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ABSTRACT 
Assessment cases appear frequently in our everyday life involving a degree of uncertainty 
and (or) ambiguity. Fuzzy logic, due to its nature of characterizing such cases with multiple 
values, offers rich resources for dealing with them.  Fuzzy Numbers play a fundamental 
role in fuzzy mathematics, analogous to the role played by the ordinary numbers in 
classical mathematics. In the present paper we utilize the simplest form of Fuzzy Numbers 
i.e. the Triangular Fuzzy Numbers, for assessing student learning skills. The concept of 
learning is fundamental for the study of human cognitive action and very many theories 
have been developed through the years by psychologists and education researchers for the 
description and explanation of its mechanisms. Therefore the above fuzzy assessment 
approach has an increased interest. Our results are illustrated by an application on learning 
mathematics, in which the use of Fuzzy Numbers as an assessment tool is validated 
through the comparison with assessment methods of the bivalent and fuzzy logic already 
established by the author in earlier works.  
 
Keywords: Learning assessment; GPA index; Fuzzy logic; Fuzzy assessment models; 
Fuzzy numbers; Triangular fuzzy numbers  
 
1. Introduction 
The concept of learning is fundamental for the study of human cognitive action. But, 
while everyone knows empirically what learning is, the understanding of its nature has 
proved to be complicated. This happens because it is very difficult to understand the way 
in which the human mind works, and therefore to describe the mechanisms of the 
acquisition of knowledge by the individual. The problem is getting even harder by taking 
into account that these mechanisms, although they appear to have some common general 
characteristics, they actually differ in their details from person to person.  
In 1956 Benjamin Bloom with collaborators Max Englehart, Edward Furst, Walter Hill, 
and David Krathwohl published a framework for learning, teaching, and assessing, the 
Taxonomy of Educational Objectives [1]. The Bloom’s Taxonomy has been applied in the 
USA by generations of teachers and college instructors in the teaching process. A revised 
version of the taxonomy was created by Lorin Anderson, former student of Bloom [2]. 
Since the taxonomy reflects different   forms of thinking and thinking is an active 
process, in the revised version the names of its six major levels were changed from noun 
to verb forms. These levels, moving through the lowest order processes to the higher are: 
Knowing - Remembering, Organizing - Understanding, Applying, Analyzing, Generating 
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- Evaluating and Integrating-Creating. The three upper levels are considered to be 
parallel to each other, in contrast to the lower three levels, where the success to one of 
them requires the earlier success in the previous levels (for more details see [3]). 
There are very many theories and models in general, developed through the years by 
psychologists and education researchers, for the description and explanation of the 
mechanisms of learning. Voss [4], adopting a Ferguson’s [5] hypothesis, has developed an 
argument that learning is a specific case of the general class of the transfer of knowledge 
(i.e. the  use of the existing knowledge to produce new knowledge)  and therefore any 
instance of learning involves the use of already existing knowledge. Thus, learning 
consists of successive problem solving activities, in which the input information is 
represented of existing knowledge, with the solution occurring when the input is 
appropriately interpreted.  

According to Voss [4] and many other researchers the learning process involves the 
following main steps: Representation of the input data, interpretation of this data in order 
to produce the new knowledge, generalization of the new knowledge to a variety of 
situations and categorization of the knowledge. More explicitly, the representation of the 
stimulus input relies upon the individual’s ability to use contents of his/her memory in 
order to find information that will facilitate a solution development. Learning consists of 
developing an appropriate number of interpretations and generalizing them to a variety of 
situations. When the knowledge becomes substantial, much of the process involves 
categorization, i.e. the input information is interpreted in terms of the classes of the 
existing knowledge. Thus the individual becomes able to relate the new information to 
his/her knowledge structures that have been variously described as schemata, or scripts, 
or frames. 

When placed in this relationship with transfer, learning takes a level of complexity 
greater than that of a simple extension of knowledge resulting from generalization, which 
involves efficient execution of awareness, schema induction and automation of problem 
solving operations; low – road and high – road transfer respectively according to the 
Salomon’s & Perkins’s [6] terminology. 

Voskoglou ([7] and [8]: Section 2.3) developed a stochastic model to describe 
mathematically the process of learning in the classroom by introducing a finite Markov 
chain on the steps of the Voss’s [4] framework for learning.  However, the knowledge 
that students have about various concepts is usually imperfect, characterized by a 
different degree of depth. On the other hand, from the teacher’s point of view vagueness 
usually exists for the degree of his/her students’ success at each step of the learning 
process. All the above gave us the motive to introduce principles of fuzzy logic for a 
more realistic representation of the process of learning. Namely, we have represented the 
main steps of the learning process, presented above, as fuzzy sets on a set of linguistic 
labels (grades) characterizing the learner’s performance at each step [9] and later we 
have used the corresponding system’s uncertainty for measuring learning skills ([8], [10], 
etc). Meanwhile, Subbotin, Badkoobehi and Bilotckii [11], based on Voskoglou’s [9] 
fuzzy model for the process of learning, introduced the idea of applying the Center of 
Gravity (COG) defuzzification technique to learning assessment (see also [12]: Section 2). 
Recently, two, equivalent to each other, variations of the COG technique, initiated by 
Subbotin, have been developed treating better the ambiguous assessment cases being at 
the boundaries between two successive characterizations (grades) of the individual’s 
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performance: The Triangular (e.g. [13]) and the Trapezoidal (e.g. [12]: Section 3) Fuzzy 
Assessment Models. Some more details about all the above fuzzy assessment methods 
will be presented in the next Section of this work.  

Our main target in the present paper is to introduce an alternative fuzzy assessment 
method for the learning skills by utilizing the Triangular Fuzzy Numbers (TFNs) as 
assessment tools. In fact, there exists a strong logical pro argument for employing this 
approach: Roughly speaking, a TFN (a, b, c), with a, b and c real numbers such that a< b 
< c, actually means “approximately equal to b’’ or, if you prefer, “the value of b lies in 
the real interval [a, c]”, expressions that constitute the basis for a fuzzy assessment.  
The rest of the paper is organized as follows: In the second Section we summarize the 
assessment methods (traditional and fuzzy) that we have already applied in earlier works. 
In the third Section we introduce the notion of Fuzzy Numbers (FN), while in the fourth 
Section we present the TFNs, the arithmetic operations defined on them and basic 
properties of them, to be used later in the paper. In the fifth Section we describe the use 
the TFNs for assessing learning skills and we discuss the advantages and disadvantages 
of this method with respect to the already established in earlier works assessment 
methods. Finally, the last Section 6 is devoted to our conclusions and a brief discussion of 
the perspectives of future research on the subject. 
 

2. Assessment methods: a summary of our previous researches 
The assessment of a system’s effectiveness (i.e. of the degree of attainment of its targets) 
with respect to an action performed within the system (e.g. problem-solving, decision 
making, learning, etc) is a very important task that enables the correction of the system’s 
weaknesses resulting to the improvement of its general performance. In particular, the 
social demand not only to educate, but also to classify students according to their 
qualifications, makes the student assessment one of the most important components of 
the educational practice and research. Furthermore, the teacher obtaining through the 
student assessment an overall view of his (her) students’ progress, is helped to suitably 
adapt his (her) teaching methods and plans aiming to the best possible result. 
 

2.1. Traditional assessment methods 
The assessment methods commonly used in practice are based on the principles of the 
Boolean logic (yes-no). In case of group assessment the majority of these methods focus 
on the group’s mean performance, the most typical example being the calculation of the 
mean value of the individual performances of all the group’s members. However, some 
other methods focus on the group’s quality performance by assigning greater coefficients 
(weights) to the higher performances of the group’s members, a characteristic example 
being the very popular in the USA Grade Point Average (GPA) index (e.g. see [12]: 
Section 4.1) .    

The GPA index is a weighted average of a group’s performance. For calculating it, 
the individual performance of each group’s member is characterized by one of the grades 
A (85-100%) = excellent, B (75-84%) = very good, C (60-74%) = good, D (50-59%) = 
fair and F (< 50%) = unsatisfactory. Notice that the above percentages assigned to each 
grade are indicativeonly, which means that they may differ (slightly) from case to case. 
Now, if n is the total number of the group’s members and FDCBA nnnnn ,,,,  denote the 

numbers of them obtaining the grades A, B, C, D and F respectively, the GPA index is 
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calculated by the formula: GPA =  0 1 2 3 4F D C B An n n n n

n

+ + + +

    
                         

(1)  In the worst case (nF = n) formula (1) gives that GPA = 0, while in the ideal case (nA 
= n) it gives that GPA = 4. Therefore, we have in general that 0 ≤  GPA ≤  4. 
 
2.2. Fuzzy assessment methods 
Fuzzy logic, the development of which is based on fuzzy sets theory1 [14], provides a 
rich and meaningful addition to the standard (Boolean) logic. Unlike Boolean logic, 
which has only two states, true or false, fuzzy logic deals with truth values which range 
continuously from 0 to 1. Thus something could be half true 0.5 or very likely true 0.9 or 
probably not true 0.1, etc. In this way fuzzy logic allows one to express knowledge in a 
rule format that is close to a natural language expression and therefore it opens the door 
to construction of mathematical solutions of computational problems which are 
imprecisely defined (e.g.  [3,  8 - 13, 15 - 17], etc).  

In particular, assessment cases frequently appear in our everyday life involving a 
degree of uncertainty and (or) ambiguity. Fuzzy logic, due to its nature of characterizing 
such cases with multiple values, offers rich resources for dealing with them.  This was 
our motive in earlier works for using a number of fuzzy methods for the assessment of 
several human activities, like learning (see our Introduction), problem-solving, decision 
making, etc (e.g. [8, 12, 13]), but also for the assessment of the effectiveness of 
Case-Based Reasoning Systems [15]. Below we summarize the most important of these 
methods: 
(i) Measurement of the Uncertainty: As it is well known from the classical Information 
Theory [18], the reduction of a system’s uncertainty with respect to an action performed 
within the system is connected to the new information obtained by this action: The 
greater is the reduction of the uncertainty, the more the new information obtained. The 
reduction of the uncertainty (and therefore the information connected to it) is calculated 
by the classical Shannon’s formula [18] , better known as the Shannon’s entropy, which is 
based on principles of Probability Theory. This formula has been properly adapted for use 
in a fuzzy environment (17: p. 20). However, Schackle [20] and many other researchers 
after him believe that the human behaviour can be better represented by the Possibility  
rather [21] than by the Probability Theory.  This gave us in earlier works (e.g. [8, 10], 
etc) the idea of utilize a system’s total possibilistic uncertainty ([19]: p. 28) for assessing 

                                                             
1 Let U denote the universal set of the discourse. Then, we recall that a fuzzy set A on U (or otherwise a fuzzy 
subset of U), is a set of ordered pairs of the form Α = {(x, mΑ(x)): x∈U}, where mΑ : U →  [0,1] is its 
membership function that assigns to each element x of U a real value from the interval [0,1]. The value mΑ(x), 
called the membership degree (or grade) of x in A, expresses the degree to which x verifies the characteristic 
property of A. Thus, the nearer is mΑ(x) to 1, the better x satisfies this property. For reasons of simplicity many 
authors identify a fuzzy set with its membership function. A fuzzy set A is also frequently represented either by 

a symbolic sum (finite or infinite) of the form ( ) /A
x U

m x x
∈
∑ or, if U has the power of the continuous, by a 

symbolic integral of the form ( )A

U

m x dx∫ . Obviously each classical (crisp) subset A of U can be considered as 

a fuzzy set on U, with mΑ(x) = 1, if x∈U and  mΑ(x)=0,  if x∉U. Most of the concepts of crisp sets are 
extended to fuzzy sets. For general facts on fuzzy sets and the uncertainty connected to them we refer to the 
book of Klir and Folger [21]. 
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its effectiveness with respect to an action performed within it. The main disadvantage of 
this (fuzzy) assessment method, which focuses on the mean system’s performance, is that 
it requires laborious calculations. Therefore we are not going to present any more details 
of this method here. 
(ii)  The COG Defuzzification Technique:  When reasoning with fuzzy rules, the initial 
numeric data values are fuzzified, that is they are turned into fuzzy values using the proper 
membership functions. These values are combined using fuzzy logic operators. The result 
is a single fuzzy set, which then must be defuzzified to return to a crisp output value. There 
are several defuzzification techniques in use, the most popular being probably the Centre 
of Gravity (COG) technique (e.g. see [22]). For applying the COG technique one 
corresponds to each x of the universal set U an interval of real values taken from a prefixed 
numerical distribution (i.e. it replaces U with a set of real intervals), which enables to 
construct the graph of the membership function involved. Then, according to the principles 
of the COG technique, the final fuzzy outcome is represented by the coordinates of the 
COG of the level’s section contained between this graph and the X- axis.    

In earlier papers (e.g. [12]: Section 2, etc) we have properly adapted the COG 
defuzzification technique for use as an assessment method. For this, we have expressed 
the group G under assessment as a fuzzy set on the set U = {A, B, C, D, F} of the grades 
characterizing its members’ individual performance (see GPA index above) and we have 
replaced U with a set of real intervals as follows: F →  [0, 1), D → [1, 2), C → [2, 3), 
B →  [3, 4), A →  [4, 5]. Then the graph of the membership function of G takes the 
form of a bar graph consisting of five rectangles, each one of them corresponding to the 
grades F = x1, D = x2, C = x3, B = x4 and A = x5 respectively (see Figure 1 of [12]). The 
side of each rectangle lying on the X-axis, has length equal to 1 metric unit, while the 
other side has length equal to yi  =  m(xi), for i=1,2, 3, 4, 5 respectively, where y=m(x) 
is the corresponding membership function. Then, using well known from Mechanics 
formulas - see formulas (4) below in the proof of Proposition 2 - it is straightforward to 
calculate the coordinates of the COG of the resulting scheme and further to obtain a 
criterion for comparing the performance of two (or more) groups (e.g. see [12]: Section 
2). However, as said in our Introduction, we recently have developed two (equivalent to 
each other) variations of the COG technique treating better the ambiguous assessment 
cases. Consequently, here we shall focus on these variations rather, than on the COG 
technique. 
(iii) The Trapezoidal Fuzzy Assessment Model (TpFAM):  The central idea of the TpFAM 
is the replacement of the five rectangles appearing in the COG’s scheme  by five isosceles 
trapezoids sharing common parts and corresponding to the grades F, D, C, B and A 
respectively (see Figure 2 of [12]). The heights of  the trapezoids have lengths equal to the 
percentages yi , i = 1, 2, 3, 4, 5 of the members of G obtaining the corresponding grade, 
while their common parts correspond to the ambiguous cases being at the boundaries 
between two successive grades (e.g. something like 84-85% being at the boundaries 
between A and B, etc). It is logical to consider that all the ambiguous cases belong to both 
of the corresponding grades and consequently the common parts of the adjacent trapezoids 
must be included twice in the whole area of the TpFAM’s scheme, which is therefore equal 
to the sum of the areas of the five trapezoids. Thus, the COG of the whole area is the 
resultant of the system of the GOC’s of the five trapezoids. Then, it is straightforward to 
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check ([12]: Section 3) that the coordinates (Xc, Yc) of the COG of the TpFAM’s scheme 

are calculated by the formulas:  Xc = 
5

1

(7 ) 2i
i

iy
=

−∑ , Yc =

5
2

1

3

7 i
i

y
=
∑

                
(2).                   

Further, using elementary algebraic inequalities and by simple geometric observations
it is straightforward to verify ([12]: Section 3) that the greater the value of Xc, the
better the corresponding group’s performance. Also, if two groups have equal val
ues for Xc then: a) If Xc ≥ 19, the group with the greater Yc demonstrates the bet
ter performance, b) If Xc  < 19, the group with the smaller Yc  demonstrates the 
better performance. 
(iv) The Triangular Fuzzy Assessment Model (TFAM): The corresponding idea of the 
TFAM is the use of isosceles triangles instead of the trapezoids of the TpFAM (see Figure 
2 of [13]). Then, following a similar procedure with TpFAM ( [13]: Section 3), one finds 
that the coordinates (Xc, Yc) of the COG of the TFAM’s scheme are calculated by the 
formulas: 

Xc  = 
5

1

(7 ) 2i
i

iy
=

−∑ ,  Yc =

5
2

1

1

5 i
i

y
=
∑                                                       (3). 

The same with the TpFAM criterion is also obtained for comparing the performance of two 
(or more) groups. Observing formulas (2) and (3) one can immediately see that the only 
difference between the TpFAM and the TFAM is in the values of Yc, but this does not 
affect the assessment of the group performance. Therefore the above two fuzzy 
assessment models (TFAM and TpFAM) are equivalent to each other in the sense that 
through them one obtains exactly the same assessment results. 
 
3. Fuzzy numbers (FNs) 
3.1. Definitions 
A Fuzzy Number (FN) is a special form of fuzzy set on the set R of real numbers. FNs 
play a fundamental role in fuzzy mathematics, analogous to the role played by the 
ordinary numbers in classical mathematics. For general facts on FNs we refer to Chapter 
3 of the book of Theodorou [23], which is written in Greek language, and also to the 
classical on the subject book of Kaufmann and Gupta [24]. 
For introducing the notion of a FN, it becomes necessary first to give the following three 
introductory definitions: 

Definition 1:  A fuzzy set A on U with membership function y = m(x) is said to be 
normal, if there exists x in U, such that m(x) = 1. 

Definition 2: Let A be a fuzzy set in U, and let x be a real number of the interval [0, 1]. 
Then the x-cut of A, denoted by Ax, is defined to be the set Ax = {y ∈U: m(y)≥  x}. 

Definition 3: A fuzzy set A on R is said to be convex, if its x-cuts Ax are ordinary closed 
real intervals, for all x in [0, 1].  
For example, for the fuzzy set A whose membership function’s graph is represented in 
Figure 1, we observe that A0.4 = [5, 8.5] ∪  [11, 13] and therefore A is not a convex 
fuzzy set.  
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Figure 1: Graph of a non convex fuzzy set 
 

We are ready now to give the definition of a FN: 

Definition 4: A FN is a normal and convex fuzzy set A on R with a piecewise continuous 
membership function. 

Figure 2 represents the graph of a FN expressing the fuzzy concept: “The real 
number x is approximately equal to 5”. We observe that the membership function of this 
FN takes constantly the value 0 outside the interval [0, 10], while its graph in [0, 1] is a 
parabola.  
 

 
 

Figure 2: Graph of a fuzzy number 
 

Since the x-cuts Ax of a FN A are closed real intervals, we can write Ax = [ ,x x
l rA A ] for 

each x in [0, 1], where ,x x
l rA A  are real numbers depending on x.                  

The following statement defines a partial order in the set of all FNs: 
Definition 5: Given the FNs A and B we write A≤ B (or ≥ ) if, and only if, 

x x
l lA B≤ and x x

r rA B≤  (or≥ ) for all x in [0, 1]. Two FNs for which the above relations 
hold are called comparable, otherwise they are called non comparable. 
 

3.2. Arithmetic operations on FNs 
The basic arithmetic operations on FNs are defined in general in two alternative ways, 
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equivalent to each other:  
(i) With the help of their x-cuts and the Representation-Decomposition Theorem for fuzzy 
sets2: In fact, if A and B are given FNs, and “*” denotes an arithmetic operation (addition, 
subtraction, multiplication or division) between them, then applying the above theorem 

for the fuzzy set A * B we find that A * B = 
[0,1]

( * ) x

x

x A B
∈
∑ . But the x-cuts of the FNs 

are ordinary closed real intervals, therefore, if we define that (A * B)x = Ax * Bx  (where, 
for reasons of simplicity, “*” in the second term of the last equation denotes the 
corresponding operation between closed real intervals), the fuzzy arithmetic is turned to 
the well known arithmetic of the closed real intervals 3. 
(ii) By applying the Zadeh’s extension principle ([21]: Section 1.4, p.20), which provides 
the means for any function f  mapping the crisp set X to the crisp set Y to be generalized 
so that to map fuzzy subsets of X to fuzzy subsets of Y. 
In practice the above two general methods of the fuzzy arithmetic, requiring laborious 
calculations, are rarely used in applications, where the utilization of simpler forms of FNs 
is preferred.  
 

4. Triangular fuzzy numbers (TFNs) 
4.1. Definition and basic properties of TFNs 
The membership function’s graph of the TFN (a, b, c), where a< b < c are given real 
numbers, is represented in Figure 3. We observe that the membership function y=m(x) of 
it takes constantly the value 0, if x is outside the interval [a, c], while its graph in the 
interval [a, c] is the union of two straight line segments forming a triangle with the 
X-axis. 

Y

B(b,1)

O

G
X

ΜA(α,0)

1

C(c,0)

N

 
Figure 3: Graph and COG of the TFN (a, b, c) 

 
Therefore, the analytic definition of a TFN is given as follows: 

                                                             
2  The Representation-Decomposition Theorem of Ralesscou-Negoita ([25]: Theorem 2.1, p. 16) states that a 
fuzzy set A can be completely and uniquely expressed  by the family of its x-cuts in the form  

A =
[0,1]

x

x

xA
∈
∑ .  

3 We recall that an arithmetic operation “*”  between closed real intervals is defined by the general rule 
[a, b] * [a1, b1] = {x * y: x, y ∈R, a ≤  x ≤  a1, b ≤  y ≤  b1} [24]. 
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Definition 6:  Let a, b and c be real numbers with a < b < c. Then the Triangular Fuzzy 
Number (TFN) A = (a, b, c) is a FN with membership function: 
 

, [ , ]

( ) [ , ]

0,        

x a
x a b

b a
c x

y m x x b c
c b

x a or x c

 − ∈ −
−= = ,        ∈ −

 < >

   

 

In the above definition we obviously have that m(b)=1, while b need not be in the 
“middle” of a and c.  
The following two Propositions refer to basic properties of TFNs that we are going to use 
later in this paper:  

Proposition 1. The x-cuts Ax of a TFN A = (a, b, c), x∈ [0, 1],  are calculated by the 

formula Ax = [ ,x x
l rA A ] = [a + x(b - a), c - x(c - b)] . 

Proof:  Since Ax = {y∈R: m(y≥  x}, Definition 6 gives for the case of x
lA that  

y a

b a

−
− = x ⇔ y = a + x(b – a). Similarly for the case of x

rA we have that 
c y

c b

−
− = x 

⇔ y = c - x(c - b). 

Proposition 2. The coordinates (X, Y) of the COG of the triangle forming the graph of the 

TFN (a, b, c) are calculated by the formulas X = 
3

a b c+ +
, Y = 

1

3
.                 

Proof: The graph of the TFN (a, b, c) is the triangle ABC of Figure 3, with A (a, 0), B (b, 
1) and C (c, 0). Then, the COG, say G, of ABC is the intersection point of its medians AN 

and BM, where N (
2

b c+
,
2

b
) and M (

2

a c+
, 0). Therefore the equation of the straight 

line on which AN lies is  1
2 2

x a y
b c

a

− =
+ −

 , or x + (2a - b- c)y = a               (4).  

In the same way one finds that the equation of the straight line on which BM lies is     
2x + (a + c +2b)y = a + c                                                (5)                                               

Since D = 
2 2

3( ) 0
1 2

a c b
a c

a b c

+ −
= − ≠

− − , the linear system of (4) and (5) has a unique 

solution with the respect to the variables x and y determining the coordinates of the 
triangle’s COG. 
The proof of the Proposition is completed by observing that  

Dx=
2 22

( )( ) ( )
2

a c a c b
a c ba bc a c a c b a c

a a b c

+ + −
= − + − = + − + −

− −  
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= ( )( )a c a c b− + + and Dy  = 
1

2

a c
c a

a

+
= − . 

 

4.2. Arithmetic operations on TFNs 
It can be shown that the two general methods for defining arithmetic operations on FNs 
presented in the previous Section lead to the following simple rules for the addition and 
subtraction of TFNs: 
Let A = (a, b, c) and B = (a1, b1, c1) be two TFNs. Then 

• The sum A + B = (a+a1, b+b1, c+c1). 
• The difference A - B = A + (-B) = (a-c1, b-b1, c-a1), where –B = (-c1, -b1, -a1) is 

defined to be the opposite of B 4. 
In other words, the opposite of a TFN, as well as the sum and the difference of two TFNs 
are also TFNs. 
On the contrary, the product and the quotient of two TFNs, although they are FNs, they 
are not always TFNs. However, in the special case where a, b, c, a1, b1, c1 are in R+, it can 
be shown that the fuzzy operations of multiplication and division of TFNs can be 
approximately performed by the rules:  

• The product A . B = (aa1, bb1, cc1). 

• The quotient A :  B = A . B-1 =  (
1 1 1

, ,
a b c

a b c
), where B-1 =  (

1 1 1

1 1 1
, ,

a b c
) is 

defined to be the inverse of B. 
In other words, in R+ the inverse of a TFN, as well as the product and the division of two 
TFNs can be approximately considered to be TFNs too. 
Further, one can define the following two scalar operations: 

• k + A= (k+a,  k+b,  k+c), k∈R 
• kA = (ka,  kb,  kc), if k>0 and kA = (kc, kb, ka), if k<0. 

We close with the following definition, which will be proved useful in the next Section of 
this paper for the assessment of learning skills using the TFNs : 
Definition 7: Let Ai (ai, bi, ci) be n TFNs, where n is a non negative integer, n≥ 2. Then 

we define the mean value of the above TFNs to be the TFN A = 
1

n
(A1 + A2 + …. + An). 

5. Use of the TFNs for student assessment  
In this Section we utilize the TFNs as an alternative tool for student assessment. The 
effectiveness of this approach is validated by comparing the results obtained with the 
corresponding results of other assessment methods already established in earlier works 
(see the second Section of this paper). All these are materialized through the following 
classroom application on learning mathematics: 
 

5.1. The classroom application 
Mathematical activity is an original and natural element of the human cognition. 

                                                             
4 Obviously A + (-A) = (a-c, 0, c-a) ≠ O = (0, 0, 0), where the TFN O is defined by O(x) = 1, if x = 0 and 
O(x)=0, if x≠ 0 
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Therefore, it is of great importance to experiment on effective ways of evaluating the 
student skills for learning mathematics. This gave us the impulse to perform the 
following classroom experiment, which is based on the traditional and fuzzy assessment 
methods for learning presented in this paper. 

The experiment took place recently at the Graduate Technological Educational 
Institute (T. E. I.) of Western Greece  and it was related to the teaching (by the same 
instructor) of the definite integral to the students of two different Departments of the 
School of Management and Economics within their common course “Mathematics for 
Economists I” of their first term of studies. 

The duration of the corresponding lecture was three hours for each Department, but 
the teaching methods followed were different:  In fact, for the first Department (control 
group) the lecture was performed in the classical way on the board, starting with the 
presentation of the relevant theoretical results (the details of some proofs were omitted), 
which was followed by the detailed solution of a number of suitably chosen exercises and 
problems ([26]: Chapter 17). The students were able to ask questions, but not to 
participate in the solutions’ procedure. In this way the instructor saved time resulting to 
the solution of more exercises and problems on the board.   

On the contrary, for the second Department (experimental group), the instructor 
followed the process of rediscovery [27], keeping in mind what Polya [28] says for active 
learning: “For an effective learning the learner discovers alone the biggest possible, 
under the circumstances, part of the new information”. Thus, in his short introduction he 
presented the concept of the definite integral through the need of calculating the area 
under a curve, but he stated the fundamental theorem of the integral calculus - connecting 
the indefinite (that have been already taught earlier) with the definite integral of a 
continuous in a closed interval function - without proof. Then he left students to work 
alone on their drafts and he was inspecting their efforts and reactions, giving to them 
from time to time suitable hints or instructions. His intension was to help students to 
understand the basic methods of calculating a definite integral in terms of the already 
known corresponding methods for the indefinite integral; step of interpretation of the 
Voss’s [4] framework for learning; see our Introduction.    

Next, the instructor gave to students for solution a number of exercises involving 
calculation of improper integrals as limits of definite integrals and also calculation of the 
area under a curve, or among curves. In this way he wanted to help students to generalize 
the new information to a variety of situations (step of generalization).  Finally, 
integrating his lecture, he presented for solution a number of composite problems 
involving applications to economics, such as calculation of the present value in cash 
flows, of the consumer’s and producer’s surplus resulting from the change of prices of a 
given good, of probability density functions, etc (cf. [26], chapter 17). In this way he 
wanted to help students to relate the new information to their existing knowledge 
structures (step of categorization).  Obviously the teaching method followed for the 
experimental group was consuming time, which means that part of the above composite 
problems was left to students as homework. The lectures for the definite integral were 
followed (the next week) by a written test (exam) for checking the student progress. 
Students achieved the following scores (in a climax from 0 to 100) in this test:  
First Department (D1): 100(2 times), 99(3), 98(5), 95(8), 94(7), 93(1), 92 (6), 90(5), 
89(3), 88(7), 85(13), 82(6), 80(14), 79(8), 78(6), 76(3), 75(3), 74(3), 73(1), 72(5), 70(4), 
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68(2), 63(2), 60(3), 59(5), 58(1), 57(2), 56(3), 55(4), 54(2), 53(1), 52(2), 51(2), 50(8), 

48(7), 45(8), 42(1), 40(3), 35(1). 

Second Department (D2) :  100(1), 99(2), 98(3), 97(4), 95(9), 92(4), 91(2), 90(3), 88(6), 

85(26), 82(18), 80(29), 78(11), 75(32), 70(17), 64(12), 60(16), 58(19), 56(3), 55(6), 50(17), 

45(9), 40(6).  

 

5.2. Assessment of the application’s data 
Traditional Methods: Calculating the means of the above scores, one approximately finds 

the values 12314

170
≈ 72.44 for D1 and 18369

255
≈ 72.04 for D2 respectively, showing that D1 

demonstrated a slightly better mean performance than D2.  
Next, summarizing the student scores presented above with respect to the grades 
(linguistic labels) A, B, C, D and F defined earlier (see paragraph for the GPA index), one 
forms Table 1 as follows: 

 

TFN D1 D2 

A 60 60 

B 40 90 

C 20 45 

D 30 45 

F 20 15 

 Total  170 255 

      

Table 1: Students’ performance in terms of the linguistic grades 
 
Replacing the data of Table 1 in formula (1) one finds for D1 the value GPA = 
30 2*20 3*40 4*60 430

170 170

+ + + = ≈ 2.529 and similarly the same value for D2. This means 

that both Departments demonstrated the same quality performance, which can be 
characterized as more than satisfactory, since the value 2.529 found for the GPA index is 
greater than the half of its maximal possible value (4:2=2). 
The TpFAM/TFAM methods: From Table 1 one easily calculates the percentages of the 
students of D1 who obtained the grades F, D, C, B and A respectively, which are the 

following: y1 = y3 = 2

17
,  y2 = 3

17
, y4 = 4

17
, y5 = 6

17
. Replacing these values in the 

first of formulas (2) or (3) one finds that the x-coordinate of the COG of the 

corresponding scheme   for D1 is equal to Xc =  7(2 2*3 3*2 4*4 5*6

17

+ + + + ) – 2 = 
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386

17
≈  22.7. Working similarly one also finds the same value of Xc for D2. Therefore, in 

order to compare the two Departments’ performance one must also calculate the 
y-coordinates Yc of the corresponding COGs. This is done by replacing the values of the 
yi, for i=1, 2, 3, 4, 5, in the second of formulas (2) or (3). For example, the second of (3) 
gives for D1 that  

Yc =  2 2 2 2 21 2 3 2 4 6 69
[( ) ( ) ( ) ( ) ( ) ]

5 17 17 17 17 17 1445
+ + + + = . In the same way one finds for D2 the 

value Yc =
71

1445
. But Xc  ≈  22.7 >19, therefore, according to the corresponding criterion 

(see paragraph for the TpFAM), D2 demonstrated a slightly better quality performance 
than D1. 

Notice also that in case of the ideal performance (y5 = 1, y1 = y2 = y3 = y4 = 0) the first 
of formulas (2) or (3) give that Xc = 33. Therefore, since the value of Xc ≈  22.7 found 
for both Departments is greater than the half of its value corresponding to the ideal 
performance (33:2 = 16.5), the quality performance of the two Departments can be 
characterized as more than satisfactory. 

Finally we observe that, although according to the GPA index the two Departments 
demonstrated the same quality performance, the TpFAM/TFAM methods have shown 
that D2 demonstrated a slightly better than D1 quality performance. In order to explain 
this difference, observe first that formula (1) calculating the GPA index can be written in 
terms of the student percentages in the form GPA = y2 + 2y3 + 3y4 + 4y5.  Then, a simple 
observation of the last formula and the first of formulas (2) or (3) combined with the 
corresponding criterion for the comparison of the group performance (depending on the 
values of Xc), shows that the TpFAM/TFAM methods assign greater coefficients 
(weights) to the higher scores than the COG index. In other words, the TpFAM/TFAM 
methods are more sensitive than the GPA index to the higher scores and this explains the 
above difference.  
Use of the TFNs: Let us now come to the core of this section, which is the use of TFNs as 
an alternative tool for learning assessment. For this, we assign to each linguistic grade a 
TFN (denoted, for simplicity, by the same letter) as follows: A= (85, 92.5, 100), B = (75, 
79.5, 84), C = (60, 67, 74), D= (50, 54.5, 59) and F = (0, 24.5, 49). Namely, the middle 
entry of each TFN is equal to the mean value of the student scores previously assigned to 
the corresponding linguist label (grade). In this way a TFN corresponds to each student 
assessing his (her) individual performance. The replacement of the linguistic grades by 
TFNs for the individual student assessment have the advantage of determining 
numerically the scores assigned to each grade, which, as we have already seen, are not 
standard, since they may slightly differ from case to case.    
It is of worth to notice here that in an earlier work [29] an assessment of the student 
individual performance in problem solving was attempted by assigning to each student an 
ordered triple of linguistic grades characterizing his (her) performance in the three main 
steps of the problem solving process. In the same work it was shown that this approach is 
equivalent to the A. Jones method [30] of assessing a student’s knowledge in terms of his 
(her) fuzzy deviation with respect to the teacher.  

The same approach can be also applied here for assessing the individual student 
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learning skills. For example, the ordered triple (A, B, C) could be assigned to a student 
who demonstrated an excellent performance at the step of interpretation, a very good 
performance at the step of generalization and a good performance at the step of  
categorization. However, in this way the overall performances of two different students 
are not always comparable. For example this happens with two students with profiles (A, 
B, C) and (B, B, B) respectively. Mathematically speaking, this approach defines a 
partial order only on the student individual performances; e.g. a student with profile (A, 
B, C) demonstrates a better performance than one with profile (B, B, D), etc. Further, this 
approach is laborious requiring an independent evaluation of the student performance at 
each step of the learning process, which could not be practically possible, since the 
boundaries between these steps are not always clear. 

After this parenthesis, let us return to the TFNs. We observe that in Table 1 we 
actually have 170 TFNs representing the individual performance of the students of D1 
and 255 TFNs representing the individual performance of the students of D2. Therefore, 
it is logical to accept that the overall performance of each Department can be represented 
by the corresponding mean values of the above TFNs (see Definition 7). For simplifying 
our notation, let us denote the above means by the letter of the corresponding Department. 
Then, making straightforward calculations, one finds that  

    D1 =  
1

170
. (60A+40B+20C+30D+20F) ≈  (63.53, 71.74, 83.47) and 

    D2 =  
1

255
. (60A+90B+45C+45D+15F) ≈  (65.88, 72.63, 79.53).   

The above TFNs (mean values) give us the following information: 
(i) The overall performance of D1 is characterized numerically by a score lying 

in the interval [63.53, 83.47], i.e. from good (C) to very good (B). Similarly, 
the performance of D2 is characterized by a score lying in the interval [65.88, 
79.53]. 

(ii)  The middle entries 71.74 and 72.63 of the two TFNs give a rough 
approximation (C=good) of the scores characterizing numerically the 
performance of D1 and D2 respectively. 

But, let us explain why we have characterized the values of the middle entries of the 
TFNs D1 and D2 as been rough approximations of the corresponding scores. We observe 
first that these values do not calculate the mean performances of the two Departments. In 
fact, calculating the means of the student scores in the classical way we found above (see 
Traditional Methods) the values 72.44 and 72.04 respectively, demonstrating a slightly 
better mean performance for D1. Let us now go back to the definition of the TFNs A, B, 
C, D and F. The middle entries of these TFNs were chosen to be equal to the means of 
the scores assigned to each of the corresponding linguistic grades. Therefore the middle 
entries of the TFNS D1 and D2 are actually equal to the mean values of these means, 
which justifies completely the characterization “rough” given to them.  

Thus, the question is how one can compare the overall performances of the two 
Departments. If the TFNS D1 and D2 are comparable (see Definition 5), the answer to this 
question is easy. For example, if D1 < D2, then D2 demonstrates a better performance than 
D1. Therefore, it becomes necessary to check if the TFNs D1 and D2 obtained above are 
comparable or not.  
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For this, by Proposition 1 one finds that the x-cuts of the two TFNs are  
D1

x = [63.53+8.21x, 83.47-11.73x] and D2
x = [65.88+6.75x, 79.53-6.9x] respectively for 

all x in [0, 1]. Further, we have that 63.53+8.21x ≤  65.88+6.75x ⇔ 1.46x ≤ 2.35 
⇔ x ≤ 1.61, which is true for all x in [0, 1]. But  83.47-11.73x≤ 79.53-6.9x 
⇔ 3.94≤ 4.83x⇔ 0.82≤ x, which does not hold for all x in [0, 1]. Therefore, according 
to Definition 5, the TFNs D1 and D2 are not comparable, which means that one can not 
immediately decide which of the two Departments demonstrates the better performance.  
A good way to overcome this difficulty is to defuzzify our fuzzy outputs, i.e. the TFNs D1 
and D2. For this, we apply the COG defuzzification technique. In fact, by Proposition 2, 
the COGs of the triangles forming the graphs of the TFNs D1 and D2 have x-coordinates 

equal to X = 
63.53 71.74 83.47

3

+ + ≈ 72.91 and X’ =
65.88 72.63 79.53

3

+ + ≈ 72.68 

respectively.  
Observe now that the GOGs of the graphs of D1 and D2 lie in a rectangle with sides 

of length 100 units on the X-axis (student scores from 0 to 100) and one unit on the 
Y-axis (normal fuzzy sets). Therefore, the nearer the x-coordinate of the COG to 100, the 
better the corresponding Department’s performance, Thus, since X > X’, D1 demonstrates 
a better overall performance than D2. 
   

6. Discussion and conclusions 
In the present paper we used the TFNs as a tool for student assessment. The main 
advantage of this approach is that in case of individual assessment leads to a numerical 
result, which is more indicative than the qualitative results obtained in earlier works by 
applying alternative fuzzy assessment methods. On the contrary, in case of group 
assessment this approach initially leads to a linguistic characterization of the 
corresponding group’s overall performance, which is not always sufficient for comparing 
the performances of two different groups, as our fuzzy assessment methods applied in 
earlier works do. This is due to the fact that the inequality between TFNs defines on them 
a relation of partial order only. In such cases some extra calculations are needed in order 
to obtain the required comparison by defuzzifying the resulting TFNs. This could be 
considered a disadvantage of this approach, although the extra calculations needed are 
very simple. 
    Concerning our classroom experiment on measuring the student learning skills, 
notice first that the student scores obtained in the Panhellenic Exam for entering the 
Tertiary Education were at the same level for both Departments. This means that the 
potential of the two Departments concerning their student competencies on the secondary 
mathematics was almost the same. Therefore, since the mean performance of D1 as well 
as its overall performance assessed using the TFNs were proved to be better than D2, it 
seems that the students of D1 (control group) were helped better in general by the 
application of the classical method of teaching the definite integral, since in this way they 
had the opportunity to see on the board more applications solved in detail by the 
instructor. However, according to the TpFAM/TFAM model D2 (control group) 
demonstrated a slightly better quality performance than D1 (the quality performances 
were proved to be identical according to the GPA index), which could mean that the good 
students of D2 (higher scores) were benefit by the application of the rediscovery method. 
At any case, all the above are weak indications only, since the performance differences 
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were very small in all cases.  In concluding, more experimental research is needed for 
obtaining statistically safer conclusions about the effectiveness of rediscovery as a 
teaching method for mathematics,   
     Further, our new method of using the TFNs for learning assessment is of general 
character, which means that it could be utilized in future for assessing other human (or 
machine) activities too. Further, the utilization of other types of FNs as assessment tools 
could be of particular interest. For example, trapezoidal FNs [24] of the form (a, b, c, d) 
could be used in cases where one wants to assess the possibility of a value to be 
approximately in the interval [b, c]. All the above constitute targets of our future research 
on the subject. 
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