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ABSTRACT 
Previous car-following theory research does not consider the driver’s forecast effect. In 
this Letter, we present a new car-following model with considering the optimal velocity 
forecast based on the full velocity difference model. The linear stability condition of the 
new model is obtained by using the linear stability theory. It can be found that the critical 
value of the sensitivity in the new model decreases and the stable region is apparently 
enlarged, compared with the FVDM. Finally the numerical results are in good agreement 
with the theoretical analysis. 
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1. Introduction 
To today, many traffic models have been developed to explain various complex traffic 
phenomena since traffic problem has attracted peoples considerable attention [1,2]. And 
the optimal velocity model (OVM) proposed by Bando et al. [3], which was based on the 
idea that each vehicle has an optimal velocity, is one of favorable models. Subsequently, 
much work has been done based on the OVM [4-15]. Furthermore, the comparison with 
field data suggests that high acceleration and unrealistic deceleration appear in the OVM. 
To overcome the shortage of the OVM, Helbing and Tilch [4] presented a generalized 
force model (GFM). But Jiang et al. [5] pointed out that GFM can not describe the delay 
time and the kinematic wave speed at jam density properly. By taking both positive and 
negative velocity differences into account, Jiang et al. developed a full velocity difference 
model (FVDM) [5].   
  However, the above car-following models did not consider the driver’s forecast effect. 
In particular, the factor about the diver’s forecast effect may have important influence on 
traffic flow. In 2010, Tang et al [4] present a car-following model considering the driver’s 
forecast. But, their model is too easy to describe the traffic phenomena. Their model 
ignores the leader car and following car’s velocity.  
  In this Letter, we propose a new car-following model with the consideration of the 
difference of optimal velocity at the Future time and the optimal velocity at the present 
time on a single lane highway to study the effects of the optimal velocity difference, 
based on FVDM. Linear stability analysis and numerical simulation will be carried out to 
indicate that the new model is more reasonable than previous ones. 



Yan Dong 

44 

 

2. The new model 
According to the above mentioned idea, a new optimal velocity forecast car-following 
model (for short, OVFM) is presented as follows:  

( ) [ ( ( )) ( )] [ ( ( )) ( ( ))]n n n n n nx t V x t v t k v V x t V x tα γ τ= ∆ − + ∆ + ∆ + − ∆&&                       (1) 

where ( )nx t  is the position of car n at time t; 1( ) ( ) ( )n n nx t x t x t−∆ = −  and 

1( ) ( ) ( )n n nv t v t v t−∆ = − are the headway and the velocity difference between the preceding 
vehicle n+1 and the following vehicle n, respectively; α  is the sensitivity of a driver; 
V(⋅) is the optimal velocity function (OVF); [ ( ( )) ( ( ))]n nV x t V x tγ τ∆ + − ∆  is the optimal 
velocity difference term, γ is the response forecast coefficient of the optimal velocity 
difference between( ( ))nV x t τ∆ + and ( ( ))nV x t∆ , τ is the forecast time. The new model 
conforms to the FVDM if γ=0. The optimal velocity function is adopted calibrated with 
observed data by Helbing [2]:  

1 2 1 2( ) tanh( ( ) )cV x V V C x l C= + − −                                           (2) 
where cl =5 m is the length of the vehicles. The resulting optimal parameter values are 

κ=0.85 s−1, 1 6.75m/sV = , 2 7.91m/sV = , -1
1 0.13mC =  and 2 1.57C = . 

 
3. Linear stability analysis 
Supposing the vehicles running with the uniform headway b and the optimal velocity 

( )V b , solution of the uniformly steady state for Eq. (1) can be written as follows: 
0( ) ( )nx t bn V b t= + , with /b L N= ,                                           (3) 

where N is the total number of vehicles, and L is the road length. Let ( )ny t  be a small 

deviation from the uniform solution0( )nx t , 0( ) ( ) ( )n n nx t x t y t= + ,then ,we have 
0( ) ( ) ( )n n ny t x t x t= − , ( ) ( ) ( )n ny t x t V b= −& & ( ) ( )n ny t x t=&& && ,                             (4) 

1 1( ) ( ) ( ) ( ) ( ) ( )n n n n n nx t x t x t b y t y t b y t− −∆ = − = + − = + ∆ ,                             (5) 

1 1( ) ( ) ( ) ( ) ( ) ( )n n n n n nv t x t x t y t y t y t− −∆ = − = − = ∆& & & & & .                                  (6) 
Substituting Eq.(5) into ( )nx t τ∆ + , we hold 

( ) ( ) ( )

               ( ) ( )

               ( ) ( ) .

n n n

n n

n n

x t x t x t

x t v t

b y t y t

τ τ
τ

τ

∆ + = ∆ + ∆
= ∆ + ∆
= + ∆ + ∆

&

&

                                             (7) 

Substituting Eq.(4-7) into (1) and linearizing the resulting equation 
( ) [ ( ) ( ) ( )] ( ) ( )n n n n ny t V b y t y t k y V b y tα γτ′ ′= ∆ − + ∆ + ∆&& & & & .                              (8) 

Assume that ( ) kn i zt
ny t e α += , we can get  

( ) kn i zt
ny t ze α +=& , 2( ) kn i zt

ny t z e α +=&& ,                                             (9) 

( ) ( 1)k kn i zt i
ny t e eα α+∆ = − , ( ) ( 1)k kn i zt i

ny t ze eα α+∆ = −& .                              (10) 
Substituting Eq.(9-10) into (8), the Eq.(8) can be change as follow 

2 [ ( 1) ( )( 1)] ( )( 1)k k ki i iz a k e V b e z aV b eα α αγτ ′ ′+ − − − − = − .                          (11) 
Solving Eq.(11) with respect to z , we find that the leading term of z  is the order of ik . 
Since 0z →  when ik → ∞ , z can be expressed by a long wave as 2

1 2( ) ( )z z ik z ik= + +L . 
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Substituting it into Eq.(11) and neglecting the terms with order greater than 2, the two 
roots of z  are obtained 

1 ( )z V b′= , 
2

2

2 2 ( ) ( ( ))
( )

2

k V b V b
z V b

α γτ
α α

′ ′+ + ′= − .                             (12) 

If 2 0z < , the uniform steady-state flow becomes unstable, while the uniform flow is 

stable when 2 0z > . Then, we get the following neutral stability condition  

( ) ( ( ))
2

a
V b k V bγτ′ ′= + + .                                                 (13) 

For small disturbances with long wavelengths, the uniform traffic flow is stable if  
2( ( ) ( ))V b k V bα γτ′ ′≥ − − .                                                (14) 

As γ=0, 0τ = , the result of stable conditions is the same as that of FVDM [5]:  
   2( ( ) )V b kα ′≥ − .                                                    (15) 

 

Figure 1: The neutral stability under differentτ , γ  
Eq.(13) shows that the neutral stability curve will decrease with the forecast effect 
coefficient γ  and the forecast time τ , so the stability of traffic flow will be improved 
with the increase of the forecast effect coefficient γ  and the forecast time τ . Fig.1 
shows the neutral stability curves in the space ( , )b α  under the different parameters( , )τ γ . 
According to the Map, OVFM will put down the neutral stability curve, so the stability 
region in the space( , )b α will be enlarged. 
 
4. Numerical simulation 
In this section, we use numerical simulation to test whether Eq.(1) can describe the 
effects of optimal velocity forecast. The following simulation is carried out under a 
periodic boundary condition. The total car number100N = and circuit length 1500L = m. 
The related parameters are taken as 11sα −= . The initial disturbance is same as that in Ref. 
[3]: 
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          Figure 2: Snapshot of the velocities of all vehicles at different values ,τ λ  

1(0) 10m,x = (0) ( 1)n

L
x n

N
= − , for 1n ≠ , (0) ( )n

L
v V

N
= . 

We substitute the above parameters in the inequality, where the traffic flow is unstable 
both in FVDM and the OVFM( 0.5τ = ). But the traffic flow in the OVFM ( 1τ = ) is 
actually stable, according to our simulation, although OVFM ( 0.5τ = ) does not converge, 
but its volatility is always very small in 410 st = ago. Figure 2 and table 1 show the 
information of the velocities of all vehicles at 50st = , 200st = , 5000st =  and 

55 10 st = ×  for OVFM, respectively. When 0τ = , 0γ = , the OVFM is change to FVDM.  
We can discover from figure2 (a) that the initial disturbance caused the cars’ velocity 

fluctuate nearby 4.6647m/s in OVFM ( 0.5τ = ) and FVDM, but the velocity perturbation 
scope in the FVDM is bigger than in the OVFM, the unstable traffic flow in the FVDM 
evolves into stop-and-go traffic flow. The velocity‘s fluctuation around 4.6647m/s is not 
obvious in the OVFM ( 1, 0.5τ τ= = ), the traffic flow is still homogenous flow (figure 2(b) 
and table 1(b)), but the fluctuation of velocity in the OVFM ( 0.5τ = )is larger than in the 
OVFM ( 1τ = ). When 5000st = , the disturbance of velocity presents obvious changes 
(figure 2(c)), but the fluctuation of velocity in the OVFM( 0.5τ = ) is still small, the traffic 
flow in the OVFM ( 1τ = ) is homogeneous. Until 55 10 st = × the vehicles stop at jam 
region in the FVD model; car’s velocity of OVFM ( 0.5τ = ) at jam region is 3.1223m/s 
(see table1 (d)), this state is low speed travel while not stationary, but the vehicle are still 
homogenous flow in the OVFM. 
This is consistent with the theoretical analysis. Thus, it can be found that the jam 
condition in the FVDM is more serious than in the OVFM. It is suggested that the 



 Optimal velocity forecast model for a car-following theory 
 

47 

optimal velocity forecast item can weaken the traffic jam. Moreover, the OVFM is 
similar to the FVDM, the phase change can be found from free flow to jam flow. 

 
Table.1(a) 

50st =  1, 0.5τ λ= =  0.5, 0.5τ λ= =  0, 0τ λ= = (FVDM) 
Max  4.8116 5.0320 6.8062 
Mean 4.6649 4.6656 4.6821 
Min  4.4821 4.1128 2.6314 

(Max-Mean) Mean 0.0314 0.0785 0.4537 

(Mean-Min) Mean 0.0392 0.1185 0.4380 

Max , Mean, Min represents the maximum, average and minimum speed of one hundred 
vehicles. (Max-Mean) Mean and (Mean-Min) Mean denote the upward and downward 
volatility. 
Table.1(b) 

200st =  1, 0.5τ λ= =  0.5, 0.5τ λ= =  0, 0τ λ= = (FVDM) 
Max  4.7083 4.8500 12.3715 
Mean 4.6647 4.6652 4.9226 
Min  4.6135 4.3591 0.6387 

(Max-Mean) Mean 0.0093 0.0396 1.5132 
(Mean-Min) Mean 0.0110 0.0656 0.8703 

 

Table.1(c)  
5000st =  1, 0.5τ λ= =  0.5, 0.5τ λ= =  0, 0τ λ= = (FVDM) 

Max  4.6655 4.8400 13.2246 
Mean 4.6647 4.6652 5.2330 
Min  4.6639 4.4491 0.2754 

(Max-Mean) Mean 0.0002 0.0375 1.5271 
(Mean-Min) Mean 0.0002 0.0463 0.9474 

 
Table.1(d) 

55 10 st = ×  1, 0.5τ λ= =  0.5, 0.5τ λ= =  0, 0τ λ= = (FVDM) 
Max  4.6696 10.3650 13.2246 
Mean 4.6647 4.7735 5.2329 
Min  4.6588 3.1223 0.2754 

(Max-Mean) Mean 0.0010 1.1714 1.5272 
(Mean-Min) Mean 0.0013 0.3459 0.9474 

Table 1: The maximum, average and minimum etc. of the 100 car distribution at different 
times,( Table.1(a), Table.1(b), Table.1(c), and Table.1(d), 
indicates 50st = , 200st = , 5000st = and 55 10 st = × respectively. ) 

 
     We can also see from Figure 2, in the FVDM, the perturbation propagation speed is 
quick. When 200st = , the jam can be found, the velocity of vehicle fluctuates between 
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0.6387~12.3715m/s (see table1(b)). When 5000st = , traffic flow in OVFM( 0.5τ = ) 
model is still homogenous flow, the velocity of vehicle fluctuates between 
4.4491~4.8400m/s (see table1(c)). Although the FVDM and OVFM( 0.5τ = ) with given 
parameters are unstable, but compared with the FVDM, the free flow in the OVFM 
evolved into jam flow requires long time, which suggests that the headway of the initial 
small perturbation propagates slowly. 

 

                                  

 

Figure 3: Loops for the OVFM at different values ofτ andγ  
 

Moreover, in the phase space (s-v space), the “hysteresis loop” of car motion can be 
found after enough time as shown in Figure 3 (here, we take 55 10 st = × ), which suggests 
that the phase transition from free flow to congestion can also be found in the OVFM. 
When 0λ τ= = , the OVFM model is the same as FVD model. Along with the 
enlargement of valueλ orτ , the “hysteresis loop” is in reduction. When1, 0.5τ γ= = , the 
condition (14) is satisfied and the system is stable, the “hystresis loop” will not be 
generated, and in the phase space, there will be only a point on the curve instead.  

 

Model α  k  γ  τ  tδ  jc  

FVDM 0.41 0 0 0 1.4 19.03 
OVDM 0.41 0.5 0.5 1 1.2 22.20 
  Table 2: tδ and jc in OVFM and FVD 
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Figure 4: The time evolution curve of “hysteresis loop” ( (a),(c): 5[0, 5 10 ]t ∈ × ;  
(b): [0, 3000]t ∈ ;  (d): [0, 200]t ∈ ) 



Yan Dong 

50 

 

This phenomenon also can be found by the time evolution curve of “hysteresis loop” 
form the initial conditions of the traffic(Fig. 4). With the time growth, OVFM tends to 
steady state(figure 4(a)). Hysteresis curve converges to a small area, the lag effect was 
weaken. The time evolution curve of “hysteresis loop” can be found from time 0s to time 

55 10× s as shown in Figure 4 (b),(c,),(d) which suggests that the phase transition from 
free flow to congestion can be found in the OVFM(0.5τ = ) and FVDM. But compared 
with the FVDM, the free flow in the OVFM ( 0.5τ = ) evolved into jam flow requires very 
long time. 

 
Figure 5: Motions of cars 1-10starting from a traffic signal 

 
      Next, we considering ten cars initially at rest with a headway of 7.4m, the leading 
car is unobstructed.  At 0t = , the ten cars start up according to OVFM and FVDM 
respectively. We define the delay time of car motion by tδ  as that in FVDM. Then we 
can estimate the kinematic wave speed at jam density 7.4 /jc tδ= . The simulation result 

are showing in figure 5 and table 2 by adopting the same parameters as those in FVDM. 
From table 2, we can see that the observed tδ  is of the order of 1s, just as bando et al .[3] 
point out and jc ranges between 17km/h~23km/h[16]. Therefore, OVFM is successful in 

anticipating the two parameters. Also the delay time tδ  and the kinematic wave speed 

jc approach more exactly to the observed values with condition of τ and γ . We also 

obtain the acceleration in figure 6, we can see that the maximum value of acceleration in 
OVFM is not greater than that in FVDM (except the first following car). But for the 
following car, the car in OVFM accelerates more quickly than the car in FVDM because 
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of the forecast effect in OVFM. 

 
Figure 6: acceleration of leading car and its following vehicles for OVFM and FVDM 
 

5. Conclusion 
With the development of Intelligent Transportation Systems, drivers can forecast the 
future traffic situation. However, the existing traffic flow models can not be used to 
directly study the driver’s forecast effect since they did not consider this factor. In this 
Letter, we develop a new car-following model with the consideration of the difference of 
optimal velocity at the Future time and the optimal velocity at the present time. The 
analytical and numerical results show that the OVFM can enhance the stability of traffic 
flow and that this stability will be improved with the increase of the parameters,γ τ . 
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