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ABSTRACT

In this paper we have considered single objective and multi-objective stochastic
transportation problem involving an inequality type of constraints in which the source
and destination parameters are exponential random variables with known means but the
objectives are non-commensurable and conflicting in nature. At first we convert the
proposed multi-objective linear stochastic transportation problem into an equivalent
deterministic problem under chance constrained programming technique. Then fuzzy
programming technique is applied to solve this problem and obtained the compromise
solution. A numerical example is illustrated to verify the solution procedure and the
devel oped methodol ogy.
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1. Introduction

In most mathematical programming problems it is assumed that parameters occurring in
the model are constant and known, such models are called deterministic. However,
deterministic models are usually just an approximation of the reality. These models can
be used to solve the problem in one situation (for one specific set of data values), but the
solutions obtained from these models may become sub-optima or infeasible if the
situation changes. Sometimes variability of the parameters is so significant and their
evaluation so uncertain (especialy if the parameters will be assigned va ues in the future)
that treating the deterministic model as a good approximation is not acceptable. Therefore
Uncertainty in decision problems comes from, for example, weather changes, market-
related uncertainty and competition etc.

2. Single objective stochastic transportation problem involving exponential random
variables

Let us consider the single objective stochastic transportation problem involving

exponential random variables as follows :

min:Z = Zmlzn:clj X; (1)

i=1 j=1
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subject to

pr[zn}gj <alzl-a,,i=12,....m

=1

P> X% 2b]21-6,j=12,...,n
i=1

X, 20,i=12,...,m j=12,..,n

2

3)
(4)

where 0<a, <1 , O<,8]- <1 and a,, bj are exponential random variables. For

simplicity, let us consider the decision variables X; to be deterministic.

We shall first consider special cases where only @, or only bj are exponential random

variables before considering the genera case in which both a and bj are exponential

random variables.

Case-l: Only a, areexponential random variables
Let a areexponentia random variables with known means

E[ai]:i,i =12,...,m
Ay
a]
Let DX =y ,i=12..,m
=1

Now the constraint (2) can be represented as
Prly, <a]=21-0,,i=12,....m
which is same as
Prla 2y ]21-a,,i=12,....m
=1-Prla <yl]=21-a,,i=12,...,m
=Prfa<yl<a,i=12,..m
= ['f(a)da <a,i=12,..m
Now
i i PR BCREY =’
["f@)da=["f(a)dg =["1,e " da=[-e "] =1-e

Yi

Thus eguation (6) becomes
g % .
1-e %' <a,i=12,...,m

~Aa Vi .
=e V' 21-a,i=12,...,m
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= ~4,¥%2In(-a)i=12...,m

Y e NS, ™
= 8

Thus the solution of the single objective stochastic transportation problem stated
in equations (1) - (4) can be obtained by solving the equivalent deterministic
programming problem,

min:Z = Zm:iqj X; (8)

i=1 j=1
subject to
Sy 2 A7) io1o m 9
j=1 Aai
> =b;j=12...,n (10)
i=1
X 201=12,...,mj=12..,n (12)

Case-l1: Only bj are exponential random variables

Let bj are exponential random variables with known means

Elb]= 2, j=12...n (12)
A
Let D% =Yy, i=12...n

i=1
Now the probahilistic constraint (3) can be rewritten as

Ply; 2b]21-4,,j=12,...,n
which is same as
Pr[b] < yJ]Zl_IBJ’J =1|2)"'ln

:j-y;f(bj)dbjZl_ﬂpj:l,Z,...,n (13)

Now
_ . y. b “dp.b Ao Vi
[lfm)do =" ((b)db, =4, ['e 7 db=[-e "] =1-e

—00

Thus eguation (13) becomes

b, V] :
1-e ' " =2p,j=12,...,n
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/‘b yj

e ' <B,j=12...n

= A y;<In(B),j=12....n

:ixijs_lj('gi),j=l,2,...,n (14)
i=1 b

j

Therefore, we obtain the equivalent single objective deterministic transportation
problem of the stochastic transportation problem (1) - (4) asfollows:

min:Z = Zm:iqj X; (15)
subject to o
Zn:xij <a,i=12,....,m (16)
j=1
S, < M) jo12 (17)
i=1 Abj
% 20/i=12,...,mj=12..,n (18)

Case- I11: Both @ and b; areexponential random variables

Let & and b; are exponential random variables with known means defined as:

Ha]=—.i=12...m

A

G

1.
Eb]=—,j=12...,n
[b;] N j

J

0<a;<1 and 0<p;<1

As described in Case- | and Case- |l, the equivalent deterministic constraints of the
probabilistic constraints (2) and (3) are defined by
n — —
> In(1-a;)
j=1 G

Jd=12,....m

m -1 .
DX < n('BJ),jZLZ,...,n
i=1 Ab]

and hence the equivalent single objective deterministic transportation problem of the
stochastic transportation problem (1) - (4) can be formulated as:
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min:Z=>>¢x (19)
i=1 j=1
subject to

S s 1

i=1 .
bl

X 20,i=12,...,mj=12..n (20)

3. Multi-objective stochastic transportation problem involving exponential random
variables

Let us consider the multiobjective stochastic unbalanced transportation problem with

source and demand constraints involving exponential random variables as follows :

min:Z, =>>cx  k=12,...,K (21)
i=1 j=1
subject to

Pr[zn")qj <al=z2l-a,i=12,....m (22)
j=1

P> X 2b121-48,j=12,...n (23)
i=1

% 20,i=12,...,mj=12..,n (24)

where O0<a, <1, O<,6’j <1l and a, bj are exponential random variables. For
simplicity, let us consider the decision variables X; to be deterministic.

Case-l: Only g areexponential random variables

Let a areexponential random variables with known means

Ela] :i,i =12,...,m
/]ai
Asdiscussed earlier, the probabilistic constraint (22) reduced to

DX, ZMJ =1,2,...,m

j=1 G
Hence the equivalent deterministic transportation problem for the multiobjective
stochastic transportation problem (21) - (24)becomes

m n
min:Z, =Y >cix ;k=12,...,K (25)
i=1 j=1
subject to

33



H. K. Samal and M. P. Biswal

Sx 2 =12 m (26)
=1 5
ZXJijiizl’Z'---'” 27
i=1
% 20;i=12,...,mj=12..,n (28)

Case-l1: Only bj are exponential random variables

Given bj are exponential random variables with means
Eb ] :/]i, i=12,...n

bj

Now we obtain the equivalent deterministic constraint for (23) as

S -In(5))

X; <
= A

and hence the multiobjective deterministic transportation problem of the multiobjective
stochastic transportation problem (21) - (24) is formulated as:

,1=12,...,n

min:Z, =Y >cix ;k=12,...,K (29)
i=1 j=1
subject to
dx <a,i=12..,m (30)
j=1
m -1 i
DX < n(ﬂl),j =1,2,...,n (31)
i=1 bj
X 20,i=12,...,m j=12..,n 32

Case-l11: Both & and b; areexponential random variables

Let 3 and b; are both exponential random variables with known means

Ha]=— i=12...,m

A,

g

1
Elb]=——,j=12...n
[b] W j

J
0<a;<1 and 0<p;<1

In this case the equivalent multi-objective deterministic transportation problem of the
stochastic transportation problem (21) - (24) is given as.
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min:Z, =>>cx k=12,...,K
i=1 j=1
subject to

j=1 a
m -In(B

S, <) io1o
i=1 /1b

X 20,i=12,...,mj=12..n

4. Numerical example

(33)

(34)

(35

(36)

The numerical problemisrelated to a multi-objective stochastic transportation problem in
which the source and destination parameters are exponentia random variables with

known means given by

Ela]= 1 i=1234
/]ai

and

E[b]=1,j=12345
/lbj
The objectives are non-commensurabl e and conflicting in nature.

Min: Z, =9, +12X, + 9% + 6%y, + X5 + 751 + 3%y, + 7Xo5 + 7%, + 5%y
+BXq) + OXgp + gy + 11X, + 35 + 6%,y + 9%, + 11Xy + 2, +2X,s

Min:Z, = 22X, + 9%, + 8% + Xy, +4X5 + Xy + 9%y, + oy +5%, + 2%,
+8Xyy + Xgp +8Xeg +AXy, +5Xg5 + 2%y +8X,, +BXy5 + Xy, +8X,

ml n: Z3 = 2Xll + 4X12 + 6X13 + 3Xl4 + 6X15 + 4X21 + 8X22 + 4X23 + 9X24 + 2X25

+5Xg; +3Xgp +5Xg5 + 3%, F 65 + 6%,y +9X,, +6X5+ 3Ky, + Xy

subject to
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Pf[gxs; <a]21-a, (42)
Pr[ZS:xM <a]=z1l-a, (43)
=
P>, 2b]21-4 ”
Pf[iZ:‘)ﬁz 2b,]21-4, (45)
Pf[g)ﬁs 2b]21-4, (46)
Pf[it,m 2b,]21- 5, (47)
Pf[i%s 2b]21-f; (48)
X 20,i I::ll,2,3,4; j=12345. (49)

In the above numerical example, @ and bj are independent exponential random
variables with known means

Ela]=5  Ela]=4 Ela;]=8,  E[a,]=10,

E[lb]=2  E[b]=20, E[b]=5 E[b,] =6, Elb] =3

And the specified probability levels

a, = 0.60, a, =0.70, a, =0.80, a, = 0.90,

B, =0.10, B, =0.20, B, =0.30, B, =0.40, B; =0.50

The deterministic model can be obtained using equations (33)-(35) as

min:Z, = 9x, +12x, + 9%, + 6X, + 9% + 7X,; + 3X,, + 7Xy5 + 7X,, +5X,
*+BXg) + Oy + gy + 11Xy, +3Xg5 + 6%,y + 9%y +11X,5 + 2%, +2X,s (50)
min : ZZ = 2Xll + 9)(12 + 8X13 + X14 + 4X15 + X21 + 9)(22 + 9)(23 + 5)(24 + 2)(25

+ 8X31 + X32 + 8X33 + 4X34 + 5X35 + 2X41 + 8X42 + 6X43 + 9X44 + 8X45 (51)
ml n: Z3 = 2Xll + 4X12 + 6X13 + 3)(14 + 6X15 + 4X21 + 8X22 + 4X23 + 9X24 + 2X25
+ 5X31 + 3X32 + 5X33 + 3)(34 + 6X35 + 6)(41 + 9X42 + 6X43 + 3X44 + X45 (52)
subject to
Xy X, X5+ Xy, + X5 2 4.581454 (53)
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Xo1 T Xpp + X5 + X5 + X5 = 4.815891 (54)
Xg1 T Xgp F X3 + X5, + Xg 212.875503 (55)
Xap T Xgp + Xyg + X,y + X, = 23.025851 (56)
Xy F X + X + X, <4.60517 (57)

X T X5 + X, + X,, < 32.188758 (58)
X3+ X5 F Xg3 X5 £ 6.019864 (59)
Xy T X5, + X%, +X,, £5.497744 (60)
X5 T Xo5 + X5 + X5 < 2.079442 (61)

% 20,i=123;j=1234. (62)

As discussed in the solution procedure, we obtained three idea solutions of the objective
functions (50)-(52) with the set of constraints (53)-(62) and a pay off matrix is framed as
shown in the following table.

Table 1: Pay-off Matrix

Z,(X) Z,(X) Z5(X)
X® 260.435061 | 254.943643 | 248.437456
X @ 322.335967 | 183.474493 | 252.875062
X® 318.876828 | 238696511 | 216.39911

Using the linear membership function of fuzzy technique, we get

1, 7, < 260.435061
14(x) = 322.335967°2 54 435061 < 7, < 322.335967 (63)
322.335967 - 260.435061
0, 7, > 322.335967
1, 7, <183.474493
1,(X) = 2494364372, 183 474493 < 7, < 254.943643 (64)
054.943643-183.474493
0, 7, > 254.943643
1 2, < 216.39911
Ly (x) = {—22287000272, 51530911 < 7 < 252875062 (65)
252.875062 - 216.39911
0, 2, > 252.875062

Finally, the single objective transportation problem which is equivalent to the
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multiobjective problem (37)-(49) is derived as.
max : A (66)

subject to
9Xll + 12X12 + 9X13 + 6X14 + 9X15 + 7X21 + 3)(22 + 7X23 + 7X24 + 5X25

+ 06Xy + 5%y, +9X;; +11X,, + 3Xys + 6%, +9X,, +11X,, +2X,, + 2,0
+61.900906 1 < 322.335967 (67)

2,3 + 9%y, +8X5 F Xy T AXis + Xoy 9%, + 9% 50Xy, + 2
+8Xy + Xy +8Xg3 + 4AXg, + 5Xg5 + 2X, +8X,, +6X5 +9X,, +8X,g
+71.469150 1 < 254.943643 (68)

2%, + AXy, + 6X5 + 3%, + 6X5 + A%,y +8Xy, + 4%y, +9X,, + 2,
+ 5X31 + 3X32 + 5X33 + 3X34 + 6X35 + 6X41 + 9)(42 + 6X43 + 3X44 + X45

+36.475952 1 < 252.875062 (69)
Xip + Xpp + X5 + X, + X5 2 4.581454 (70)
Xo1 + X5 F X5 + X5, + X5 = 4.815891 (71)
Xoy + Xy + Xgg + X, + X, 212.875503 (72)
Xy Xgp + X43 T X, + X5 2 23.025851 (73)
Xy + Xy + Xy + X, < 4.60517 (74)
X, X, + Xop + X, < 32.188758 (75)
X3 F Xog + Xg5 + X5 < 6.019864 (76)
X X + X, + X, <5.497744 (77)
X5 + X5 + Xgs + X, < 2.079442 (78)
% 20,i=1,23;]=1234. (79)

Solving the above linear programming problem (66) - (79), the compromise solution is
obtained as:
A = 0.4830865

X, =0,%x, =1.679055, x,, =0, x, = 2.902399, x, =0

X,; = 0.4729809, X,, = 4.342910, X,; = Xy, = X,5 = 0

Xy =0, %5, =12.87550, X33 = Xy, = X5 =0

X,, = 4.132189, x,, = 8.199011, X,; = 6.019864, X,, = 2.595345, X, = 2.079442

5. Conclusions
In this paper we have formulated single objective and multi-objective stochastic
unbalanced transportation problems in which the objective functions are of minimization
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type and either the supply or the demand or both the supply and demand are considered
as exponential random variables of known means. For simplicity we have considered the
decision variables to be deterministic. Then using the probability density functions, the
probabilistic linear programming model is transformed in to an equivalent deterministic
linear programming model. We have applied the fuzzy programming technique for
solving the given specified problem and to obtain an optima compromise solution from
the set of non dominated solutions.
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