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ABSTRACT 
This paper aims to introduce a new efficient algorithmic approach for finding the 
maximum flow of a maximal flow problem requiring less number of iterations and 
augmentation than Ford-Fulkerson algorithm.  
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1.  Introduction 
Networking deals a great section of operation research. many problems of our daily life 
can be presented by network model. There are four types of network model: Shortest-path 
model, Minimum spanning tree model, Maximal-flow model and Minimum-cost 
capacitated network model. In this paper we have worked on Maximal-flow model. The 
objective of the maximal flow problem is to find the maximum flow that can be sent from 
specified node source (s) to specified node sink (t) through the edges of the network. The 
maximum flow problem asks for the largest amount of flow that can be transported from 
one vertex (source) to another (sink). Originally, the maximal flow problem was invented 
by Fulkerson and Dantzig and solved by specializing the simplex method for the linear 
programming; and Ford and Fulkerson solved it by augmenting path algorithm.  

The literature on network flow problem is extensive. In the mid of 1950, Air 
Force researchers  T. E. Harris and F. S. Ross published a report studying the rail network 
that linked the Soviet Union to its satellite countries in Eastern Europe. In 1955, Lester R. 
Ford and Delbert R. Fulkerson created the first known algorithm to obtain the maximum 
flow in a flow network, the Ford-Fulkerson algorithm. Over the past fifty years 
researchers have improved several algorithms for solving Maximal-flow problems. In this 
paper, we have introduced a new algorithm to find the maximum flow in a network and 
formulated as a linear programming problem (LPP) and then solved it using proposed 
algorithm.  

2.  Proposed algorithm 
The steps of our proposed algorithm are summarized below. 
Step-1:  Initialize f (u, v) = f (v, u) = 0, for each edge (u, v)∈E. 
Step-2:  Set  flow value = 0. 
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Step-3: If there exist any cut ��, �� such that ���	�, �
 is equal to the flow value, then .go 
to step-8, otherwise go to step-4. 

Step-4:  Select an augmenting path  p  from  source to sink in the residual network ��.             
Step-5:  Set  ��	�
 � ���	�,�
�����	�, �
�. 
Step-6:  For each (u, v)∈p, if (u, v)∈E, set f(u, v) = f (u, v) + ��(p),   
                                                  else  f(v, u) = f (v, u) – ��(p). 
Step-7:  Set  flow value = flow value + ��(p) and Return to step-3. 
Step-8:  The maximum flow = flow value. 
 
3.  Illustrative Example 
 

We consider the flow network given by figure 1. Here the source node is denoted by 1 
and the sink node is denoted by 8. The capacities are shown on the respective arcs. It is 
required to find the maximum flow in this network from source 1 to sink 8.  
 

 

 

 

Figure 1: 
Now we construct the following source-sink cut ��, �� table from Figure 1. 

Source-sink cut ��, �� ���	�, �
 Source-sink cut ��, �� ���	�, �
 S T S T 
{1}  {2, 3, 4, 5, 6, 7, 8} 27 {1, 2, 3, 6} {4, 5, 7, 8} 26 
{1, 2}  {3, 4, 5, 6, 7, 8} 31 {1, 3, 4, 6} {2, 5, 7, 8} 31 
{1, 3}  {2, 4, 5, 6, 7, 8} 24 {1, 3, 4, 7} {2, 5, 6, 8} 27 
{1, 4}  {2, 3, 5, 6, 7, 8} 38 {1, 2, 3, 4, 5} {6, 7, 8} 28 
{1, 2, 3} {4, 5, 6, 7, 8} 28 {1, 2, 3, 4, 6} {5, 7, 8} 29 
{1, 2, 4} {3, 5, 6, 7, 8} 42 {1, 2, 3, 4, 7} {5, 6, 8} 31 
{1, 2, 5} {3, 4, 6, 7, 8} 38 {1, 2, 3, 5, 6} {4, 7, 8} 23 
{1, 3, 6} {2, 4, 5, 7, 8} 28 {1, 3, 4, 6, 7} {2, 5, 8} 31 
{1, 4, 7} {2, 3, 5, 6, 8} 40 {1, 2, 3, 4, 5, 6} {7, 8}  26 
{1, 2, 3, 4} {5, 6, 7, 8} 31 {1, 2, 3, 4, 6, 7} {5, 8}  29 
{1, 2, 3, 5} {4, 6, 7, 8} 25 {1, 2, 3, 4, 5, 6, 7} {8}  26 

 

Table1:    Source-sink cut and its capacity 
 

Initialization: 
Initialize the value of f for each edge to 0 in the flow network G.  
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Figure 2: 

The value of flow = 0. We see that there does not exist any source-sink cut ��, �� in table-
1 such that  ���	�, �
 � 0 . Therefore, the flow is not maximum. 
 

Iteration-1:    
The residual network �� (Figure-3) of the initial flow network (Figure-2) and the new 
resulting flow network (Figure-4) are as follows: 
 

  
                     In this case,  ��(p) = min {4, 2, 9} = 2 and so, flow value = 0 +  ��(p) = 0 + 2 
= 2. Thus we see that there does not exist any source-sink cut ��, �� in table-1 such that 
���	�, �
 � 2. Therefore, the flow is not maximum. 
 

Iteration-2:  
The residual network �� (Figure-5) of the resulting flow network (Figure-4) and the new 
resulting flow network (Figure-6) are as follows: 
 

  
In this case,  ��(p) = min {2, 6, 7} = 2 and so, flow value = 2 +  ��(p) = 2 + 2 = 4. Thus 
we see that there does not exist any source-sink cut ��, �� in table-1 such that 
���	�, �
 � 4. Therefore, the flow is not maximum. 
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Figure 5: Figure 6: 

Figure 3: Figure 4: 
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Iteration-3:   
The residual network ��  (Figure-7) of the resulting flow network (Figure-6) and the new 
resulting flow network (Figure-8) are as follows: 
 

  
In this case,  ��(p) = min {18, 10, 7} = 7 and so, flow value = 4 +  ��(p) = 4 + 7 = 11. 
Thus we see that there does not exist any source-sink cut ��, �� in table-1 such that 
���	�, �
 � 11. Therefore, the flow is not maximum. 
 

Iteration-4:   
The residual network �� (Figure-9) of the resulting flow network (Figure-8) and the new 
resulting flow network (Figure-10) are as follows: 

  
 

In this case,  ��(p) = min {11, 3, 5} = 3 and so, flow value = 11 +  ��(p) = 11 + 3 
= 14. Thus we see that there does not exist any source-sink cut ��, �� in table-1 such that 
���	�, �
 � 14. Therefore, the flow is not maximum. 
 
Iteration-5:   
The residual network �� (Figure-11) of the resulting flow network (Figure-10) and the 
new resulting flow network (Figure-12) are as follows: 

 
 

                       Figure 11:                                                          Figure 12:  
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Figure 7: Figure 8: 
 

Figure 9: Figure 10: 
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In this case,  ��(p) = min {8, 2, 10} = 2 and so, flow value = 14 +  ��(p) = 14 + 2 = 16. 
Thus we see that there does not exist any source-sink cut ��, �� in table-1 such that 
���	�, �
 � 16. Therefore, the flow is not maximum. 
 

Iteration-6:  
The residual network �� (Figure-13) of the resulting flow network (Figure-12) and the 
new resulting flow network (Figure-14) are as follows: 

  
                         Figure 13:                                                          Figure 14:  
In this case,  ��(p) = min {5, 8, 8} = 5 and so, flow value = 16 +  ��(p) = 16 + 5 = 21. 
Thus we see that there does not exist any source-sink cut ��, �� in table-1 such that 
���	�, �
 � 21. Therefore, the flow is not maximum. 
 

Iteration-7:  
The residual network �� (Figure-15) of the resulting flow network (Figure-14) and the 
new resulting flow network (Figure-16) are as follows: 
 

  
                         Figure 13:                                                          Figure 14:  

Here,  ��(p) = min {6, 3, 2, 4, 2} = 2 and so, flow value = 21 +  ��(p) = 21 + 2 = 
23. In this stage, we see that there exists a source-sink cut ��, �� in table-1, where 
� � �1, 2, 3, 5, 6�,  and  � � �4, 7, 8� such that ���	�, �
 = 23. So, the algorithm 
terminates and the flow in iteration-7 is therefore maximum flow. The value of maximum 
flow through the given network is 23. 
 
4. Solution using Ford-Fulkerson algorithm 
 

Now we are going to solve the same network flow problem by using Ford-Fulkerson 
algorithm. The procedure in each iteration is briefly summarized below: 
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Iteration-1 : The augmenting path is: 1 → 2 → 5 → 8 with residual capacity 2. 
Flow value � 2 , 0 , 0 � 2. 
 

Iteration-2 : The augmenting path is: 1 → 2 → 6 → 8 with residual capacity 2. 
Flow value � 4 , 0 , 0 � 4. 
 

Iteration-3 : The augmenting path is: 1→ 3 → 5 → 8 with residual capacity 7. 
Flow value � 4 , 7 , 0 � 11. 
 

Iteration-4 : The augmenting path is: 1→ 3 → 6 → 8  with residual capacity 3. 
Flow value � 4 , 10 , 0 � 14. 
 

Iteration-5 : The augmenting path is: 1→ 4 → 3 → 7 → 8 with residual capacity 2. 
Flow value � 4 , 10 , 2 � 16. 
 

Iteration-6 : The augmenting path is: 1→ 4 → 7 → 8 with residual capacity 3. 
Flow value � 4 , 10 , 5 � 19. 
 

Iteration-7 : The augmenting path is: 1→ 3 → 4 → 7 → 8 with residual capacity 2. 
Flow value � 4 , 12 , 5 � 16. 
 

Iteration-8 : The augmenting path is: 1→ 3 → 5 →2 → 6 → 8 with residual capacity 2. 
Flow value � 4 , 14 , 5 � 23. 
 

Iteration-9 : There does not exist any augmenting path from source to sink. So, the 
algorithm terminates and the flow in iteration-8 is therefore maximum flow. 
The maximum 3low value � 23. 

 
5.  Comparison 
In solving the same network flow problem, we see that the Ford-Fullkerson algorithm 
takes 9 iterations selecting 8 augmenting paths and after the end of 9th iteration we obtain 
the maximum amount of flow, whereas this proposed algorithm takes 7 iterations 
selecting 7 augmenting paths and after the end of 7th iteration we obtain the maximum 
flow. 
 
6.  Bounded Variable Simplex method 
 

In a linear programming problem some or all the variables may have lower and upper 
bounds, that is, constraints of the type 45 ≤65 ≤�5, where 65 is the variable of the given 
problem and  45 and  �5 are its lower and upper bounds respectively. 
The lower bound constraint of the type  45 ≤65 can be handled directly by substituting 

65=45+ 65′ , where 65′ ≥0. But for an upper bound constraint of the type 65 ≤�5, the 

substitution  65 =  �5 −  65′′ , 65′′ ≥0 does not guarantee that 65 will remain non-negative. 

This difficulty is overcome by using a special type simplex method called bounded 
variable simplex method.  

The algorithm for the computational procedure to obtain an optimum solution of 
any LPP by bounded variable simplex method consists of the following steps: 
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Step-1 : Check whether the objective function of the given LPP is to maximized or 
minimized. If the given LPP is to be minimized, then we convert it into a 
maximization problem using the following formula: 
   Minimize  z =   –   Maximize ( –  z). 

Step-2 : Check whether the right hand sides of all constraints are non-negative. If 
any one of them is negative, then multiply the corresponding inequality of 
the constraint by   – 1.  

Step-3 : Convert all the inequality of the constraints into equations by introducing 
slack and / or surplus variables in the constraints. 

Step-4 : Reformulate the given LPP as a standard maximization LPP. 
 

Step-5 
 

: Obtain an initial basic feasible solution ∗
Bx to the problem and put it in the 

appropriate column of the table.  

Step-6 : Compute  75 using the following formula:   

.   and    of  columns          
 in the  elements  ingcorrespond  theof products  theof Sum  =

jB

j

xc
 z

 

Step-7 : Compute the net evaluation  75− �5. 

Step-8 : Check the sign of  75− �5. 

  
 

(i) 
 

If all  75 − �5 ≥0, then the basic feasible solution ∗
Bx is an optimum 

basic feasible solution. Goto step-14. 

  (ii)   If at least one  75 − �5 80, then continue with the next step. 

Step-9 : If there are more than one negative of  75− �5, then choose the most 
negative of them. The tie can be made broken arbitrarily. Let one of them 
be 79− �9, for some : � ;. 

Step-10 : The entering variable (non-basic) is then 69 corresponding to most 
negative   79 < �9. Suppose that �=9  be the coefficients of the 
corresponding basic variables 6= in the column of the entering variable 
69; where the index k is associated with the basic variables and the index r 
is associated with the entering variable. 

Step-11 : Check the sign of   �=9 . Then compute the following quantities: 

   

(i)    For those k such that  �=9 > 0, compute  ?@ �
k

min A	BCD 
E
FEG

> 0H and 

note the basic variable that corresponds to it.  If   �=9 > 0 does not 
exist for any  I, then  ?@ � ∞. 

   

(ii)   For those k such that  �=9 8 0, compute  ?J �
k

min A�E K 	BCD 
E
K FEG

> 0H 
and note the basic variable that corresponds to it. If   �=9 8 0 does not 
exist for any  I, then  ?J � ∞. 
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Step-12 : Compute   ? � ��� �?@,   ?J,   �9� and note the variable that corresponds 
to it. Then we must follow any one of the following three tasks: 

  

(i) If  ? � ?@be obtained corresponding to the basic variable 6=, then 6= 
leaves the solution and  69  enters into the basis by using the 
procedure of pivoting of simplex method and then goto step-13. 

  

(ii)  If  ? � ?Jbe obtained corresponding to the basic variable 6=, then 
6=leaves the solution and  69  enters into the basis by using the 
procedure of pivoting of simplex method. 
After then  6= being non-basic at its upper bound must be substituted 

out by using  6= =  �= <  6=′  (where 0 L  6=′  L �=), and then goto 

  

(iii)  If  ? � �9be obtained corresponding to the entering variable 69, then   
69  cannot be entered into the basis and therefore  69 is substituted by 

using  69 = �9 <  69′   (where 0 L 69′ L �9) while it remains non-
basic.  

Step-13 : Repeat step-6 for computational procedure until an optimum solution is 
obtained. 

Step-14 : End computational procedure.                                                                      

 
7.  LP Formulation of maximal-flow model 
 

Let  f  be the amount of flow from source node  s to sink node t and  6M5 be the flow from 

node i to node j over the arc ),( ji in a flow network ),( EVG = . Then the LP 

formulation of the flow network is as follows: 
Maximize:    f 

Subject to:    ,∑∑
∈∈

=−
Vk

ks
Vj

sj fxx  

,∑∑
∈∈

−=−
Vk

kt
Vj

tj fxx  

,0∑∑
∈∈

=−
Vk

ki
Vj

ij xx for all },,{ tsVi −∈  

,0 ijij ux ≤≤ for all ,),( Eji ∈  

where �M5 is the upper bound of the flow over the arc ),( ji . 

 
8.  Solution using bounded variable simplex method 
 

Now we are going to find the maximum flow in the flow network given in the figure-1 by 
using Bounded Variable Simplex Method. The associated LP is summarized by the 
following table with two different, but equivalent, objective functions depending on 
whether maximize the output from source node 1 (= 7@)  or the input to sink node 8 
(= 7J). 
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 NOP NOQ NOR NPS NPT NQS NQT NQU NRQ NRU NSV NTV NUV  

Max  WO 1 1 1            

Max  WP           1 1 1  

Node 2 1   -1 -1         = 0 

Node 3  1    -1 -1 -1 1     = 0 

Node 4   1      -1 -1    = 0 

Node 5    1  1     -1   = 0 

Node 6     1  1     -1  = 0 

Node 7        1  1   -1 = 0 

Capacity 4 18 5 2 6 10 3 2 8 8 9 7 10  
 

Thus the Linear programming problem (LPP) becomes 

             Maximize:   z = 6@J +  6@X +  6@Y      (‘OR’ Maximize:   z = 6Z[ +  6\[ +  6][) 
             Subject to:           6@J < 6JZ < 6J\ � 0 
                 6@X <  6XZ <  6X\ < 6X] , 6YX � 0 
                       6@Y <  6YX < 6Y] � 0 
     6JZ , 6XZ <  6Z[ � 0 
     6J\, 6X\ < 6\[ � 0 
     6X] , 6Y]< 6][ � 0 
0 L  6@J L 4, 0 L  6@X L 18, 0 L  6@Y L 5, 0 L  6JZ L 2, 0 L  6J\ L 6, 0 L  6XZ L 10, 
0 L  6X\ L 3, 0 L  6X] L 2, 0 L  6YX L 8, 0 L  6Y] L 8, 0 L  6Z[ L 9, 0 L  6\[ L 7, 
0 L  6][ L 10. 
Solving the above linear programming problem (LPP) by using Bounded Variable 
Simplex Method (Section-7), the optimal solution is: 

  612 = 4,  613 = 14, 614 = 5,  625 = 0,  626 = 4,  635 = 9,  636 = 3, 
  637 = 2, 643 = 0,  647 = 5,  658 = 9,  668 = 7 and  678 = 7. 

The associated maximum amount of flow is:  z = 612 , 613 , 614 = 4 + 14 + 5 = 23. 
 
9.  Conclusion 
We have provided a new algorithm for finding the amount of maximum flow from source 
(s) to sink (t) in a flow network. A numerical example is solved to illustrate the proposed 
algorithm and for the same problem the procedure at each iteration by using Ford-
Fulkerson algorithm is briefly summarized. We have also solved the same flow network 
problem by using bounded variable simplex method. Our proposed algorithm returns the 
maximum flow that takes less number of iterations and augmentations than the Ford-
Fulkerson Algorithm. 
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