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ABSTRACT 
This is the second in a series of papers on U- spaces. Here paracompactness has been 
introduced for U- spaces and many topological theorems related to paracompactness have 
been generalized to U- spaces, as an extension of study of supratopological spaces. 
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1. Introduction 
In a previous paper [1] we have introduced U- spaces and studied some of their 
properties. In this paper we use the terminology of  [1]. Some study of these spaces was 
done previously in ([2,3,9,11]) in less general form, and the spaces were called 
supratopological spaces. 

The concept of paracompactness for topological spaces was defined by 
Dieudonne [4]. This concept has been proved to be very important and useful. In this 
paper the notion of a paracompact U- space has been introduced and a number of 
sufficient conditions for paracompactness for such spaces have been established.  
             In connection with paracompactness of U- spaces.  We have generalized the 
concepts of refinement, locally finite, countably locally finite, star and barycentric 
refinements in U- spaces and proved the U- space- versions of a few theorems concerning 
paracompact topological spaces (see [5,8,10]). A few relevant examples have been 
provided. 
 
2. Paracompact U-spaces 
We start with a few necessary definitions in U- spaces which generalize the 
corresponding topological concepts. 

  
Definition 2.1.  Let G be a collection of subsets of the U- space X. A collection B of 
subsets of X is said to be a U- refinement of G (or is said to refine G) if for each element 
B of B , there is an element G∈  G , such that B⊆ G. If the elements of B are open sets, 
we call B a U-open refinement of G ; if they are closed sets, we call B a U- closed 
refinement of G.  
 
Definition 2.2. A collection G of subsets of a U- space X is locally finite if every point of 
X has a neighborhood that intersects only finitely many members of G. 
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Thus, for a U-space X and a collection {Aα} of subsets of  X, {Aα} is locally finite if, for 
each x∈  X, there exists a U-open set G containing x such that 
 G ∩ A α ≠ Φ

,
 for only a finite number of α ’s. 

Locally finite collections are also called neighborhood- finite. 
 
Example 2.1. Let X = N and let U  consist of X, Φ  and all subsets of N of the form Gn 

= {n, n + 1, n + 2, n + 3} and their unions. Then (X, U  ) is a proper U- space, since 

G1∩ G2 = {2, 3, 4}∉  U. Let C denote the family of sets  Ck = {n∈ N n k≥ }, k ∈ N. 

Let x∈X. Then x = n0, for some n0 ∈ N. For the neighborhood, Gnο
= { n0, n0 +1, n0 + 2, 

n0 + 3} of x, Gnο kC∩ ≠ Φ , only for k = 1, 2, 3, ⋯ , n0 + 3.  

Hence C is locally finite.                  
 

Definition 2.3.  A collection C of subsets of a U- space X is said to be countably locally 

finite if C is a countable union of locally finite collections Cn     i.e.,C = ∪
∞

=1n

 Cn.  

Example 2.2. Let (X, U  ) be the proper U- space of example 2.1. For each positive 

integer k and m, let C k, m = {n∈ N 
k

n
m

≥ }, Let C m  = {  C k, m } k N∈ . For each m, 

C m is locally- finite. Therefore C = 
m
∪  C m  is countably locally- finite.                                               

Definition 2.4.  A U-space X is paracompact if X is Hausdorff and every U- open cover 
C of X has a locally finite U-open refinement of C that covers X.  

Clearly, any compact Hausdorff U-space is paracompact.   
We now give a non- trivial example of a paracompact U- space. 
 
Example  2.3. Let X = Z and U = The collection of all An's and their unions, where for 
n∈Z, An ={x ∈X : n ≤ x ≤ n + 3}. Then, U  is a U- structure  but not a topology, since 
A1∩A2 = {x∈X : 2 ≤  x ≤  4} which does not belong to U. Also, (X,U ) is Hausdorff. 
For, if m, n∈Z, m ≠  n, then let m < n, m ∈ Am-3, n ∈ An, and Am-3 ∩An = Φ . 
               We shall now show that every U-open cover of X has a locally finite 
refinement. Let C be a U-open cover of X. For each x∈X, x∈ An,x ⊆ Gx, for some 
An,x∈An, where Gx is a member of C.(Such An,x and Gx exist. Gx exists because C C C C is a   
U- open cover of X. And, by definition, Gx is a union of a class of An's at least one of 
which must contain x. Call this An  An,x ).  
               Let A  = {A n,x: x∈X}. Then A is a refinement of C which covers X. Let x0∈X 

and let G = An ,
0x . Then G is a U- open set containing x0 and G intersects only seven 

members of A,  viz, A 3−n ,
0x  , A 2−n ,

0x , A 1−n ,
0x , A n ,

0x , A 1+n ,
0x , A 2+n ,

0x , A 3+n ,
0x . 

Thus, A  is locally finite refinement of C which covers X. 
Hence X is a paracompact U- space which is not a topological space. 
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It is clear that an infinite number of such proper paracompact U- spaces can be similarly 
constructed. 
 

Our next example is a proper U- space which is not paracompact but in which every U- 
open cover has a locally finite refinement that covers X. 
 
Example 2.4. Let X =Z, fix xo∈Z. For each x∈Z, let Ax ={xo, x, x+1,x + 2}.                               
Let U be the collection of Φ , all Ax’s, x∈ Z and their unions. Then (X, U ) is             

U- space, but not a topological space. Since A1+x ∩ A 5+x = {xo} ∉  U. 

               Let C  be an U- open cover of X. Let x∈X. Then there is a Gx∈C such that 
x∈Gx and so x ∈Ay, for some y∈X. Let D be the collection of all sets By’s such that for 

some yo, B
oy = A

oy , and for each y≠ yo, By = Ay – {xo}.  

               Then D is a refinement of C and covers X. Now Ay is a U–open set containing 
x and it is clear that Ay intersects only a finite number of By’s.  
Thus D  is a locally finite refinement of C . 

We now note that (X, U ) is not Hausdorff, since for each x, y∈Z, Ax ∩ Ay ≠  Φ . Hence 
X is not paracompact. 

We recollect that the usual U- space R is R with the U – structure consisting of 
all subsets of R of the forms (-∞,a) and (b, ∞ ) and their unions. 

 
Remark 2.1.    R with the usual topology is paracompact. But the usual U- space R is not 
paracompact. We prove its truth below: 
              For C = {(-∞,a)|a∈ R } is an open cover of R. If x∈ R, and x∈G with G is U-

open, then G is the form ]),(),[(
,
∪

ji
ji ba ∞∪−∞ , for some ai’s, bj’s, and x belongs to 

some (-∞,ai) or, some (bj,∞). 
                       If D  is a refinement of C which covers R, then D is a collection of sets of the 
form (-∞, c), where c < a, for each a with (-∞, a) ∈C. Clearly, D is an infinite collection 
of U- open sets, and G meets infinitely many members of D. So D   is not locally finite.  
Thus C   has no locally finite refinement.  

Let (X, U  ) be  a U- space and T   = T U be the topology generated  by U on X. 
Then we have the following theorem. 

 
Theorem  2.1.   If (X, U ) is paracompact, then  (X, T U)= (X, T  ) is paracompact. 
Proof: Clearly (X, T  ) is Hausdorff if (X, U ) is Hausdorff. Let C be an open cover of X 
in (X, T  ). For each x∈X, there exists Gx in C such that x∈Gx. Then Gx contains a set Hx 
such that x∈Hx and Hx is the intersection of a finite collection of sets U1,x, U2,x,….,Ur,x in 
U. Choose any Ui,x and call it Ux. Let D = {Ux : x∈X} . Then, D is a U - cover of X.  

               Since (X, U ) is paracompact, D has a locally finite refinement say D / which 
covers X. For each y in X, let y∈Vy ∈ D. Let Hy = Gy ∩ Vy.  
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Then C / ={H y: y∈X} is a open cover of X.  C /  is a locally finite refinement of C, since 

D / is a locally finite refinement of D. Thus (X, T U) is paracompact. 
Our next theorems are generalizations of Theorems in [8] ( p. 160-161). 
 

Theorem 2.2. Every paracompact U-space X is normal. 
Proof:  Let X be a paracompact U-space. Firstly, we shall show that X is regular. Let  
x∈ X and B be a U –closed subset of X, where x∉ B. since X is  Hausdorff, for every 
b∈B there exist two disjoint U- open sets Ub, Vb such that x∈ Ub and b∈Vb . So 

x∉ bV .Then C = {V b} b∈B ∪ {X - B} is a U- open cover of X. Since X is paracompact, 

there exists a locally finite refinement D of C which is a U-open cover of X. Let E be the 
sub collection of D consisting of all those members of D which intersect B. Then E is a 

U-open cover of B. Since for every b∈B, x∉ bV , so for every E∈E, x ∉ E  . 

               Let W = ∪
ξ∈E

E , then W is U- open set of B. We shall now show that W  = 

∪
ξ∈E
E
_

.Obviously, ∪
ξ∈E
E
_

⊆  W . If possible, suppose x∈ W . Then for every                 

U- open set G containing x, G∩ W ≠ Φ . Since E is locally finite, G intersects only a 
finite number of members say E1, E2, E3,------,Er of E.                     

               Let W1= E1∪ E2 ∪ E3∪ ------- ∪ Er and W2 = 
rEEEEEE

E
....,,.........,, 321≠∈

∪
ξ

. 

 So, G∩ W2 =Φ . This implies that x ∉W 2.  Since W  = W 1 ∪ W 2,                               

x ∈ W 1 = E 1 ∪ E 2∪ E 3 ∪ ------- ∪ E r . So, W ⊆ ∪
ξ∈E
E
_

.  

Thus, W = ∪
ξ∈E
E
_

 . But this is a contradiction, since Ex ∉  for each E. So x∈ W .. 

Hence W ′ is a U- open set containing x. Therefore X is regular. 
 
               Now let A and B be two U- closed subsets. Since X is regular, for every a∈A 
and for B there exist disjoint U- open set Ua and Va such that a∈Ua and B⊆ Va. One 

merely repeats the same argument, there exists a U- open set W=∪
ξ∈E

E  containing A, 

where (i) E is a locally finite U- open cover of A and (ii) Every E ∩ B =Φ .Since E is 

U-locally finite, ∪
−

∈

=
ξE

EW , and B⊆ W . Hence X is normal.   

 
Theorem 2.3  Every U- closed subspace of a paracompact U- space is paracompact. 
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Proof: Let X be a paracompact U-space and Y be a U-closed subspace of X. Obviously, 

Y is Hausdroff. Let C / = { /C α } be a U-open cover set of Y. Then for each 
/C C Yα α= ∩ , where αC is a U-open set of X. Now supposes C = { αC }. 

               Then D = { } { }cYc ∪α  is a U-open cover of X. Since X is a  paracompact, there 

exists locally finite U- open cover E which is a refinement of D . G is the sub collection 

of members of E whose members are not subsets of Yc and G is refinement of C. For this 

reason G is a U-open cover of Y and a refinement of C / . Since E is locally finite, G is 
locally finite. 
Hence Y is paracompact. 
 
Remark 2.2.   A U- subspace of a paracompact U- space need not be   paracompact. 
 Since this statement is true about topological spaces (see [8], p.161), it is also true about  

U- spaces.  
For proof, we need to define a special U- structure on R which is called the lower 

limit U- structure. This U- space is denoted by Rl. 
 

Definition 2.5.  Let C be the collection of  subsets of the form [a, b) = {na x b≤ < }, 

where a < b, the U- structure generated by C is called the lower limit U- structure on R.   
                 
Theorem 2.4. Product of two paracompact U-spaces need not be  paracompact. 
Proof: As for topological spaces one can be shown that the U- space Rl is paracompact, 
but Rl × Rl  is not normal, and hence, not paracompact. 
 
We now generalize the theorems and lemma in [8]( p. 162 - 166). The proofs are almost 
the same as those for topological spaces. 
 
Theorem  2.5.  Let X be a regular U-space and let C be a U- open cover of X. Consider 
the following conditions on C: C has a refinement which is 

(i) a U- open cover of X and count ably locally finite, 
(ii)   a cover of X and locally finite, 
(iii) a U-closed cover of X and locally finite, 
(iv) a U- open cover of X and locally finite. 

Among the above four conditions on C, the following implications hold;                       
(iii)  ⇒ (iv)⇒  (i) ⇒  (ii).  
Proof: It is trivial that (iv) ⇒  (i). 
(i) ⇒  (ii)  Let G be a U- open cover of X. Let B be an U-open refinement of G that 
covers X and is countably locally finite i.e. B = ∪ Bn , where B is a  locally finite. Let Vi 

= ∪
B∈U

G  and for each n ∈N and each G∈  B, define Sn(G)= G-∪
ni

iV
<

. Let Cn = 

{S n (G) G∈  Bn }. Since Sn (G)⊆ G, thenC n is refinement of Bn , because Sn (G) ⊆  G, 
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for each G∈  Bn..Let C = ∪ Cn . We shall show that C is a locally finite collection 

refinement of G, covers X. Suppose x ∈X . We shall show that for any one Sn(G), 
x∈Sn(G) a neighborhood of x that intersects finite elements C .  Since B covers X, there 

is a smallest positive integer number n0 such that x ∈G∈  B
0n . Since x does not belong 

to any member of B i for i < n0, x ∈ 
0nS (G) ∈  C. Since each collection Bn is locally 

finite, we can choose for each n = 1, 2, 3, ..........n0 a neighborhood Wn of x that intersects 
only finitely many members of Bn .Now if Wn intersects the member Sn(V) of C, Wn 
must intersect the member V of Bn , since Sn(V) ⊂ V. 
               Therefore, Wn intersects only finitely many members of C

 . Furthermore, 

because G∈  Bn
 
, G does not intersect any  element of C n  ,for n > n0. As a result, the 

neighborhood W1∩ W2∩ W3 ∩ ------------ ∩ Wn 0 ∩ G of x intersects only finitely many 

elements of C . 

(iii) ⇒  (iv)                               

               Let be G a U-open cover of X. Using (iii) Choose B be a refinement of G that 
is locally finite and a U- closed cover of X. Now we consider for every B∈  B a U-open 
set D(B) ⊇ B that the collection {D(B)|B∈  B }is also locally finite and refinement of G. 
Since B is locally finite. For every x∈X, there exist a neighborhood Nx of x that intersect 
finite members of B. Then {Nx | x∈X} is a U-open cover of X. 
               According to (iii) there is a collection C refinement of {N x | x∈X}  that is        
U-closed cover of X. Clearly for every C∈C   intersects finite members B∈  B. For each 
B∈  B, let C (B) = {C : C ∈  C  and C ⊆ X - B}.   

               Again let, E(B) = X- ∪
)(BC

C
ξ∈

 . By lemma-“Let {Aα} be locally finite collection 

of subsets of X. Then (a) Any sub collection of {Aα} is locally finite. (b) { }αA  is locally 

finite.(c) ∪∪
α

α
α

α AA =  .” ∪
)(BC

C
ξ∈

 is U- closed. So E(B) is an U-open set. According to 

the definition E(B)⊇B. The collection {E(B)}is a U- open cover of X. For each B∈B , 

F(B)∈G, where F(B)⊇ B. 

               Let D = {E(B) ∩ F(B)|B∈  B }. Then the collection D is refinement of G and 
U-open cover of X. Since B⊆  E(B) ∩ F(B) and B is a U-open cover of  X. Suppose  
x∈X. Now we shall show that D is locally finite. Since C is locally finite, there exists a 

neighborhood W of x that intersects only finite members of C, (say) C1, C2, C3, ------, Cn. 
Since C is U-cover of X, so W⊆  C1∪ C2 ∪ C3∪ ------ ∪ Cn . 
               Now if any member C of C intersects the set E(B) ∩ F(B), then C ⊄ X- B. 
Therefore C intersects B. Since C intersect finite members B, so C will intersect 
maximum members of D. Therefore W will also intersect finite members of D . 
               Now if we write E(B) ∩ F(B), the collection D = {D(B)|B∈ B} is refinement 
of G and is a locally finite U-open cover of X.  
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Comment  2.1. [5]  The properties (i) - (iv) of the above Theorem  2.5 can also be stated 
as :  
         (a) Each U- open covering of X has a U-open refinement that can be decomposed 
into an at most countable collection of locally finite families of U-open sets. 
         (b) Each U- open covering of X has a locally finite refinement, consisting of sets 
not necessarily either U- open or U-closed.  

  (c) Each U- open covering of X has a U- closed locally finite refinement.    
         (d) X is paracompact. 
 
We now generalize the theorems in [8] (p. 165-166). 

Theorem 2.6.  If a locally compact Hausdorff U- space X is a countable union of 
compact U-spaces then X is paracompact. 

Proof: Let X be a locally compact Hausdorff U-space and X = ∪
n

nC , where Cn is 

compact. Let for each n, Cn ⊆ Cn+1 (We can assume this, for otherwise we can consider 

C´n instead of Cn where Cń = ∪
n

i
iC

1=

). At first we shall show that X = ∪ Wn , where Wn 

is U-open, nW    is  compact and nW ⊆ Wn+1. Let x∈C1 and let Gx be a neighborhood of 

x, where xG  is compact. Then {Gx}
1Cx∈ is a U - open cover of C1. Since C1 is compact, 

there is a finite U-open subcover {
nxxx GGG ,,,

21
−−−−−− } of C1. Let W1 = ∪

n

i
xi

G
1=

. 

               Therefore 1W is compact, this implies that 12 WC ∪ is compact. Suppose W2 is 

a U-open set of 12 WC ∪  obtained in the same way as the U-open set W1 of C1. So 2W  

is compact, C2⊆ W2 and 1W ⊆ W2. Let, for each m< n, the U-open set Wm be defined in 

a similar member such that Cm ⊆ Wm, mW  is compact and mW  ⊆ Wm+ 1. Proceeding as 

before we get for each positive integer n≥  2 a U-open set Wn of Cn 1−nW∪  , where nW  

is compact and nn WW ⊆−1 .  

               Let W  = {G α } be a U-open cover of X and  Kn = nW -Wn-1. Then Kn is 
compact. Now for every x∈ Kn , there is a neighborhood Vx of x such that for any α , Vx 

⊆ Gα . Assume that Vx ⊆  Wn+1, since nW ⊆  Wn+1 and Vx ∩ Wn-2 = Φ , since 

12 −− ⊆ nn WW . Since Kn is compact, so there is a finite cover Dn = 

{
nxxx VVV −−−−−

2
1
, } of K n. We denote by V   the union of the finite covers Dn of  Kn 

for all n.  Then V   is a U- open cover of X and since Vx∈  V  is contained in a Gα ∈W .  
V  is refinement of W. Suppose x∈X. Then there exists a least natural number n such 

that x ∈ nW . Since x∉Wn - 1, so,  x ∈Kn. As a result there is a neighborhood V∈ V  
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which intersect only finite member of those members of V  which covers Kn-2, Kn-1,Kn 
and Kn+1. 
 
Theorem 2.7. A locally compact Hausdorff U-space with a countable basis is 
paracompact. 
Proof: Let X be a locally compact Hausdorff U-space with a countable basis and let {Bn} 
be a countable basis of X. Let x∈X. Then there exists a neighborhood Vx of x, such that 

xV   is compact. Again since {Bn} is basis, x∈Bn(x) ⊆ Vx , for some n. Since xV  is 

compact, every )(xBn  is compact. So X a is union of )(xBn . Hence X is paracompact. 
The following five theorems are the U- space generalization of those in [5]. 
To prove the next theorem we need a lemma. 
 
Lemma 2.1.  If X, Y are U- spaces with X normal, and p: X→  Y is a U-continuous     U-
closed surjection, then Y is too normal. 

Proof: Let A and B be two disjoint U- closed sets in Y. Since p is U- continuous, p1− (A) 

and p 1− (B) are disjoint U- closed sets in X. X being normal, there are disjoint U-open 

sets G and H in X such that p1− (A) ⊆ G, p 1− (B) ⊆ H. Since p is U- closed, p(G) and 
p(H) are disjoint U- open sets in Y with A⊆ p(G), B⊆ p(H). Thus Y is normal. 

We now generalize the theorems in [5] 

Theorem 2.8. Every U-continuous closed image of a paracompact U-space is 
paracompact. 
Proof: Let X and Y be U- spaces with X paracompact, and let p: X→Y be                        

U- continuous U-closed surjection mapping. Let {G ∈αα  A } be any U- open covering 

of Y. Since X is normal and p is U-continuous, U-closed and surjection, Y is normal. By 

Theorem 2.5 and comment 2.1 it suffices to show that {G ∈αα  A } has an U- open 

refinement which can be decomposed into at most countably many locally finite families. 
We assume A is well-ordered and begin by constructing a U-open covering 

{V ∈),(, nn αα  A  ×  Z + } of X such that:  

                (i) For each n, {V ∈αα n,  A } is a U-covering of X and a precise locally 

finite refinement of {p ∈− αα )(1 G  A }. 

                (ii) If αβ >  then p( 1, +nV β ) Φ=∩ )( ,nVp α . 

Proceeding by induction, we take a precise U-open locally finite refinement of                 

{ p )(1
αG− } and shrink it by normality of X to get {V 1,α }. Assuming {V i,α } to be 
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defined for all i≤  n, let W ∪
αλ

αα
<

−−
+ −= VppGpn ()( 11

1, n,λ ). Each W 1, +nα is U- open, 

since by local finiteness ∪
αλ<

V n,λ is U- closed and p is a U- closed map. 

               Furthermore,{ W 1, +nα ∈α  A } is a U- covering of X: given x∈X, let οα be 

the first index for which x∈ p )(1
αG− ; then x ∈  W 1, +nοα , since p1− p 

(V n,λ ) )(1
λGp −⊂ for each λ . Taking a precise, U- open locally finite refinement of   

{ W 1, +nα ∈α  A }, shrink it to get { 1, +nV α }. Clearly, condition (i) holds, and since 

1, +nV β  is not in the inverse image of any p( nV ,α ) for βα < , condition (ii) is also 

satisfied. 

             For each n andα , let H n,α = Y – p(∪
αβ

β
≠

nV , ) which is an U- open set. We have  

    (a)        H n,α ⊂ p( nV ,α ) ⊂ Gα  for each n and α . Indeed,  

 p 1− ( H n,α ) = X - p 1− p(∪
αβ

α
≠

nV , ) ⊂ X - p 1− p(X - nV ,α ) ⊂  nV ,α  ⊂  p 1− ( Gα ). 

   (b).  H n,α ∩  H n,β = Φ  for each n whenever βα ≠ .  In fact,                                            

y ∈H n,α py ∈⇒ ( nV ,α ) and is in no other p( nV ,β ). 

   (c).        {H ∈),(, nn αα  A  ×  Z + } is an U- open covering of Y. Let y∈Y be given; for 

each fixed n there is, because of (i), a first nα with y∈p( nnV ,α ); choosing now 

}{min +∈= Znnk αα , we have y∈p( kkV ,α ). If kαβ < , then the definition of kα  

shows y∉p( 1, +kV β ); if kαβ > , then by (ii), we find that y∉ p( 1, +kV β ); therefore we 

conclude that y∈  H 1, +kkα . 

                  To complete the proof, we need only modify the H n,α slightly to assure 

locally finiteness for each n. Choose a precise U- open locally finite refinement of            

{ p 1−  (H ∈),(), nn αα  A ×  Z + }, and shrink it to get an U- open locally finite covering 

{K n,α } satisfying p( nK ,α )⊂ H n,α . For each n, let Sn = {y some nbd of y intersects at 

most one H n,α }; S n is U- open and contains the U-closed ∪
α

p ( nK ,α ) = p 

(∪
α

nK ,α ), so by normality of Y we find an U-open Gn with ∪
α

p ( nK ,α ) ⊂  
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G n ⊂ nG ⊂  Sn . The U-open covering { Gn ∩ H ∈),(, nn αα  A  ×  Z + }, with the 

decomposition { Gn ∩ H ∈αα n,  A } for n = 1, 2, 3, ------- satisfies the conditions of 

Theorem 2.5 and comment 2.1 for the given {Gα }. 

 

Definition  2.6.  Let  G = {G ∈αα  A } be a covering of U- space X. For any B⊂ X the 

set ∪ { G Φ≠∩ αα GB }  is called the U-star of B with respect to G , and is denoted 

by St (B, G ). 

Definition 2.7. A  U-covering B  is called a U- barrycentric refinement of a U-covering 

G  whenever the covering {St (x, B ) Xx ∈ }  refines G.  

Theorem  2.9.  Let X be normal U- space, and G = {G ∈αα  A } a locally finite U- 

open covering. Then G has an U- open barrycentric refinement. 

Proof:  Shrink G to an U- open covering B = {V ∈αα  A } such that αα GV ⊂  for 

each α ; clearly, B is also locally finite. For each x∈X, define W(x) = 

∩ { ∩∩∈ }αα VxG {  C ββ VxV ∈ }.  

               We show that B*  = {W(x) x∈X} is the required U- open covering. Note that 

each W(x) is U- open: the locally finiteness of B assures that the first term is a finite 

intersection and that the last term, C  βV∪  is a U- open set. Next, B* is a U- covering, 

since x ∈W(x) for each x∈X. Finally, fix any xο ∈X and choose a αV containing xο . 

Now, for each x such that xο ∈W(x), we must have x∈ αV  also, otherwise W(y)⊂  C 

αV ; and because x∈ αV , we conclude that W(x) ⊂ Gα . Thus, St(xο , B* ) ⊂  Gα , and 

the proof is complete. 

Definition  2.8. A U- covering B = {V ∈ββ B } is called a U- star refinement of the 

U- covering G  whenever the U- covering {St ( Vβ , B ∈β B } refines G.   

Theorem  2.10. A U- barrycentric refinement B* of a U- barrycentric refinement B  of G  

is a U- star refinement of G.  

Proof: Given Wο ∈  B*, choose a fixed xο ∈ Wο . For each W∈  B* such that 

W ∩ W ο Φ≠ , choose a z∈W ∩ W ο ; then W∪  W ο ⊂ St(z, B* ) ⊂ some V∈  B. 

Because each such V contains xο , we conclude that St(Wο , B* ) ⊂ St(xο , B) ⊂ some 

G∈  G. Since it is clear that a U- barycentric refinement of any refinement of G is also a 
U-barycentric refinement of G , it follows from Theorem-2.9  that each U- open covering 
of a paracompact U- space has an U- open barycentric, and an U- open star, refinement. 
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Much more important, however, is that this property characterizes the paracompact             
U-spaces, not only among the Hausdorff U-spaces, but in fact also among the                 
T1 -U- spaces.  
 
Theorem  2.11.   A T1-U- space X is paracompact if and only if each U- open covering 
has an U- open barycentric refinement. 
Proof:  Only the sufficiency requires proof. We first show that any U- open covering             

G = {G ∈αα  A } has a refinement as in Theorem-2.5 and comment 2.1. 

              Let G*  be an U- open star refinement of G and let { G n 0≥n } be a sequence 

of U- open coverings, where each G 1+n  U-star refines G n and G 0 

U-Star refines G* .Define a sequence of U-covering inductively by B1= G 1,                       

B2 = {St(V, G2 ) ∈V  B1}......, Bn = {St(V, Gn ) ∈V  Bn-1}, ........ 

             Each Bn is an U-open refinement of  G ο ; in fact, each covering                   

{St(V,  Gn ) ∈V  Bn} refines G ο  : this is true for n = 1 and, proceeding by induction, if 

it is true for n = k – 1, its truth for n = k follows by noting that whenever V = St(Vο , Gk ) 

for some Vο ∈  Bk-1 , then St(Vο , Gk ) = St[St(Vο ,Gk ), Gk ] ⊂  St(Vο , Gk-1 ) because Gk 

is a U-star  refinement of  Gk-1 .  

               Now well-order X and for each (n, x) XZ ×∈ + define En(x) = St(x, Bn) -               

∪  {St(z, Bn+1 ) z precedes x}. Then D = {En(x) (n, x) XZ ×∈ + } is a U-covering: 

given p∈  X, the set A = {z ∪
∞

=

∈
1i

p St(z, Bi )} is not empty, since p∈   A; if x is the first 

member of A, then p∈  St(x, Bn) for some n∈Z+ and p∈ St(z, Bn+1 ) for all z preceding x, 
so p∈  En(x). Moreover, since Bn refines G 0, we find that D   refines G*.    
              Each G∈  Gn+1 can meet at most one En(x): for, if G∩ En(x) ≠ Φ , then there is a 

V∈  Bn with x ∈  V and V∩ G ≠  Φ , so x ∈V ∪ G ∈⊂ οV  Bn+1 and G ⊂ St(x, Bn+1). 

Thus, if En(x) is the first set G meets, it cannot meet any En(p) for p following x. 

         Now let Wn(x) = St(En(x), Gn + 1 ). Then B * = {W n(x) (n, x) XZ ×∈ + }  is 

clearly an U- open covering of X. Furthermore, B * refines G because D  refines G* . 

Finally, for each fixed n ∈Z+, the family {Wn(x) x∈X} is locally finite: indeed, each 

G∈  Gn + 2   can meet at most one  Wn(x), because  G∩ Wn(x) ≠ Φ , if, and only if, En(x) 

∩ St(G, Gn + 2 ) ≠ Φ  and St(G, Gn + 2) is contained in some Gο ∈  Gn - 1  which we know 

can meet at most one En(x). 
             The theorem will follow from Theorem 2.5 and comment 2.1, once we show that 
X is regular U- space. To this end, let B⊂  X be U-closed and x∈B. Since in a T1-U- 
space each point is a U- closed set, G = {X – x, CB} is an U- open covering. Let B be an 
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U- open star refinement. Then St(x, B) and St(B, B) are the required disjoint 

neighborhoods of x and B: for if there were a V containing x and a V/ meeting B such 

that V∩  V / ≠ Φ , then St( V, B ) would contain x and points of B, which is impossible. 

The theorem is proved. 

Definition 2.9. Let G = {G ∈αα  A } be an U- open covering of X. A sequence             

{Gn n ∈Z+} of U- open coverings is called U- locally starring for G  if for each x∈X 

there exists an nbd V(x) and n ∈Z+ such that St(V, Gn ) ⊂  some Gα . 

Theorem  2.12.  A T1-U-space  is paracompact if and only if each U- open covering G 

there exists a sequence {Gn n ∈Z+} of U- open coverings that is U- locally starring for 

G .   
Proof:  “Only if” is trivial. “If”: We can assume that Gn + 1 ≺  Gn for each n ∈Z+. Let B 

= {V open in X ∈⊂∃ GVn [:  Gn ] ∧ [ St(V, Gn ) ⊂  some Gα ]}. For each  V∈  B, let 

n(V ) be the smallest integer satisfying the condition. Because {Gn n ∈Z+} is locally 

starring for G, it follows that B is a U- open covering; we will show that B is in fact a  
U-barrycentric refinement of G. 

                   Let x∈X be fixed, let n(x) = min{n(V) ∈∧∈ VXx ()(  B )}, and let V ∈ο  

B be a set containing x such that n(Vο ) = n(x).  

For any V∈  B containing x, we have n(V)≥  n(x), and consequently                                        

St(x, B ) ∪⊂ {St(x, Gi ) ≥i n(x)}. Since Gi + 1 ≺  Gi for each i, this shows            

St(x, B ) ⊂ St(x, Gn(x) ) ⊂ St(Vο , G )( οVn ) ⊂  some Gα . By Theorem-2.11, X is therefore 

paracompact.            
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