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ABSTRACT
This paper aims to introduce a new efficient altyonic approach for finding the
maximum flow of a maximal flow problem requiringsk number of iterations and
augmentation than Ford-Fulkerson algorithm.
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1. Introduction
Networking deals a great section of operation meteanany problems of our daily life
can be presented by network model. There are jpeastof network model: Shortest-path
model, Minimum spanning tree model, Maximal-flow aed and Minimum-cost
capacitated network model. In this paper we havekegbon Maximal-flow model. The
objective of the maximal flow problem is to fincetmaximum flow that can be sent from
specified node source (s) to specified node sinthfough the edges of the network. The
maximum flow problem asks for the largest amourfia that can be transported from
one vertex (source) to another (sink). Originalhe maximal flow problem was invented
by Fulkerson and Dantzig and solved by specializivegsimplex method for the linear
programming; and Ford and Fulkerson solved it ynaenting path algorithm.

The literature on network flow problem is extensiitre the mid of 1950, Air
Force researchers T. E. Harris and F. S. Rossspell a report studying the rail network
that linked the Soviet Union to its satellite coigg in Eastern Europe. In 1955, Lester R.
Ford and Delbert R. Fulkerson created the firstkmalgorithm to obtain the maximum
flow in a flow network, the Ford-Fulkerson algorih Over the past fifty years
researchers have improved several algorithms feingpMaximal-flow problems. In this
paper, we have introduced a new algorithm to fimel rhaximum flow in a network and
formulated as a linear programming problem (LPRJ #ren solved it using proposed
algorithm.

2. Proposed algorithm

The steps of our proposed algorithm are summabe&miv.
Step-1: Initializef (u, v) =f (v, u) = 0, for each edgeu(v) LIE.
Step-2: Sefflow value = 0.
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Step-3: If there exist any c(f, T] such thatap(S, T) is equal to thélow value, then go
to step-8, otherwise go to step-4.
Step-4: Select an augmenting pathfrom source to sink in the residual networ&.
Step-5: Setcr(p) = (ﬂggp{cf(u, v)}
Step-6: For eachu(Vv)Lp, if (u, v)UE, setf(u, v) =f (u, v) + c¢(p),
Isef(v, u) =f (v, u) —cr(p).
Step-7: Setflow value = flow value + c¢(p) and Return to step-3.
Step-8: The maximum flow ffow value.

3. Ilustrative Example

We consider the flow network given by figure 1. eléhe source node is denoted by 1
and the sink node is denoted by 8. The capaciteestgown on the respective arcs. It is
required to find the maximum flow in this networkiih source 1 to sink 8.

Figure 1.
Now we construct the following source-sink ¢6itT] table from Figure 1.

goura-smk cut[i_G, T] cap(S,T) Sougc«-smk cut[S,?_‘I_] Cap (D)

{1} {2,3,4,5,6,7,8 27 {1, 2,3, 6] {4, 5,7, 8] 26
{1, 2} {3,4,5,6,7,8 31 {1, 3, 4, 6} {2,5,7, 8) 31
{1, 3} {2,4,5,6,7,8 24 {1, 3,4, 7] {2, 5, 6, 8] 27
{1, 4} {2,3,5,6,7,8 38 {1,2,3,4,5 {6, 7, 8} 28
{1,2,3} {4,5,6,7,8 28 {1,2,3,4,6 {5, 7, 8} 29
{1,2,4} {3,5,6,7,8 42 {1,2,3,4, 7 {5, 6, 8} 31
{1,2,5} {3,4,6,7,8 38 {1,2,3,5,6 {4, 7, 8} 23
{1,3,6} {2,4,5,7,8 28 {1,3,4,6, 7 {2, 5, 8} 31
{1,4, 77 {2,3,5,6,8 40 {1,2,3,4,5,6 {7, 8} 26
{1, 2, 3,4} {5, 6, 7, 8) 31 {1,2,3,4,6,7 {5, 8} 29
{1,2, 3,5} {4,6,7, 8] 25 {1,2,3,4,5,6, 7{8} 26
Tablel: Source-sink cut and its capacity
Initialization:

Initialize the value of for each edge to O in the flow netwdsk
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Figure2:
The value of flow = 0. We see that there does Rrist any source-sink cyi§, T] in table-
1 such thatcap(S,T) = 0. Therefore, the flow is not maximum.

Iteration-1:
The residual networlk, (Figure-3) of the initial flow network (Figure-Znd the new
resulting flow network (Figure-4) are as follows:

Figure 3: Figure 4:

In this casecs(p) = min {4, 2, 9} = 2 and so, flow value = 0¢6;(p) =0 + 2
= 2. Thus we see that there does not exist anyeesink cutfS, T] in table-1 such that
cap(S,T) = 2. Therefore, the flow is not maximum.

Iteration-2:
The residual network (Figure-5) of the resulting flow network (Figurg-@nd the new
resulting flow network (Figure-6) are as follows:

Figure5: Figure6:

In this case,cs(p) = min {2, 6, 7} = 2 and so, flow value = 2 ¢;(p) =2 + 2 = 4. Thus
we see that there does not exist any source-sitk[$d'] in table-1 such that
cap(S,T) = 4. Therefore, the flow is not maximum.
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Iteration-3:
The residual network, (Figure-7) of the resulting flow network (Figuég-and the new
resulting flow network (Figure-8) are as follows:

Figure7: Figure8:
In this case,cs(p) = min {18, 10, 7} = 7 and so, flow value = 4 ¢(p) = 4 + 7 = 11.
Thus we see that there does not exist any soumkeesit [S,T] in table-1 such that
cap(S,T) = 11. Therefore, the flow is not maximum.

Iteration-4:
The residual network (Figure-9) of the resulting flow network (Figurg-#nd the new
resulting flow network (Figure-10) are as follows:

Figure9: Figure 10:

In this case,c¢(p) = min {11, 3, 5} = 3 and so, flow value = 11¢r(p) = 11 + 3
= 14. Thus we see that there does not exist angaaink cufS, T] in table-1 such that
cap(S,T) = 14. Therefore, the flow is not maximum.

Iteration-5:
The residual network, (Figure-11) of the resulting flow network (Figut®) and the
new resulting flow network (Figure-12) are as folfo

Figure 11: Figure 12
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In this case,cs(p) = min {8, 2, 10} = 2 and so, flow value = 14 &(p) = 14 + 2 = 16.
Thus we see that there does not exist any soumkeesit [S,T] in table-1 such that
cap(S,T) = 16. Therefore, the flow is not maximum.

Iteration-6:
The residual network, (Figure-13) of the resulting flow network (Figut@) and the

new resulting flow network (Figure-14) are as folfo

Figure 13: Figure 14:
In this case,cs(p) = min {5, 8, 8} = 5 and so, flow value = 16 é;(p) = 16 + 5 = 21.
Thus we see that there does not exist any soum&eesit [S,T] in table-1 such that
cap(S,T) = 21. Therefore, the flow is not maximum.

Iteration-7:
The residual network, (Figure-15) of the resulting flow network (Figutd) and the
new resulting flow network (Figure-16) are as folfo

Figure 13: Figure 14:
Here, ¢¢(p) = min {6, 3, 2, 4, 2} = 2 and so, flow value = 21cs(p) =21 + 2 =
23. In this stage, we see that there exists a seink cut[S,T] in table-1, where
§=1{1,2,3,56} and T ={4,7,8} such thatcap(S,T) = 23. So, the algorithm
terminates and the flow in iteration-7 is therefor@aximum flow. The value of maximum
flow through the given network is 23.

4. Solution using Ford-Fulker son algorithm

Now we are going to solve the same network flowbfgm by using Ford-Fulkerson
algorithm. The procedure in each iteration is tyislmmarized below:
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Iteratior-1 : The augmenting path i1 — 2 — 5— 8 with residual capacity
Flowvalue=2+4+0+4+0 = 2.

Iteratior-2 : The augmenting path i1 — 2 — 6 — 8 with residual capacity
Flowvalue=4+4+0+0 = 4.

Iteratior-3 : The augmenting path i1— 3 — 5— 8 with residual capacity
Flowvalue =447+ 0 = 11.

Iteratior-4 . The augmenting path 1— 3 — 6 — 8 with residual capacity
Flow value = 4 + 10 4+ 0 = 14.

Iteratior-5 : The augmenting path il— 4 —» 3 — 7 — 8 with residual capacity
Flow value = 4 + 10 4+ 2 = 16.

Iteratior-6 : The augmenting path il— 4 — 7 — 8 with residual capacity
Flow value =4 + 10 4+ 5 = 19.

Iteratior-7 : The augmenting path i1— 3 — 4 — 7 — 8 with residual capacity
Flow value =4 + 12 4+ 5 = 16.

Iteratior-8 : The augmenting path il— 3 - 5 -2 — 6 — 8 with residual capacity
Flow value = 4 + 14 4+ 5 = 23.

Iteratior-9 : There does not exist any augmenting path from sotwcsink. So, th
algorithm terminates and the flow in iteration-8hsrefore maximum flow.
The maximum flow value = 23.

5. Comparison

In solving the same network flow problem, we sest tine Ford-Fullkerson algorithm
takes 9 iterations selecting 8 augmenting pathsafted the end of'®iteration we obtain
the maximum amount of flow, whereas this propostgbrahm takes 7 iterations
selecting 7 augmenting paths and after the end"dfevation we obtain the maximum
flow.

6. Bounded Variable Simplex method

In a linear programming problem some or all theialdes may have lower and upper
bounds, that is, constraints of the typ&x; <u;, wherex; is the variable of the given
problem andl; and u; are its lower and upper bounds respectively.

The lower bound constraint of the typ<x; can be handled directly by substituting
xj=lj+ x;, Wherexj'zo. But for an upper bound constraint of the tygesu;, the

"

substitution x; = u; — x; , x; 20 does not guarantee thgtwill remain non-negative.
This difficulty is overcome by using a special typinplex method calledounded
variable simplex method.

The algorithm for the computational procedure ttaoban optimum solution of
any LPP by bounded variable simplex method consfstise following steps:
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. Check whether the objective function of the givétPLis to maximized «

minimized. If the given LPP is to be minimized, th@e convert it into
maximization problem using the following formula:
Minimize z= - Maximize (- 2).

. Check whether the right hand sides of all constsaéine no-negative. i

any one of them is negative, then multiply the esponding inequalitgf
the constraint by — 1.

. Convert all theinequality of the constraints into equations by introduc

slack and / or surplus variables in the constraints

. Reformulate the given LPP as a standard maximizatikP

: Obtain an initial basic feasible solutio@to the problem and put it in tl

appropriate column of the table.

: Computez; using the following formula:

z; = Sumof theproduct®f thecorresporidg elementsn the
columnsof ¢, andx; .

: Compute the net evaluatiary— ;.

: Check the sign of;— ¢;.

(i) Ifall z -c;=20, then the basic feasible solutioﬁis an optimun
basic feasible solution. Goto step-14.

(i) If at least onez; — c; <0, then continue with the next step.

. If there are more than one negative af- ¢;, then choose the mc

negative of them. The tie can be made broken arbitr Let one of ther
bez,-c,, for somg = r.

: The entering variable (non-basic) is thep corresponding to mo

negative z, — ¢,. Suppose thata; be the coefficients of tt
corresponding basic variablag in the column of the entering varial
x,; Where the indek is associated with the basic variables and thexind
is associated with the entering variable.

. Check the sign ofaj. Then compute the following quantities:

(i) For thosek such thataj, > 0, compute 6; = mli<n {@ > 0} and

A
note the basic variable that corresponds to it. aJf > 0 does no
exist for anyk, then 6; = .

(i) For thosek such thataj, < 0, compute 8, = mlin {w‘_—ffj’m‘ > 0}
%k

and note the basic variable that corresponds Ib it < 0 does no
exist for anyk, then 6, = .
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Stef-12 : Compute 8 = min {6,, 0,, u,} and note the variable that correspo
to it. Then we must follow any one of the followitigee tasks:

(i) If 8 = 6,be obtained corresponding to the basic variaplehenx;,
leaves the solution andx, enters into the basis by using
procedure of pivoting of simplex method and thetogtep-13.

(i) If 6 =0,be obtained corresponding to the basic variaglethen
xileaves the solution andx, enters into the basis by using
procedure of pivoting of simplex method.

After then x;, being nonbasic at its upper bound must be substit
out by using x, = u, — x;, (Where0 < x, <u,), and then got

(i) If 6 = u,.be obtained corresponding to the entering variahléhen
x, cannot be entered into the basis and therefgris substituted b
using x, = u, — x, (where0 < x, <u,) while it remains non-
basic.

Stef-13 . Repeat ste-6 for computationaprocedureuntil an optimum solution i

obtained.
Ster-14 : End computational procedure.

7. LP Formulation of maximal-flow model

Let f be the amount of flow from source nodéo sink node and x;; be the flow from
node i to nodej over the aré¢, j)in a flow network G =(V,E). Then the LP
formulation of the flow network is as follows:
Maximize: f
Subjectto: D x; =Y x.=f,
jov KOV
2% =2 % =T
v KOV
D %= > %, =0 forall iOv —{s, t},
jov KOV

0<x; <uy,forall (i, j)OE,
whereu,; is the upper bound of the flow over the &i¢cj) .

8. Solution using bounded variable simplex method

Now we are going to find the maximum flow in thevil network given in the figure-1 by
using Bounded Variable Simplex Method. The assedidtP is summarized by the
following table with two different, but equivalentbjective functions depending on
whether maximize the output from source node %;§= or the input to sink node 8

(=2).
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1 1 1
1 1 1

1 -1 -1 =Q
1 -1 1 -1 1 =

1 -1 -1 =

1 1 1 =
1 1 -1 =d
1 1 -1 =0

Thus the Linear programming problem (LPP) becomes

Maximize: z %, + x13 + x4, (‘OR’ Maximize: z =xsg + xgg + X7g)
Subject to: X12 — Xo5 — X6 = 0
X13 = X35 = X36 — X37 + X43 =0
X14 = X43 = X47 =0
X325+ X35 — X58 = 0
X261 X36 — Xgg = 0
X37 + X47— X783 =0
0< x,54,0< x3<18,0< x4, <5,0< x35<2,0< x5 <6,0 < x35 <10,
0< x34<3,0< x37,<2,0< %4358, 0< x47,<8, 05 %5559, 0< x4 <7,
0 < x,5 < 10.
Solving the above linear programming problem (LR®) using Bounded Variable
Simplex Method (Section-7), the optimal solution is
Xy = 4, X3 = 14,XJ4 =5, X5 = 0, X6 = 4, X35 = 9, X36 = 3,
X37 = 2,X43 = 0, Xy7 = 5, Xs58 = 9, X8 = 7 andX78 =7.
The associated maximum amount of flow is: z;7+ x;3 + x;, =4 + 14 + 5 = 23.

9. Conclusion

We have provided a new algorithm for finding theoammt of maximum flow from source

(s) to sink (t) in a flow network. A numerical expla is solved to illustrate the proposed
algorithm and for the same problem the procedureaah iteration by using Ford-

Fulkerson algorithm is briefly summarized. We halso solved the same flow network
problem by using bounded variable simplex methagt. @oposed algorithm returns the
maximum flow that takes less number of iterationd augmentations than the Ford-
Fulkerson Algorithm.
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