chang and Y. Wang, A linear time algarnitfor binary tree sequences
transformation using left-arm and right-arm rotaigr heoretical Computer Science
335 (2006) 303-314.

R. Wu, J. Chang and C. Chang, Ranking and unrardfingn-regular trees with a
prescribed branching sequendéathematical and Computer Modeling3 (2011)
1331-1335.

L. Xiang, K. Ushijima and C. Tang, On generatingarg- trees in computer
representationpformation Processing letterg7 (2001) 231-238.

S. Zaks, Lexicographic generation of ordered tr@agoretical Computer Science
10 (1980) 63-82.

34

