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ABSTRACT

It is difficult to get solutions for non-linear pial differential equations. A strategy for
overcoming the difficulty in getting solutions thabrks well in some situation may not
work equally well in some other (apparently) simigtuation. Such an example for a
generalized version of Yang's Euclidean R-gaugeagqgus is presented here. In one
situation one gets solutions in explicit quadrafioren and in another situation (different
only for the presence of an innocent looking patamene cannot invert and therefore
cannot represent the solution even in quadratura.ft is observed from a comparative
study that the equations admit Painleve’ propeitigbe previous situation when we get
explicit solutions and in the later case the equmtiare deprived of Painleve’ properties
when we do not get solutions even in quadratuma for
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1. Introduction

The generalized form of Yang's equations discudsex@ originates from the Yang's
equations [1] for three variables or two variabte® real and one complex and are
obtained when the condition of self-duality for d(8) R-gauge field on Euclidean four-
dimensional flat space is integrated once.

The equations are given by

AP,y *0,5) B @ -G @, 4Dy py +p,pz =0 (1a)
ﬂpyy+922)'zpy %'szgﬂz =0 (1b)
where an over bar denotes the complex conjugateand p are functions of
Y, 9 z,_z,qo is real, p is complex and \/E y= X +ix ,
J2z=x -ix4, ><1,x2,x3,x4arereal.

Once one has found and @, the corresponding R-gauge potentials are given by
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gy = (ipy, py, -18), #B5 =(ip 5. py, 14) (2a)
@z = (Ipz,pz - i), @ = (ip 5. P30 i) (2b)
and R-gauge field strengtrFﬁU are given hy

Fv =B -B, -BB +B R (3a)
B, =b, X I3b
and X; = - (1/2) io; (3c)

where g; are 2 x 2 Pauli matrices.

All such solutions represent the condition of skl&lity except whenp is zero.
Because wherp is zero FW becomes singular and the solutions can only lsedeas
solutions of Yang's R-gauge equations and notdedit-solutions unless a transformation
like F ,, - ut v Uremoves the singularities.

Yang [1] and several other authors [2,3,4,5,6, Rlehpresented solutions to (1
a,b) or its equivalent in real variables. Chakrab@nd Chanda [8] reported some
graphical representation of one these exact soititt is observed from there that the
solutions represent spreading wave with solitargfiler and spreading wave packet.
These profiles of solitary wave and wave packed tervanish as time tends to infinity.

Jimbo, Kruskal and Miwa [9] adopted the algorithrh Weiss, Tabor and
Carnavalel [10] and showed that the eqs (1) and p@s the Painleve test for
integrability. Using the same algorithm, Chakrapahd Chanda [11] have found that
the real form of egs (1a) and (1b), i.e. equatidiasand 4b (stated subsequently) with

=1 andk =1 pass the Painleve test for integrability and iathincation of series leading
to non-trivial exact solutions obtained previousigd auto-Backlund transformation
between two pairs of these solutions (see, for @anthe work of Larsen [12] and
Roychowdhury [13]). An important aspect of the wofkChakraborty and Chanda [11]
was that they had analyzed the equation keepingsitigularity manifold completely
general, whereas Jimbo et al. [9] analysed the saquation with a restricted nature of
singularity manifold.

With this background and success, Saha and Chdddayéneralized the eqgns
(1a,b) in real form to the equations (4a), (4b) &) and called the generalized set of
equations as th@eneralized Yang's equatians

A1t Pop T Pa3 TEY Yy =

KIWD) (@ + & +@ € 07)- ()6 +y, v+ ey )

-(Ue) by +xo tas X)) Wi v v X v g ) (42)
Vi1 T W Wt W 4=

KI2/9) (@uy + v o + Py 3+ QW ) + (210) @ - 9% +P% 9% 0 (4D)
X11 T Xoo T X33t EX 44=

K[(2/9) (@rs+ @ o+ 03 57E0 K ) + (219) @y 19v 0y 2y ) (40)
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where €=+1, K are arbitrary constants.
Saha and Chanda [14] presented exact solutiong a&lith their graphical representation
for the generalized Yang equations with @=1k =1, (i) €=1k =1/2, (iii
£=-1k =1, (iv) £=-1,k =1/2. They followed the procedure similar to that of
Ray[16]. The solutions represent interesting phatsitharacteristics like waves with
solitary profile, spreading wave packets, waveh pitilsating solitary profile (between
zero and maxima), waves with solitary profile amdas. Saha and Chanda commented
in another study [15] on some interesting resultselation to the Painleve’ properties for
the equations (4).

Here we try to arrive at exact solution to (4 @,lusing the procedure adopted
by Chakraborty, Chanda and Ray [6]. Instead ofrggein explicit solution we arrive at a
well defined problem that we feel to be important feporting. We have tried to
understand the problem by associating it to thael®ai e’ property of the equations. In
this paper we restrict our discussion fe=1 only.

2. Observations in relation to exact solutions
Ansatz used by Saha and Chanda [15] can be waiten

@=@u),y =¢(u), x = x(u) (5a)
whereuis an unspecified function of', X*, X2, X".
Ansatz used by Chakraborty, Chanda and Ray[6] eamrliten as

@ =9, o) (6a)
Y =y o) (6b)
X=X, o) (6c)
T =1(x%, x?) (6d)
o= a(x3, x4) (6e)

Here we have proceeded with ansatz used by Chakyalrad Chanda, i.e (6a,b,c,d,e).
We have used the same procedure that has beerbyseliakraborty, Chanda and Ray

[6].
D, =K KA(KZ+1) + 2k KK .o+ L]exp(2(X - 1p

TKKE(KE+1) + (1~ K )D Jexp(-20) (72)
Y =Ky +u(P) {7b
X =Ko [ eXp(EK D X+ Ky Y+ Ky (70)

where X and Yare mutually conjugate Laplace solutions ¥ and x*> and
p=exp@)
One can note that one must figkifirst so as to enable one to find and y .

But it appears that (7a) cannot be representediavie quadrature form.
Thus in order to investigate the integrable sitratiwe take up only the equation
(7a) which can be rewritten usigg= exp(@® ) as
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%w{ 7 —1}0; (kKA+1) g™ +KkB=0 @)

where

A= KH(Ki+1)+ 2K K +1

B = K5 (K +1)

We term eqn (8) as tHeirst Reduced Equationbtained from th&seneralized Yang's

equation(4 a,b,c)
It is clear from the third term (from left) of thequation (8) that the minimum integer

(excluding zero) requirement fdk is that it should be of the forn% , Wheren =

positive or negative integer ( excluding zero).
For k =1, the equation (8) reduces to

Bo0— ¢ +(A+1) ¢ +B=0 ©)
We may call this equation as tliest Reduced equatiolmbtained from theYang's

equation (4 a,b,c withk =1 and £=1). In this situation the equation (9) could be
integrated and inverted and Chanda, Chakraborty Rend [6] obtained explicit exact
solutions.

3. Observations in relation to Painleve’ property

Painleve’ property, in simple terms, means the mtxsef any singularity other than poles
(in case of nonlinear ordinary differential equatin The property was first successfully
used by Kovalevskaya [17] for identifying integrabhonlinear ordinary differential
equations. Ablowitz, Ramani and Segur (ARS) forrreda [19,20] an algorithm for
identifying ordinary differential equations. Theytended the idea to nonlinear partial
differential equations for which all the reducechlieear ordinary differential equations
possess the Painleve’ property and such set ofnaaml partial differential equations are
integrable. According to this conjecture even ffaticular reduced nonlinear ordinary
equation be identified to be one which does notsges the Painleve’ property the
originating non-linear partial differential equat®should not be stated to have Painleve’
property and to be completely integrable. One gshtwal careful about having full faith
upon this conjecture. It has become successfulliinemous situations and failed to do in
others. Keeping this constraint in mind and havfagh upon numerous cases of
successes we have checked the trouble making rbawgestion (8) for having Painleve’
property with the help of ARS algorithm.

3.1 Painleve’ property for the First reduced equaitbn (Eq.9) from Yang’s Euclidean
R-Gauge equations (1a,b) i.e. 4a,b,c with =1,k =1

Leading Order Analysis

In the equation (9), we put

p=2 gu (10)
where U= x-x,9p=¢(X,y = constant
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X, = constant
a =negative integers
Balancing the most singular terms we get

a=-1 (11)
Equating the co-efficients of the terms to zerdlédaleading order terms) that balance
one another to zero we get,

ala-1)g-a’@g+(A+)g =0 (12a)
1
= 12b
% A+1 (120)
Thus with the expansion (10) now becomes
p=> gu™ (13)
i=0
where U= Xx-X,9=¢(X,@ = constantx,= constant
_ 1
4= A+1

Resonance Analysis
Now we equate the co-efficients af ™ source of most singular terms after putting (10)
in the equations witlr = —1 to zero, where we get
r=-1,2
To check whether the Expansion (13) permits twdrary functions
We put (13) in (12a) and equate the coefficients df , j = 1, 2 to zero and get
@ =0, @ = arbitrary
The arbitrary constants avg (corresponding to r = -1) ang (corresponding to r = 2)

Thus it is found that the number of arbitrary fuos in the expansion (10) are equal to
that required for a general solution of (9).

This satisfies the criteria of having the Painlepedperty according to ARS algorithm
[19,20].

3.2. Painleve’ analysis for reduced generalized Yais equations (8)
3.2.1.For k _1
2

The reduced generalized Yangs equation assumésrthe

20,9 + ¢ ~ 2070, + (A+ 2)p" + Bp®= O (14)
Leading Order Analysis
In the equation (14) we put

¢’:Z¢}Uj+a , Where U= X~-x,9=¢(X%,@ = constantx,= constant (15)
In the leading order analysis fdr =% we find thata appears to be arbitrary. However

when the co-efficients of leading order terms ayeated to zerar comes out to be zero
which could not be avoided with other choices.
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Thus the Reduced equation for Generalized Yangtiequéta,b,c) fork :% does not
have the Painleve’ property. And according to AR®jecture the generalized Yang

equations (4a,b,c) fok’ :%do not have Painleve property.

3.2.2.For k =1
4

The reduced generalized Yangs equation assumésrthe

4@ + 30 — Mgl + (A+ A+ Bp®= C (16)
Leading Order Analysis:
In the equation (16) we put

¢:Z§4Uj+" , where U= X—x%,@=@(X,¢ = constantx,= constant (17)

Performing the leading order analysis we get —2.
Resonance Analysis:

Now we equate the co-efficient of ™° source of most singular terms after putting (17)
with @ = -2 in the equation to zero.

dr+a)r+a-Dgg+a@-Lgg+al@-Lgg+a e -1pe]
—da*q@ +atqe +(r+a)age+(r +a)age]] +5(3A + Ap@i= 0
and get
4r% =4 + (1A + 52)F (
which leads to
[ = 4+i~/816+ 24
8
A= K129( K125 +1) + 2K19K 15
In order to avoid the imaginary part one can chdose be negative. But the restrictions
on A as imposed at the time of arriving at (8) shdkat only those negative values of A
are permitted for whichA| <1.

Thus, 816+ 24(A is always positive.
r is always complex, so the resonance analysks fail

Thus the Reduced equation (16) for Generalized YEmgation (4 a,b,c) withk :%

and £=1 is not having Painleve’ property. And, accordirmgy ARS conjecture the
Generalized Yang Equations (4 a,b,c) k')t=1 do not have Painleve’ property.

4. Conclusion
Thus we see that the Reduced Generalized Yangatieq satisfy Painleve’ criteria for

k' =1 and does not satisfy the same fdrzé,zl‘r. Interestingly, the solutions in closed
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form are obtainable fok =1 and not obtainable fok’ :%711 This again establishes

the strength of the relationship between integitstdind existence of Painleve property.
One question, however, remains. How can one get daformation for the equations
like (14), (16) etc ? One answer could be the appibn of the Krylov-Bogoliubov-
Mitroploskii (KBM) [21,22] method with the subsequedevelopments [23]. One of our
ongoing research work is involved in that direction

1.

2.

3.

10.

11.

12.

13.

14.

15.

REFERENCES

C.N. Yang, Condition of self-duality for SU(2) gaudields on Euclidean four
dimensional spac&hys. Rev Lett38(24) (1977) 1377-1382.

D. Ray, Exact solutions to non-linear chiral fielquations,J. Phys A11(5) (1978)
995-999.

D. Ray, Solutions for the two-dimensional HeisegbierromagnetsP?hys. LettA70
(1980) 274-276.

U.K. De and D. Ray, Some solutions for Yang's eiqua for self-dual SU(2) gauge
fields,Phys. LettB, 101(5) (1981) 335-336.

P. K. Chanda. and D. Ray, Class of solutions ofgf@R-gauge equations and self
duality, Phys. RewD, 31(12) (1985) 3183-3187.

S. Chakraborty and P. K. Chanda and D. Ray, Saisitimf Yang’'s Euclidean R-
Gauge equations and self-dualitylnternational Journal of Theoretical
Physics 34(11) (1995) 2223-2244.

S. Chakraborty and P. K. Chanda, A combination ahgs equations for SU(2)
gauge fields and Charap’s equations for pion dynamiith exact solutions,
Pramana- J. Phys52(6) (1999) 579-591.

S. Chakraborty and P. K. Chanda, Some physicatisnkiof Yang's equations for
SU(2) gauge fields, Charap’s equations for pionamyics and their combination,
Pramana- J. Phys63(5) (2004) 1039-1045.

M. Jimbo, M. D. Kruskal and T. Miwa, Painleve’ tder the self-dual Yang-Mills
equationPhys. Lett. A92 (1982) 59-60.

J. Weiss, M. Tabor and G. Carnavale, The Painbegperty for partial differential
equations,. Math. Phys.,24(3) (1983) 522.

S. Chakraborty and P. K. Chanda, Some physicatisniiof Yang's equations for
SU(2) gauge fields, Charap’s equations for pionamyics and their combination,
Pramana- J. Phys 66(6) (2006) 961-969.

A.L. Larsen, Weiss approach to a pair of couplea-iveear reaction-diffusion
equations,Phys. LettA, 179 (1993) 284-290.

S. Roy Chowdhury, Painleve analysis and specialtisols of two families of
reaction-diffusion equation®hys. LettA, 159 (1991) 311-315.

R. K.Saha, and P.K. Chanda, On some exact solutibs$ightly variant forms of
Yang's equations and their graphical representgtioRramana- J. Phys 70(5)
(2008) 245-256.

R.K.Saha and P.K.Chanda, A comparative revisit he Painleve’ tests for
integrability of Yang equations, Charap equationd their combinations and some
unexpected observationk,Physical Science43 (2009) 67-76.

S7



16

17.

18.
19.

20.

21.

22.

23.

Indranil Mitra, Dhurjati Prasad Datta and Ptararishna Chanda

. D. Ray, Exact solutions to non-linear chiral fielguations,). Phys A, 11(5) (1978)
995-999.

S. Kovalevskaya, Sur le problem de la rotatiomdiorps solide autour d’'un point
fixe, Acta Math 12 (1889) 177-232.

R.Cooke, The Mathematics of Sonya Kovalevsk&minger, New York1984.

M.J Ablowitz, A. Ramani and H. Segur, Nonlinear lexion equations and ordinary
differential equations of Painleve tydestt. Nuovo Cimen{®3 (1978) 333-338.

M.J Ablowitz, A. Ramani and H. Segur, A connectlmtween nonlinear evolution
equations and ordinary differential equations dfpe, J. Math. Phys 21 (1980)
715-721.

N.N.Bogoliubov and N.N.Mitropolskii, Asymptotic Mebds in the Theory of
Nonlinear OscillationsGordan and BreachiNew York 1961.

N.N.Krylov and N.N.Bogoliubov, Introduction to Nanéar MechanicsPrinceton
University Press, New Jersel947.

M. Ali Akbar and M.Sharif Uddin, On asymptotic sttns of fourth order over-
dampped nonlinear systems in the presence of getttainping forces). Physical
Sciencesl?2 (2008) 83-96.

58



