Journal of Physical Sciences, Vol. 19, 2014, 9-21 ISSN: 2350-0352 (print), <u>www.vidyasagar.ac.in/journal</u> Published on 26 December 2014

Paracompact U-spaces

S. Majumdar, N. Akhter and S.K.Das

Department of Mathematics, University of Rajshahi, Rajshahi, Bangladesh

Received 1 October 2014; accepted 30 November 2014

ABSTRACT

This is the second in a series of papers on U- spaces. Here paracompactness has been introduced for U- spaces and many topological theorems related to paracompactness have been generalized to U- spaces, as an extension of study of supratopological spaces.

Keywords: Supratopology, U-space, paracompact, locally finite refinement, barycentric refinement.

1. Introduction

In a previous paper [1] we have introduced U- spaces and studied some of their properties. In this paper we use the terminology of [1]. Some study of these spaces was done previously in ([2,3,9,11]) in less general form, and the spaces were called supratopological spaces.

The concept of paracompactness for topological spaces was defined by Dieudonne [4]. This concept has been proved to be very important and useful. In this paper the notion of a paracompact U- space has been introduced and a number of sufficient conditions for paracompactness for such spaces have been established.

In connection with paracompactness of U- spaces. We have generalized the concepts of refinement, locally finite, countably locally finite, star and barycentric refinements in U- spaces and proved the U- space- versions of a few theorems concerning paracompact topological spaces (see [5,8,10]). A few relevant examples have been provided.

2. Paracompact U-spaces

We start with a few necessary definitions in U- spaces which generalize the corresponding topological concepts.

Definition 2.1. Let \mathcal{G} be a collection of subsets of the U- space X. A collection \mathcal{B} of subsets of X is said to be a U- refinement of \mathcal{G} (or is said to refine \mathcal{G}) if for each element B of \mathcal{B} , there is an element $G \in \mathcal{G}$, such that $B \subseteq G$. If the elements of \mathcal{B} are open sets, we call \mathcal{B} a U-open refinement of \mathcal{G} ; if they are closed sets, we call \mathcal{B} a U- closed refinement of \mathcal{G} .

Definition 2.2. A collection \mathcal{G} of subsets of a U- space X is locally finite if every point of X has a neighborhood that intersects only finitely many members of \mathcal{G} .

Thus, for a U-space X and a collection $\{A_{\alpha}\}$ of subsets of X, $\{A_{\alpha}\}$ is locally finite if, for each $x \in X$, there exists a U-open set G containing x such that $G \cap A_{\alpha} \neq \Phi$, for only a finite number of α 's.

Locally finite collections are also called neighborhood- finite.

Example 2.1. Let X = N and let \mathcal{U} consist of X, Φ and all subsets of N of the form $G_n = \{n, n + 1, n + 2, n + 3\}$ and their unions. Then (X, \mathcal{U}) is a proper U- space, since $G_1 \cap G_2 = \{2, 3, 4\} \notin \mathcal{U}$. Let \mathcal{G} denote the family of sets $C_k = \{n \in \mathbb{N} \mid n \ge k\}$, $k \in \mathbb{N}$. Let $x \in X$. Then $x = n_0$, for some $n_0 \in \mathbb{N}$. For the neighborhood, $G_{n_0} = \{n_0, n_0 + 1, n_0 + 2, n_0 + 3\}$ of x, $G_{n_0} \cap C_k \neq \Phi$, only for $k = 1, 2, 3, \dots, n_0 + 3$. Hence \mathcal{G} is locally finite.

Definition 2.3. A collection T of subsets of a U- space X is said to be countably locally

finite if \mathcal{T} is a countable union of locally finite collections \mathcal{T}_n i.e., $\mathcal{T} = \bigcup_{n=1}^{\infty} \mathcal{T}_n$.

Example 2.2. Let (X, \mathcal{U}) be the proper U- space of example 2.1. For each positive integer k and m, let $\mathcal{T}_{k, m} = \{n \in \mathbb{N} \mid n \ge \frac{k}{m}\}$, Let $\mathcal{T}_m = \{\mathcal{T}_{k, m}\}_{k \in \mathbb{N}}$. For each m, \mathcal{T}_m is locally-finite. Therefore $\mathcal{T} = \bigcup_{m} \mathcal{T}_m$ is countably locally-finite.

Definition 2.4. A U-space X is paracompact if X is Hausdorff and every U- open cover G of X has a locally finite U-open refinement of G that covers X.

Clearly, any compact Hausdorff U-space is paracompact. We now give a non- trivial example of a paracompact U- space.

Example 2.3. Let X = Z and $\mathcal{U} =$ The collection of all A_n 's and their unions, where for $n \in Z$, $A_n = \{x \in X : n \le x \le n + 3\}$. Then, \mathcal{U} is a U- structure but not a topology, since $A_1 \cap A_2 = \{x \in X : 2 \le x \le 4\}$ which does not belong to \mathcal{U} . Also, (X, \mathcal{U}) is Hausdorff. For, if m, $n \in Z$, $m \neq n$, then let m < n, $m \in A_{m-3}$, $n \in A_n$, and $A_{m-3} \cap A_n = \Phi$.

We shall now show that every U-open cover of X has a locally finite refinement. Let \mathcal{T} be a U-open cover of X. For each $x \in X$, $x \in A_{n,x} \subseteq G_x$, for some $A_{n,x} \in A_n$, where G_x is a member of \mathcal{T} .(Such $A_{n,x}$ and G_x exist. G_x exists because \mathcal{T} is a U- open cover of X. And, by definition, G_x is a union of a class of A_n 's at least one of which must contain x. Call this $A_n A_{n,x}$).

Let $\mathscr{H} = \{A_{n,x}: x \in X\}$. Then \mathscr{H} is a refinement of \mathcal{T} which covers X. Let $x_0 \in X$ and let $G = A_{n,x_0}$. Then G is a U- open set containing x_0 and G intersects only seven members of \mathscr{H} , viz, A_{n-3,x_0} , A_{n-2,x_0} , A_{n-1,x_0} , A_{n,x_0} , A_{n+1,x_0} , A_{n+2,x_0} , A_{n+3,x_0} . Thus, \mathscr{H} is locally finite refinement of \mathcal{T} which covers X.

Hence X is a paracompact U- space which is not a topological space.

It is clear that an infinite number of such proper paracompact U- spaces can be similarly constructed.

Our next example is a proper U- space which is not paracompact but in which every Uopen cover has a locally finite refinement that covers X.

Example 2.4. Let X =Z, fix $x_o \in Z$. For each $x \in Z$, let $A_x = \{x_o, x, x+1, x+2\}$. Let \mathcal{U} be the collection of Φ , all A_x 's, $x \in Z$ and their unions. Then (X, \mathcal{U}) is U- space, but not a topological space. Since $A_{x+1} \cap A_{x+5} = \{x_o\} \notin \mathcal{U}$.

Let \mathcal{T} be an U- open cover of X. Let $x \in X$. Then there is a $G_x \in \mathcal{T}$ such that $x \in G_x$ and so $x \in A_y$, for some $y \in X$. Let \mathcal{D} be the collection of all sets B_y 's such that for some y_0 , $B_{y_0} = A_{y_0}$, and for each $y \neq y_0$, $B_y = A_y - \{x_0\}$.

Then \mathcal{D} is a refinement of \mathcal{T} and covers X. Now A_y is a U-open set containing x and it is clear that A_y intersects only a finite number of B_y's.

Thus \mathcal{D} is a locally finite refinement of \mathcal{T} .

We now note that (X, \mathcal{U}) is not Hausdorff, since for each x, $y \in \mathbb{Z}$, $A_x \cap A_y \neq \Phi$. Hence X is not paracompact.

We recollect that the usual U- space R is R with the U – structure consisting of all subsets of R of the forms ($-\infty$,a) and (b, ∞) and their unions.

Remark 2.1. R with the usual topology is paracompact. But the usual U- space R is not paracompact. We prove its truth below:

For $\mathcal{T} = \{(-\infty, a) | a \in \mathbb{R}\}$ is an open cover of R. If $x \in \mathbb{R}$, and $x \in G$ with G is Uopen, then G is the form $\bigcup_{i,j} [(-\infty, a_i) \cup (b_j, \infty)]$, for some a_i 's, b_j 's, and x belongs to

some $(-\infty,a_i)$ or, some (b_j,∞) .

If \mathcal{D} is a refinement of \mathcal{T} which covers R, then \mathcal{D} is a collection of sets of the form (- ∞ , c), where c < a, for each a with (- ∞ , a) $\in \mathcal{T}$. Clearly, \mathcal{D} is an infinite collection of U- open sets, and G meets infinitely many members of \mathcal{D} . So \mathcal{D} is not locally finite. Thus \mathcal{T} has no locally finite refinement.

Let (X, \mathcal{U}) be a U- space and $\mathcal{T} = \mathcal{T}_{\mathcal{U}}$ be the topology generated by \mathcal{U} on X. Then we have the following theorem.

Theorem 2.1. If (X, \mathcal{U}) is paracompact, then $(X, \mathcal{T}_{\mathcal{U}}) = (X, \mathcal{T})$ is paracompact. **Proof:** Clearly (X, \mathcal{T}) is Hausdorff if (X, \mathcal{U}) is Hausdorff. Let \mathcal{T} be an open cover of Xin (X, \mathcal{T}) . For each $x \in X$, there exists G_x in \mathcal{T} such that $x \in G_x$. Then G_x contains a set H_x such that $x \in H_x$ and H_x is the intersection of a finite collection of sets $U_{1,x}, U_{2,x}, \dots, U_{r,x}$ in \mathcal{U} . Choose any $U_{i,x}$ and call it U_x . Let $\mathcal{D} = \{U_x : x \in X\}$. Then, \mathcal{D} is a U - cover of X.

Since (X, \mathcal{U}) is paracompact, \mathcal{D} has a locally finite refinement say \mathcal{D}' which covers X. For each y in X, let $y \in V_y \in \mathcal{D}$. Let $H_y = G_y \cap V_y$.

Then $\mathcal{T}' = \{H_y: y \in X\}$ is a open cover of X. \mathcal{T}' is a locally finite refinement of \mathcal{T} , since \mathcal{D}' is a locally finite refinement of \mathcal{D} . Thus $(X, \mathcal{T}_{\mathcal{T}})$ is paracompact.

Our next theorems are generalizations of Theorems in [8] (p. 160-161).

Theorem 2.2. Every paracompact U-space X is normal.

Proof: Let X be a paracompact U-space. Firstly, we shall show that X is regular. Let $x \in X$ and B be a U –closed subset of X, where $x \notin B$. since X is Hausdorff, for every $b \in B$ there exist two disjoint U- open sets U_b , V_b such that $x \in U_b$ and $b \in V_b$. So $x \notin \overline{V_b}$. Then $\mathcal{T} = \{V_b\}_{b \in B} \cup \{X - B\}$ is a U- open cover of X. Since X is paracompact, there exists a locally finite refinement \mathcal{D} of \mathcal{T} which is a U-open cover of X. Let \mathcal{E} be the sub collection of \mathcal{D} consisting of all those members of \mathcal{D} which intersect B. Then \mathcal{E} is a U-open cover of B. Since for every $b \in B$, $x \notin \overline{V_b}$, so for every $E \in \mathcal{E}$, $x \notin \overline{E}$.

Let
$$W = \bigcup_{E \in \mathcal{E}} E$$
, then W is U- open set of B. We shall now show that $\overline{W} =$

 $\bigcup_{E \in \xi} \overline{E}$. Obviously, $\bigcup_{E \in \xi} \overline{E} \subseteq \overline{W}$. If possible, suppose $x \in \overline{W}$. Then for every U- open set G containing x, $G \cap W \neq \Phi$. Since E is locally finite, G intersects only a finite number of members say $E_1, E_2, E_3, ----, E_r$ of E.

Let
$$W_1 = E_1 \cup E_2 \cup E_3 \cup \dots \cup E_r$$
 and $W_2 = \bigcup_{E \in \xi} E_{E \neq E_1, E_2, E_3, \dots, E_r}$.

So, $G \cap W_2 = \Phi$. This implies that $x \notin \overline{W}_2$. Since $\overline{W} = \overline{W}_1 \cup \overline{W}_2$, $x \in \overline{W}_1 = \overline{E}_1 \cup \overline{E}_2 \cup \overline{E}_3 \cup \dots \cup \overline{E}_r$. So, $\overline{W} \subseteq \bigcup_{E \in \xi} \overline{E}$.

Thus, $\overline{W} = \bigcup_{E \in \xi} \overline{E}$. But this is a contradiction, since $x \notin \overline{E}$ for each E. So $x \in \overline{W}$...

Hence $\overline{W'}$ is a U- open set containing x. Therefore X is regular.

Now let A and B be two U- closed subsets. Since X is regular, for every $a \in A$ and for B there exist disjoint U- open set U_a and V_a such that $a \in U_a$ and $B \subseteq V_a$. One merely repeats the same argument, there exists a U- open set $W = \bigcup_{E \in \xi} E$ containing A, where (i) \mathcal{E} is a locally finite U- open cover of A and (ii) Every $\overline{E} \cap B = \Phi$. Since \mathcal{E} is U-locally finite, $\overline{W} = \bigcup_{E \in \xi} \overline{E}$, and $B \subseteq \overline{W}$. Hence X is normal.

Theorem 2.3 Every U- closed subspace of a paracompact U- space is paracompact.

Proof: Let X be a paracompact U-space and Y be a U-closed subspace of X. Obviously, Y is Hausdroff. Let $\mathcal{T}' = \{C'_{\alpha}\}$ be a U-open cover set of Y. Then for each $C'_{\alpha} = C_{\alpha} \cap Y$, where C_{α} is a U-open set of X. Now supposes $\mathcal{T} = \{C_{\alpha}\}$.

Then $\mathcal{D} = \{c_{\alpha}\} \cup \{Y^c\}$ is a U-open cover of X. Since X is a paracompact, there exists locally finite U- open cover \mathcal{E} which is a refinement of \mathcal{D} . \mathcal{G} is the sub collection of members of \mathcal{E} whose members are not subsets of Y^c and \mathcal{G} is refinement of \mathcal{T} . For this reason \mathcal{G} is a U-open cover of Y and a refinement of \mathcal{T}' . Since \mathcal{E} is locally finite, \mathcal{G} is locally finite.

Hence Y is paracompact.

Remark 2.2. A U- subspace of a paracompact U- space need not be paracompact. Since this statement is true about topological spaces (see [8], p.161), it is also true about U- spaces.

For proof, we need to define a special U- structure on R which is called the lower limit U- structure. This U- space is denoted by R_1 .

Definition 2.5. Let \mathcal{T} be the collection of subsets of the form [a, b) = {n $|a \le x < b|$, where a < b, the U- structure generated by \mathcal{T} is called the lower limit U- structure on R.

Theorem 2.4. Product of two paracompact U-spaces need not be paracompact. **Proof:** As for topological spaces one can be shown that the U- space R_1 is paracompact, but $R_1 \times R_1$ is not normal, and hence, not paracompact.

We now generalize the theorems and lemma in [8](p. 162 - 166). The proofs are almost the same as those for topological spaces.

Theorem 2.5. Let X be a regular U-space and let \mathcal{T} be a U- open cover of X. Consider the following conditions on \mathcal{T} : \mathcal{T} has a refinement which is

(i) a U- open cover of X and count ably locally finite,

- (ii) a cover of X and locally finite,
- (iii) a U-closed cover of X and locally finite,
- (iv) a U- open cover of X and locally finite.

Among the above four conditions on \mathcal{T} , the following implications hold; (iii) \Rightarrow (iv) \Rightarrow (i) \Rightarrow (ii).

Proof: It is trivial that (iv) \Rightarrow (i).

(i) \Rightarrow (ii) Let \mathcal{G} be a U- open cover of X. Let \mathcal{B} be an U-open refinement of \mathcal{G} that covers X and is countably locally finite i.e. $\mathcal{B} = \bigcup_{\mathcal{B}_n} \mathcal{B}_n$, where \mathcal{B} is a locally finite. Let V_i = $\bigcup_{U \in \mathcal{B}} G$ and for each $n \in \mathbb{N}$ and each $G \in \mathcal{B}$, define $S_n(G) = G - \bigcup_{i < n} V_i$. Let $\mathcal{T}_n =$

 $\{S_n(G) \mid G \in \mathcal{B}_n\}$. Since $S_n(G) \subseteq G$, then \mathcal{C}_n is refinement of \mathcal{B}_n , because $S_n(G) \subseteq G$,

for each $G^{\in \overline{\mathcal{B}}_n}$. Let $\overline{\mathcal{C}} = \bigcup \overline{\mathcal{C}}_n$. We shall show that $\overline{\mathcal{C}}$ is a locally finite collection refinement of \mathcal{G} , covers X. Suppose $x \in X$. We shall show that for any one $S_n(G)$, $x \in S_n(G)$ a neighborhood of x that intersects finite elements $\overline{\mathcal{C}}$. Since \mathcal{B} covers X, there is a smallest positive integer number n_0 such that $x \in G \in \mathcal{B}_{n_0}$. Since x does not belong to any member of \mathcal{B}_i for $i < n_0$, $x \in S_{n_0}(G) \in \overline{\mathcal{C}}$. Since each collection \mathcal{B}_n is locally finite, we can choose for each $n = 1, 2, 3, \dots, n_0$ a neighborhood W_n of x that intersects only finitely many members of \mathcal{B}_n . Now if W_n intersects the member $S_n(V)$ of \mathcal{C} , W_n must intersect the member V of \mathcal{B}_n , since $S_n(V) \subset V$.

Therefore, W_n intersects only finitely many members of \mathcal{T} . Furthermore, because $G \in \mathcal{B}_n$, G does not intersect any element of \mathcal{T}_n , for $n > n_0$. As a result, the neighborhood $W_1 \cap W_2 \cap W_3 \cap \dots \cap W_{n_0} \cap G$ of x intersects only finitely many elements of \mathcal{T} .

 $(iii) \Rightarrow (iv)$

Let be \mathcal{G} a U-open cover of X. Using (iii) Choose \mathcal{B} be a refinement of \mathcal{G} that is locally finite and a U- closed cover of X. Now we consider for every $B \in \mathcal{B}$ a U-open set $D(B) \supseteq B$ that the collection $\{D(B)|B \in \mathcal{B}\}$ is also locally finite and refinement of \mathcal{G} . Since B is locally finite. For every $x \in X$, there exist a neighborhood N_x of x that intersect finite members of \mathcal{B} . Then $\{N_x | x \in X\}$ is a U-open cover of X.

According to (iii) there is a collection \mathcal{T} refinement of $\{N_x \mid x \in X\}$ that is U-closed cover of X. Clearly for every $C \in \mathcal{T}$ intersects finite members $B \in \mathcal{B}$. For each $B \in \mathcal{B}$, let $\mathcal{T}(B) = \{C : C \in \mathcal{T} \text{ and } C \subseteq X - B\}.$

Again let, E(B) = X- $\bigcup_{C \in \mathcal{E}(B)} C$. By lemma-"Let $\{A_{\alpha}\}$ be locally finite collection

of subsets of X. Then (a) Any sub collection of $\{A_{\alpha}\}$ is locally finite. (b) $\{\overline{A_{\alpha}}\}$ is locally finite.(c) $\overline{\bigcup_{\alpha} A_{\alpha}} = \bigcup_{\alpha} \overline{A_{\alpha}}$." $\bigcup_{C \in \xi(B)} C$ is U- closed. So E(B) is an U-open set. According to the definition E(B) \supseteq B. The collection {E(B)} is a U- open cover of X. For each B $\in \mathcal{B}$, F(B) $\in \mathcal{G}$, where F(B) \supseteq B.

Let $\mathcal{D} = \{E(B) \cap F(B) | B \in \mathcal{B}\}$. Then the collection \mathcal{D} is refinement of \mathcal{G} and U-open cover of X. Since $B \subseteq E(B) \cap F(B)$ and B is a U-open cover of X. Suppose $x \in X$. Now we shall show that \mathcal{D} is locally finite. Since \mathcal{T} is locally finite, there exists a neighborhood W of x that intersects only finite members of C, (say) $C_1, C_2, C_3, \dots, C_n$. Since \mathcal{T} is U-cover of X, so $W \subseteq C_1 \cup C_2 \cup C_3 \cup \dots \cup C_n$.

Now if any member C of \mathcal{T} intersects the set E(B) \cap F(B), then C $\not\subset$ X-B. Therefore C intersects B. Since C intersect finite members B, so C will intersect maximum members of \mathcal{D} . Therefore W will also intersect finite members of \mathcal{D} .

Now if we write $E(B) \cap F(B)$, the collection $\mathcal{D} = \{D(B)|B \in \mathcal{B}\}$ is refinement of \mathcal{G} and is a locally finite U-open cover of X.

Comment 2.1. [5] The properties (i) - (iv) of the above Theorem 2.5 can also be stated as :

(a) Each U- open covering of X has a U-open refinement that can be decomposed into an at most countable collection of locally finite families of U-open sets.

(b) Each U- open covering of X has a locally finite refinement, consisting of sets not necessarily either U- open or U-closed.

(c) Each U- open covering of X has a U- closed locally finite refinement.

(d) X is paracompact.

We now generalize the theorems in [8] (p. 165-166).

Theorem 2.6. If a locally compact Hausdorff U- space X is a countable union of compact U-spaces then X is paracompact. **Proof:** Let X be a locally compact Hausdorff U-space and $X = \bigcup_{n}^{n} C_{n}$, where C_{n} is compact. Let for each n, $C_{n} \subseteq C_{n+1}$ (We can assume this, for otherwise we can consider C'_{n} instead of C_{n} where $C'_{n} = \bigcup_{i=1}^{n} C_{i}$). At first we shall show that $X = \bigcup W_{n}$, where W_{n}

is U-open, $\overline{W_n}$ is compact and $\overline{W_n} \subseteq Wn+1$. Let $x \in C_1$ and let G_x be a neighborhood of x, where $\overline{G_x}$ is compact. Then $\{G_x\}_{x \in C_1}$ is a U - open cover of C_1 . Since C_1 is compact,

there is a finite U-open subcover { $G_{x_1}, G_{x_2}, ---, G_{x_n}$ } of C₁. Let W₁ = $\bigcup_{i=1}^n G_{x_i}$.

Therefore $\overline{W_1}$ is compact, this implies that $C_2 \cup \overline{W_1}$ is compact. Suppose W_2 is a U-open set of $C_2 \cup \overline{W_1}$ obtained in the same way as the U-open set W_1 of C_1 . So $\overline{W_2}$ is compact, $C_2 \subseteq W_2$ and $\overline{W_1} \subseteq W_2$. Let, for each m< n, the U-open set W_m be defined in a similar member such that $C_m \subseteq W_m$, $\overline{W_m}$ is compact and $\overline{W_m} \subseteq W_{m+1}$. Proceeding as before we get for each positive integer $n \ge 2$ a U-open set W_n of $C_n \cup \overline{W_{n-1}}$, where $\overline{W_n}$ is compact and $\overline{W_{n-1}} \subseteq W_n$.

Let $\mathscr{W}^{\circ} = \{G_{\alpha}\}$ be a U-open cover of X and $K_n = \overline{W_n} - W_{n-1}$. Then K_n is compact. Now for every $x \in K_n$, there is a neighborhood V_x of x such that for any α , $V_x \subseteq G\alpha$. Assume that $V_x \subseteq W_{n+1}$, since $\overline{W_n} \subseteq W_{n+1}$ and $V_x \cap W_{n-2} = \Phi$, since $\overline{W_{n-2}} \subseteq W_{n-1}$. Since K_n is compact, so there is a finite cover $\mathscr{D}_n = \{V_{x_1}, V_{x_2} - - - - V_{x_n}\}$ of K_n . We denote by \mathscr{V}° the union of the finite covers \mathscr{D}_n of K_n for all n. Then \mathscr{V} is a U- open cover of X and since $V_x \in \mathscr{V}$ is contained in a $G_{\alpha} \in \mathscr{W}^{\circ}$. \mathscr{V}° is refinement of \mathscr{W}° . Suppose $x \in X$. Then there exists a least natural number n such that $x \in \overline{W_n}$. Since $x \notin W_{n-1}$, so, $x \in K_n$. As a result there is a neighborhood $V \in \mathscr{V}$

which intersect only finite member of those members of \mathcal{V} which covers K_{n-2} , K_{n-1} , K_n and K_{n+1} .

Theorem 2.7. A locally compact Hausdorff U-space with a countable basis is paracompact.

Proof: Let X be a locally compact Hausdorff U-space with a countable basis and let $\{B_n\}$ be a countable basis of X. Let $x \in X$. Then there exists a neighborhood V_x of x, such that $\overline{V_x}$ is compact. Again since $\{B_n\}$ is basis, $x \in B_n(x) \subseteq V_x$, for some n. Since $\overline{V_x}$ is compact, every $\overline{B_n(x)}$ is compact. So X a is union of $\overline{B_n(x)}$. Hence X is paracompact. The following five theorems are the U- space generalization of those in [5]. To prove the next theorem we need a lemma.

Lemma 2.1. If X, Y are U- spaces with X normal, and p: $X \rightarrow Y$ is a U-continuous U-closed surjection, then Y is too normal.

Proof: Let A and B be two disjoint U- closed sets in Y. Since p is U- continuous, $p^{-1}(A)$ and $p^{-1}(B)$ are disjoint U- closed sets in X. X being normal, there are disjoint U-open sets G and H in X such that $p^{-1}(A) \subseteq G$, $p^{-1}(B) \subseteq H$. Since p is U- closed, p(G) and p(H) are disjoint U- open sets in Y with $A \subseteq p(G)$, $B \subseteq p(H)$. Thus Y is normal.

We now generalize the theorems in [5]

Theorem 2.8. Every U-continuous closed image of a paracompact U-space is paracompact.

Proof: Let X and Y be U- spaces with X paracompact, and let p: $X \to Y$ be U- continuous U-closed surjection mapping. Let $\{G_{\alpha} \mid \alpha \in \mathcal{A}\}$ be any U- open covering of Y. Since X is normal and p is U-continuous, U-closed and surjection, Y is normal. By Theorem 2.5 and comment 2.1 it suffices to show that $\{G_{\alpha} \mid \alpha \in \mathcal{A}\}$ has an U- open refinement which can be decomposed into at most countably many locally finite families. We assume \mathcal{A} is well-ordered and begin by constructing a U-open covering $\{V_{\alpha,n} \mid (\alpha,n) \in \mathcal{A} \times Z^+\}$ of X such that:

(i) For each n, { $\overline{V}_{\alpha,n} | \alpha \in \mathcal{A}$ } is a U-covering of X and a precise locally finite refinement of { $p^{-1}(G_{\alpha}) | \alpha \in \mathcal{A}$ }.

(ii) If $\beta > \alpha$ then $p(\overline{V}_{\beta, n+1}) \cap p(\overline{V}_{\alpha, n}) = \Phi$.

Proceeding by induction, we take a precise U-open locally finite refinement of $\{ p^{-1}(G_{\alpha}) \}$ and shrink it by normality of X to get $\{ \overline{V}_{\alpha,1} \}$. Assuming $\{ V_{\alpha,i} \}$ to be

defined for all $i \le n$, let $W_{\alpha,n+1} = p^{-1}(G_{\alpha}) - p^{-1}p(\bigcup_{\lambda < \alpha} \overline{V}_{\lambda,n})$. Each $W_{\alpha,n+1}$ is U- open, since by local finiteness $\bigcup_{\lambda < \alpha} \overline{V}_{\lambda,n}$ is U- closed and p is a U- closed map.

Furthermore, { $W_{\alpha,n+1} \mid \alpha \in \mathcal{A}$ } is a U- covering of X: given $x \in X$, let α_o be the first index for which $x \in p^{-1}(G_{\alpha})$; then $x \in W_{\alpha_o,n+1}$, since $p^{-1}p$ $(\overline{V}_{\lambda,n}) \subset p^{-1}(G_{\lambda})$ for each λ . Taking a precise, U- open locally finite refinement of { $W_{\alpha,n+1} \mid \alpha \in \mathcal{A}$ }, shrink it to get { $\overline{V}_{\alpha,n+1}$ }. Clearly, condition (i) holds, and since $\overline{V}_{\beta,n+1}$ is not in the inverse image of any $p(\overline{V}_{\alpha,n})$ for $\alpha < \beta$, condition (ii) is also satisfied.

For each n and α , let $H_{\alpha,n} = Y - p(\bigcup_{\beta \neq \alpha} V_{\beta,n})$ which is an U- open set. We have

(a)
$$H_{\alpha,n} \subset p(V_{\alpha,n}) \subset G_{\alpha}$$
 for each n and α . Indeed,
 $p^{-1}(H_{\alpha,n}) = X - p^{-1}p(\bigcup_{\beta \neq \alpha} V_{\alpha,n}) \subset X - p^{-1}p(X - \overline{V}_{\alpha,n}) \subset \overline{V}_{\alpha,n} \subset p^{-1}(G_{\alpha})$
(b) $H_{\alpha,n} \subset Q_{\alpha,n} \subset Q_{\alpha,n}$

(b). $H_{\alpha,n} \cap H_{\beta,n} = \Phi$ for each n whenever $\alpha \neq \beta$. In fact, $y \in H_{\alpha,n} \Rightarrow y \in p(\overline{V}_{\alpha,n})$ and is in no other $p(\overline{V}_{\beta,n})$.

(c). {H_{$\alpha,n} | (\alpha,n) \in \mathcal{A} \times Z^+$ } is an U- open covering of Y. Let $y \in Y$ be given; for each fixed n there is, because of (i), a first α_n with $y \in p(\overline{V}_{\alpha_n,n})$; choosing now $\alpha_k = \min \{\alpha_n | n \in Z^+\}$, we have $y \in p(\overline{V}_{\alpha_k,k})$. If $\beta < \alpha_k$, then the definition of α_k shows $y \notin p(\overline{V}_{\beta,k+1})$; if $\beta > \alpha_k$, then by (ii), we find that $y \notin p(\overline{V}_{\beta,k+1})$; therefore we conclude that $y \in H_{\alpha_k,k+1}$.</sub>

To complete the proof, we need only modify the $H_{\alpha,n}$ slightly to assure locally finiteness for each n. Choose a precise U- open locally finite refinement of $\{p^{-1} (H_{\alpha,n}) | (\alpha,n) \in \mathcal{A} \times \mathbb{Z}^+\}$, and shrink it to get an U- open locally finite covering $\{K_{\alpha,n}\}$ satisfying $p(\overline{K}_{\alpha,n}) \subset H_{\alpha,n}$. For each n, let $S_n = \{y \mid \text{some nbd of y intersects at}$ most one $H_{\alpha,n}\}$; S_n is U- open and contains the U-closed $\bigcup_{\alpha} p(\overline{K}_{\alpha,n}) = p$ $(\bigcup_{\alpha} \overline{K}_{\alpha,n})$, so by normality of Y we find an U-open G_n with $\bigcup_{\alpha} p(\overline{K}_{\alpha,n}) \subset$

 $G_n \subset \overline{G_n} \subset S_n$. The U-open covering { $G_n \cap H_{\alpha,n} \mid (\alpha,n) \in \mathcal{A} \times Z^+$ }, with the decomposition { $G_n \cap H_{\alpha,n} \mid \alpha \in \mathcal{A}$ } for n = 1, 2, 3, ------ satisfies the conditions of Theorem 2.5 and comment 2.1 for the given { G_α }.

Definition 2.6. Let $\mathcal{G} = \{G_{\alpha} \mid \alpha \in \mathcal{A}\}$ be a covering of U- space X. For any $B \subset X$ the set $\cup \{G_{\alpha} \mid B \cap G_{\alpha} \neq \Phi\}$ is called the U-**star of B** with respect to \mathcal{G} , and is denoted by St (B, \mathcal{G}).

Definition 2.7. A U-covering \mathcal{B} is called a U- barrycentric refinement of a U-covering \mathcal{G} whenever the covering {St $(x, \mathcal{B}) | x \in X$ } refines \mathcal{G} .

Theorem 2.9. Let X be normal U- space, and $\mathcal{G} = \{G_{\alpha} \mid \alpha \in \mathcal{H}\}$ a locally finite U-open covering. Then \mathcal{G} has an U- open barrycentric refinement.

Proof: Shrink \mathcal{G} to an U- open covering $\mathcal{B} = \{ V_{\alpha} \mid \alpha \in \mathcal{H} \}$ such that $\overline{V}_{\alpha} \subset G_{\alpha}$ for each α ; clearly, \mathcal{B} is also locally finite. For each $x \in X$, define $W(x) = \bigcap \{ G_{\alpha} \mid x \in \overline{V}_{\alpha} \} \cap \bigcap \{ \overline{C} \overline{V}_{\beta} \mid x \in \overline{V}_{\beta} \}.$

We show that $\mathscr{B}^* = \{W(x) \mid x \in X\}$ is the required U- open covering. Note that each W(x) is U- open: the locally finiteness of \mathscr{B} assures that the first term is a finite intersection and that the last term, $\mathcal{T} \cup \overline{V}_{\beta}$ is a U- open set. Next, \mathscr{B}^* is a U- covering, since $x \in W(x)$ for each $x \in X$. Finally, fix any $x_o \in X$ and choose a \overline{V}_{α} containing x_o . Now, for each x such that $x_o \in W(x)$, we must have $x \in \overline{V}_{\alpha}$ also, otherwise $W(y) \subset \mathcal{T}_{\alpha}$; and because $x \in \overline{V}_{\alpha}$, we conclude that $W(x) \subset G_{\alpha}$. Thus, $St(x_o, \mathscr{B}^*) \subset G_{\alpha}$, and the proof is complete.

Definition 2.8. A U- covering $\mathcal{B} = \{ V_{\beta} \mid \beta \in \mathcal{B} \}$ is called a U- star refinement of the U- covering \mathcal{G} whenever the U- covering $\{ \text{St} \mid V_{\beta}, \mathcal{B} \mid \beta \in \mathcal{B} \}$ refines \mathcal{G} .

Theorem 2.10. A U- barrycentric refinement \mathscr{B}^* of a U- barrycentric refinement \mathscr{B} of \mathscr{G} is a U- star refinement of \mathscr{G} .

Proof: Given $W_o \in \mathscr{B}^*$, choose a fixed $x_o \in W_o$. For each $W \in \mathscr{B}^*$ such that $W \cap W_o \neq \Phi$, choose a $z \in W \cap W_o$; then $W \cup W_o \subset St(z, \mathscr{B}^*) \subset some V \in \mathscr{B}$. Because each such V contains x_o , we conclude that $St(W_o, \mathscr{B}^*) \subset St(x_o, \mathscr{B}) \subset some G \in \mathscr{G}$. Since it is clear that a U- barycentric refinement of any refinement of \mathscr{G} is also a U-barycentric refinement of \mathscr{G} , it follows from Theorem-2.9 that each U- open covering of a paracompact U- space has an U- open barycentric, and an U- open star, refinement.

Much more important, however, is that this property characterizes the paracompact U-spaces, not only among the Hausdorff U-spaces, but in fact also among the T_1 -U- spaces.

Theorem 2.11. A T_1 -U- space X is paracompact if and only if each U- open covering has an U- open barycentric refinement.

Proof: Only the sufficiency requires proof. We first show that any U- open covering $\mathcal{G} = \{G_{\alpha} \mid \alpha \in \mathcal{A}\}$ has a refinement as in Theorem-2.5 and comment 2.1.

Let \mathcal{G}^* be an U- open star refinement of \mathcal{G} and let { $\mathcal{G}_n \mid n \ge 0$ } be a sequence of U- open coverings, where each \mathcal{G}_{n+1} U-star refines \mathcal{G}_n and \mathcal{G}_0

U-Star refines \mathcal{G}^* .Define a sequence of U-covering inductively by $\mathcal{B}_1 = \mathcal{G}_1$, $\mathcal{B}_2 = \{ St(V, \mathcal{G}_2) \mid V \in \mathcal{B}_1 \}$, $\mathcal{B}_n = \{ St(V, \mathcal{G}_n) \mid V \in \mathcal{B}_{n-1} \}$,

Each \mathcal{B}_n is an U-open refinement of \mathcal{G}_o ; in fact, each covering $\{St(V, \mathcal{G}_n) \mid V \in \mathcal{B}_n\}$ refines \mathcal{G}_o : this is true for n = 1 and, proceeding by induction, if it is true for n = k - 1, its truth for n = k follows by noting that whenever $V = St(V_o, \mathcal{G}_k)$ for some $V_o \in \mathcal{B}_{k-1}$, then $St(V_o, \mathcal{G}_k) = St[St(V_o, \mathcal{G}_k), \mathcal{G}_k] \subset St(V_o, \mathcal{G}_{k-1})$ because \mathcal{G}_k is a U-star refinement of \mathcal{G}_{k-1} .

Now well-order X and for each $(n, x) \in Z^+ \times X$ define $E_n(x) = St(x, \mathcal{B}_n) - \bigcup \{St(z, \mathcal{B}_{n+1}) \mid z \text{ precedes } x\}$. Then $\mathcal{D} = \{E_n(x) \mid (n, x) \in Z^+ \times X\}$ is a U-covering: given $p \in X$, the set $A = \{z \mid p \in \bigcup_{i=1}^{\infty} St(z, \mathcal{B}_i)\}$ is not empty, since $p \in A$; if x is the first member of A, then $p \in St(x, \mathcal{B}_n)$ for some $n \in Z^+$ and $p \in St(z, \mathcal{B}_{n+1})$ for all z preceding x, so $p \in E_n(x)$. Moreover, since \mathcal{B}_n refines \mathcal{G}_0 , we find that \mathcal{D} refines \mathcal{G}^* .

Each $G \in \mathcal{G}_{n+1}$ can meet at most one $E_n(x)$: for, if $G \cap E_n(x) \neq \Phi$, then there is a $V \in \mathcal{B}_n$ with $x \in V$ and $V \cap G \neq \Phi$, so $x \in V \cup G \subset V_o \in \mathcal{B}_{n+1}$ and $G \subset St(x, \mathcal{B}_{n+1})$. Thus, if $E_n(x)$ is the first set G meets, it cannot meet any $E_n(p)$ for p following x.

Now let $W_n(x) = St(E_n(x), \mathcal{G}_{n+1})$. Then $\mathcal{B}^* = \{W_n(x) \mid (n, x) \in Z^+ \times X\}$ is clearly an U- open covering of X. Furthermore, \mathcal{B}^* refines \mathcal{G} because \mathcal{D} refines \mathcal{G}^* . Finally, for each fixed $n \in Z^+$, the family $\{W_n(x) \mid x \in X\}$ is locally finite: indeed, each $G \in \mathcal{G}_{n+2}$ can meet at most one $W_n(x)$, because $G \cap W_n(x) \neq \Phi$, if, and only if, $E_n(x)$ $\cap St(G, \mathcal{G}_{n+2}) \neq \Phi$ and $St(G, \mathcal{G}_{n+2})$ is contained in some $G_o \in \mathcal{G}_{n-1}$ which we know can meet at most one $E_n(x)$.

The theorem will follow from Theorem 2.5 and comment 2.1, once we show that X is regular U- space. To this end, let $B \subset X$ be U-closed and $x \in B$. Since in a T₁-U-space each point is a U- closed set, $\mathcal{G}_{E} = \{X - x, \mathcal{C}B\}$ is an U- open covering. Let \mathcal{B} be an

U- open star refinement. Then $St(x, \mathcal{B})$ and $St(B, \mathcal{B})$ are the required disjoint neighborhoods of x and B: for if there were a V containing x and a V' meeting B such that $V \cap V' \neq \Phi$, then $St(V, \mathcal{B})$ would contain x and points of B, which is impossible. The theorem is proved.

Definition 2.9. Let $\mathcal{G} = \{G_{\alpha} \mid \alpha \in \mathcal{A}\}$ be an U- open covering of X. A sequence $\{\mathcal{G}_n \mid n \in Z^+\}$ of U- open coverings is called U- locally starring for \mathcal{G} if for each $x \in X$ there exists an nbd V(x) and $n \in Z^+$ such that St(V, $\mathcal{G}_n) \subset$ some G_{α} .

Theorem 2.12. A T₁-U-space is paracompact if and only if each U- open covering \mathcal{G} there exists a sequence $\{\mathcal{G}_n \mid n \in Z^+\}$ of U- open coverings that is U- locally starring for $\mathcal{G}_{\mathcal{I}}$.

Proof: "Only if" is trivial. "If": We can assume that $\mathcal{G}_{n+1} \prec \mathcal{G}_n$ for each $n \in \mathbb{Z}^+$. Let $\mathcal{B} = \{V \text{ open in } X \mid \exists n : [V \subset G \in \mathcal{G}_n] \land [St(V, \mathcal{G}_n) \subset \text{ some } G_\alpha] \}$. For each $V \in \mathcal{B}$, let n(V) be the smallest integer satisfying the condition. Because $\{\mathcal{G}_n \mid n \in \mathbb{Z}^+\}$ is locally starring for \mathcal{G} , it follows that \mathcal{B} is a U- open covering; we will show that \mathcal{B} is in fact a U-barrycentric refinement of \mathcal{G} .

Let $x \in X$ be fixed, let $n(x) = \min\{n(V) \mid (x \in X) \land (V \in \mathcal{B})\}$, and let $V_o \in \mathcal{B}$ be a set containing x such that $n(V_o) = n(x)$.

For any $V \in \mathcal{B}$ containing x, we have $n(V) \ge n(x)$, and consequently $St(x, \mathcal{B}) \subset \bigcup \{St(x, \mathcal{G}_i) \mid i \ge n(x)\}$. Since $\mathcal{G}_{i+1} \prec \mathcal{G}_i$ for each i, this shows $St(x, \mathcal{B}) \subset St(x, \mathcal{G}_{n(x)}) \subset St(V_o, \mathcal{G}_{n(V_o)}) \subset$ some G_α . By Theorem-2.11, X is therefore paracompact.

REFERENCES

- 1. N.Akhter, S.K.Das and S.Majumdar, On Hausdorff and compact U- spaces, *Annals of Pure and Applied Mathematics*, 5(2) (2014) 168-182.
- 2. D.Andrijevic, On b- open sets, Mat. Vesnik, 48 (1996) 59-64.
- 3. R.Devi, S.Sampathkumar and M.Caldas, On supra α open sets and S α continuous functions, *General Mathematics*, 16 (2) (2008) 77-84.
- 4. Dieudonne, Algebraic topology and differential geometry, 1994.
- 5. J.Dugundji, Topology, Allyn and Bacon, Boston, 1966.
- 6. J.G.Hocking and G.S. Young, Topology, *Addison-Wesley, Publishing company,* Inc. Rwading, Mass., 1961.
- 7. J.L.Kelley, General Topology, Springer- verlag, New York, 1991.
- 8. S.Majumdar and N. Akhter, Topology (Bengali), Adhuna Prakashan, Dhaka, 2009.
- 9. A.S.Mashhour, A.A.Allam, F.S.Mahmoud and F.H.Khedr, On supratopological spaces, *Indian J. Pure Appl. Math*, 14(4), (1983) 502-510.

- 10. J.R.Munkres, Topology, Prentice Hall of India Private limited, New Delhi 110001, 2006.
- 11. O.R.Sayed and Takashi Noiri, On supra b- open sets and supra b- continuity on topological spaces, *European Journal of pure and applied Mathematics*, 3(2) (2010) 295-302.
- 12. J.F.Simons, Topology and Modern Analysis, Mac Graw-hill International, 1963.