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ABSTRACT 

The mixture of Type-I and Type-II censoring schemes, called the hybrid censoring 

scheme is quite common in life-testing or reliability experiments. In this paper, we 

investigate the estimation of parameters from two-parameter Lomax distribution based on 

Type-II progressively hybrid censored samples. Maximum likelihood estimates for the 

distribution parameters and the reliability indices are obtained. Bayesian estimates of the 

unknown parameters and the reliability indices are obtained under square error loss 

function by using the important sample method and the Lindely Bayes approximation 

algorithm respectively. Different methods have been compared using Monte Carlo 

simulations. 

 

Keywords: Maximum likelihood estimate; Bayesian inference; Lomax distribution; 

Importance sample; Lindely Bayes approximation; Type-II progressively hybrid  

1. Introduction 

The Lomax distribution was originally proposed by Lomax in the analysis of business 

failure. It is often used in economics, business, and actuarial modeling. It has received 

much attention from theoretical and applied statistics primarily due to its use in reliability 

and life testing studies. For example, Ref.[3] considered the competing risks model based 

on Lomax distribution under Type-II progressively censoring scheme (PCS); Ref.[4] 

discussed the parameter estimation of the hybrid censored Lomax distribution. 

The two most common censoring schemes are termed as Type-I and Type-II 

censoring. There is also another common censoring scheme called the hybrid censoring 

scheme which was first introduced by Epstein. One of the drawbacks of these censoring 

schemes is that they do not allow for removal of units at points other than the terminal 

point of the experiment. The Type-I PCS or the Type-II PCS, however, has this 

advantage and has become very popular in the last few years. For example, 

Ref.[7]discussed the inference for Weibull distribution based on Type-II progressively 

hybrid censored schemes (PHCS).
 
Ref.[8] considered parametric inference for Type-I 

PHCS on a simple step-stress accelerated life test model. Ref.[9] discussed on some exact 

distributional results based on Type-I PHC data from exponential distributions. Ref.[10] 
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discussed reliability analysis for accelerated life-test with progressive hybrid censored 

data using geometric process. 

In this paper we consider the Type-II PHC lifetime data, when the lifetime 

follows the Lomax distribution. In section 3 we provide the maximum likelihood 

estimates (MLEs) of the unknown parameters and the reliability indices. It is observed 

that the MLEs do not have explicit forms. They can be obtained by a simple iterative 

scheme. We also obtained Bayesian estimates of the unknown parameters and the 

reliability indices using the important sample method and the Lindely Bayes 

approximation algorithm respectively in Section 4. Simulation results and data analysis 

are provided in Section 5. Finally, we conclude the paper in Section 6. 

2. Model  description 

Type-II PHCS can be described as follows：n identical units are placed the life tested. 

Suppose integer m n  and 
1
, ...,

m
R R  satisfying 

1
...

m
R R m n     are fixed at the 

beginning of the experiment. The time point T  is also fixed before hand. At the time of 

the first failure, say
1: :m n

X , 
1

R  surviving units of the remaining units are randomly removed. 

Similarly at the time of the second failure
2: :m n

X , 
2

R  surviving units of the remaining units 

are randomly removed and so on. If the m th  failure 
: :m m n

X  occurs before the time 

point T , the experiment stops at the time point
: :m m n

X . On the other hand, if the m th  failure 

does not occur before time point T  and only J  failures occur before the time point T , 

where 0 J m  , then at the time point T  all remaining 
J

R


 units are removed and the 

experiment terminates at the time point T . Note that
1

( ... )
J J

R n R R J


     .We denote 

two cases as Case I and Case II respectively. Therefore in the presence of Type-II PHCS, 

we have one of the following types of observations: 

Case I: 
1: : : :

{ , , }
m n m m n

X X , if
: :m m n

X T ;  Case II: 
1: : : :

{ , , }
m n J m n

X X , if
: : 1: :J m n J m n

X T X


  . 

For simplicity, in the rest of this article we will use 
iX  to substitute

: :
, 12, ....,

i m n
X i m . 

Suppose the random variable X  follows a Lomax distribution with shape and scale 

parameters   and  , respectively, and with probability density function (pdf) and 

cumulative distribution function (cdf) as  

 ( 1)( ; , ) / (1 / )f x x         ,  0, , 0x                                             (1) 

            ( ) 1 (1 / )F x x                0, , 0x                                                     (2) 

Then the corresponding reliability function can be obtained: 

         ( ) (1 / )r x x    ,              0, , 0x                                                     (3) 

Let D  be the number of failures, where D m  for Case I and D J  for Case II. Let 

1( , , )DY X X   denote the type-II progressively hybrid censored data from a population 

with pdf and cdf given in (1) and (2) respectively. 
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3. Maximum likelihood estimates 

In this section, we will discuss the MLE of the unknown parameters and the reliability 

function. The likelihood function based on the Type-II PHC samples Y, see Z. H. Li
[1]

 

and M. Z. Raqab
[2]

, is given by 

1

( , ) ( ; , )[1 ( ; , )] [1 ( )]i T

D
R R

i i

i

L f X F X F T      



   .                                    (4)    

where 0TR  , mT X  for Case I and T JR R , T T  for Case II. From (1), (2) and (4), we 

write the likelihood function of  and  based on the Type-II PHC samples Y as follows: 

For Case I 
1 1( , ) ( / ) exp{ ( 1) ( ) ( )}mL D Y T Y          ,                                 (5) 

while for Case II, it is 

 2 2( , ) ( / ) exp{ ( 1) ( ) ( )}JL D Y T Y          ,                                   (6) 

where 1

1

( ) ln(1 / )
m

i

i

D Y X 


  , 1

1

( ) ln(1 / )
m

i i

i

T Y R X 


  , 2

1

( ) ln(1 / )
J

i

i

D Y X 


  ,  

2

1

( ) ln(1 / ) ln(1 / )
J

i i J

i

T Y R X R T  



    . 

Note that (5) and (6) can be combined as follows: 

      ( , ) ( / ) exp{ ( 1) ( ) ( )}DL D Y T Y          ,                           (7) 

where 1 1, ( ) ( ), ( ) ( )D m D Y D Y T Y T Y       for Case I and D J , 2( ) ( )D Y D Y  , 2( ) ( )T Y T Y   

for Case II. The corresponding log-likelihood function is obtained from (7) as 

        ( , ) log ( , ) ln ln ( 1) ( ) ( )l L D D D Y T Y              .                             (8) 

Taking derivatives with respect to   in (8) and equating it to zero, we obtain the 

likelihood equation as 

        / / ( ) ( ) 0l D D Y T Y        .                                             (9) 

From (9), we obtain 

        ˆ( ) / [ ( ) ( )]D D Y T Y     .                                              (10) 

For Case I 1 1, ( ) ( ), ( ) ( )D m D Y D Y T Y T Y      , taking derivatives with respect to   in (8) and 

equating it to zero, we obtain the likelihood equation as 

1 1

/ ( 1) / [ ( )] / [ ( )] 0
m m

i i i i i

i i

m X X R X X      
 

        .                          (11) 

Upon using (10) in (11), it becomes 

1 1

1 1

ˆ ˆ/ ( ( ) 1) / [ ( )] ( ) / [ ( )] 0
m m

i i i i i

i i

m X X R X X        
 

        ,                        (12) 

where 1 1

1
ˆ ( ) / [ ( ) ( )]m D Y T Y     . 

Note that (12) can be written in the form 

    ( )h  ,                                                        (13) 

where  
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1 1

1 1

ˆ ˆ( ) / [( ( ) 1) / [ ( )] ( ) / [ ( )]]
m m

i i i i i

i i

h m X X R X X        
 

      .              (14) 

Similarly for Case II 2 2, ( ) ( ), ( ) ( )D J D Y D Y T Y T Y      , we can obtain 

2 2 2

1 1

ˆ ˆ ˆ( ) / [( ( ) 1) / [ ( )] ( ) / [ ( )] ( ) / [ ( )]]
J J

i i i i i J

i i

h J X X R X X R T T            

 

        .   (15) 

From (13), we use a simple iterative scheme to solve for  . It has been proposed in the 

literature by Kundu (2007). Start with an initial guess of  , say (0) , then obtain 
(1) (0)( )h   and proceed in this way iteratively to obtain ( 1) ( )( )n nh   . Stop the iterative 

procedure, when ( 1) ( )n n     , some pre-assigned tolerance limit. 

Thus, from (3), the maximum likelihood estimation of the reliability function can be 

easily established: 
ˆˆˆ( ) (1 / )r x x    .                                               (16) 

4. Bayesian inferences 

In this section we consider the Bayesian estimation of the unknown parameters and the 

reliability function under the squared error loss function. We assume that   and   are 

independently distributed as 
0 0( , )Ga a b  and

1 1( , )IGa a b  respectively, with the following 

densities: 

0 0 0

0 0

1

, 0 0( ) e / ( )
a b a

a bg b a
   

  ， 1 1 1

1 1

( 1) /

, 1 1( ) e / ( )a b a

a bh b a     ,        (17) 

Where 0  , 0  , 1

0
( ) x tx t e dt


     and 

0 0 1 1, , ,a b a b  are assumed to be positive constants. By 

combining (17) and (7), we obtain the joint posterior density of   and  : 

0

0 0 1 1

( )

, ( ) ( ) , 0( , ) ( ) ( )( ( ) ( )) exp{ ( )}
a D

a D b D Y T Y a D bp Y g h b D Y T Y D Y
         

       ,       (18) 

The marginal posterior of any parameter is obtained by integrating the joint posterior 

distribution with respect to the other parameters. Thus, the posterior density function of 

  can be obtained: 

           
1 1,

0

( ) ( , ) ( ) ( )a D bp Y p Y d h Q Y    


  ,                     (19) 

Where 0( )

0( ) ( ( ) ( )) exp{ ( )}
a D

Q Y b D Y T Y D Y   

 
    . Thus, the Bayesian estimation of   is  

1 1 1 1B , ,
0 0

ˆ ( ) ( ) ( ) / ( ) ( )a D b a D bE Y h Q Y d h Q Y d       
 

     ( ( )) / ( ( ))E Q Y E Q Y         (20)                               

Where E  denotes the expectation with respect to
1 1( , )IGa a D b . The marginal posterior 

density of   given   and Y is 

         
0 0, ( ) ( )( , ) ( )a D b D Y T Yp Y g

 
     .                                   (21) 

Thus the Bayesian estimation of   under the squared error loss function is 

        
0 0

ˆ ( ) / [ ( ) ( )]B a D b D Y T Y      .                            (22) 

The Bayesian estimation of   can be determined by the important sampling method as 

follows: 

Step 1: Ten thousand   values are generated from
1 1( , )IGa a D b . 
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Step 2: For each  generated from the step1, compute ( ( ))E Q Y  and ( ( ))E Q Y 
 by 

averaging ( )Q Y  and ( )Q Y
. 

Obtaining the ˆ
B , the Bayesian estimation of  can be established using (22) directly. 

Let ( , ) ( ) (1 / )g r x x       ,
0 0 1 1, ,( , , ) ( , ) ( ) ( )a b a bL x L g h        , where ( , )L    and 

0 0, ( ),a bg 
1 1, ( )a bh   are given in (7) and (17). From (18), the Bayesian estimation of the ( )r x  

under squared error loss function can be obtained: 

        
,

0 0 0 0

ˆ( ) ( ( , )) ( , ) ( , , ) / ( , , )
Y

r x E g g L x d d L x d d
 

           
   

                (23) 

  The ratio of the two integrals given by (23), generally, is obtained in a closed form. 

Therefore, in such situations, we can use numerical integration technique, which can be 

computationally intensive, especially in high-dimensional parameter space. Here we 

adopt the Lindley approximation to estimate the (23). This method has been used by 

some authors to obtain Bayesian estimates of the parameters. See for example, J. Zhao et 

al. (2013)
[5]

  

Lindley developed an approximate procedure for evaluating the posterior 

expectation of ( )U   as ( ) ( ) ( ) ( )( ( ) ) ( ) /l lE U x U e d e d            , which is the Bayesian 

estimate of ( )U   under squared error loss function, where ( ) ln( ( ))p   , ( )p   is arbitrary 

function of , and ( )l   is the logarithm of the likelihood function. In the two parameter 

case, when
1 2( , )   , Lindley’s approximately form reduces to the following form: 

1 12 2 21 30 12 21 12 12 21 03 21( ( ) ) ( ) / 2 (1/ 2)[ ]E U x U A A A l B l C l C l B           .         (24) 

where
2 2

1 1 ij iji j
A U 

 
  ,

1 2( / )l l   

      , ,  =0,1,2,3, 3   . For , 1,2i j  , 

( / )i i     , ( / )i iU U    , 2( / )ij i jU U      , and for i j , 

ij i ii j jiA U U   , ( )ij i ii j ij iiB U U    , 23 ( 2 )ij i ii ij j ii jj ijC U U       . 

For , 1,2i j  , 2( / )ij i jL l      . 
11 22 12 21N L L L L  , 

11 22 /L N   ,
22 11 /L N   , 

12 12 21/L N   .   

In our case, ( , )   , ( ) ( , ) ( , )U U g      ,
0 0 1 1, ,( ) ( , ) ( ) ( )a b a bp p g h       , 

where
0 0, ( )a bg  and 

1 1, ( )a bh  are given in (17). Thus, we observe that: 

( , ) ln ( , )p      constant
0 0 1 1( 1)ln ( 1)ln /a b a b              

Therefore, 
1 0 0

/ ( 1) /a b         , 
2

2 1 1
/ ( 1) / /a b           . 

Further more, 1 (1 / ) ln(1 / )U x x    , 1 2

2 (1 / ) /U x x      , 

2

11 (1 / ) [ln(1 / )]U x x    , 1 2

12 (1 / ) / [ ( )] (1 / ) ln(1 / ) /U x x x x x x               
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1 2 1 2

21 (1 / ) / (1 / ) ln(1 / ) /U x x x x x             

2 2 4 1 3

22 ( 1) (1 / ) / 2 (1 / ) /U x x x x               . 

For case I:  

2 2 2

11 / /L l m      , 2

12 21

1

/ (1 ) / [ ( )]
m

i i i

i

L l R X X L   


        . 

2 2 2 2 2

22

1 1

/ / ( 1) (2 ) / [ ( )] (2 ) / [ ( )]
m m

i i i i i i i

i i

L l m X X X R X X X         
 

            , 

3 3 3 2 2 3

03

1

/ 2 / ( 1) 2 [3 3 ] / [ ( )]
m

i i i i

i

l l m X X X X      


          

2 2 3

1

2 [3 3 ] / [ ( )]
m

i i i i i

i

X R X X X    


   ,  3 2

21 / 0l l       , 

3 3 3

30 / 2 /l l m     , 3 2 2

12

1

/ (1 ) (2 ) / [ ( )]
m

i i i i

i

l l R X X X    


         .  

While for case II: 

2 2 2

11 / /L l J      , 2

12 21

1

/ (1 ) / [ ( )] / [ ( )]
J

i i i J

i

L l R X X R T T L     



          , 

2 2 2 2 2

22

1 1

/ / ( 1) (2 ) / [ ( )] (2 ) / [ ( )]
J J

i i i i i i i

i i

L l J X X X R X X X         
 

           
2(2 ) / [ ( )]JR T T T      , 3 2

21 / 0l l       , 3 3 3

30 / 2 /l l J     , 

3 3 3 2 2 3

03

1

/ 2 / ( 1) 2 [3 3 ] / [ ( )]
J

i i i i

i

l l J X X X X      


          

2 2 3 2 2 3

1

2 [3 3 ] / [ ( )] 2 [3 3 ] / [ ( )]
J

i i i i i J

i

X R X X X R T T T T         



       , 

3 2 2 2

12

1

/ (1 )(2 ) / [ ( )] (2 ) / [ ( )]
J

i i i i J

i

l l X R X X R T T T       



            . 

Substitution of the above values in Equation (24) yields the Bayesian estimate using 

Lindley’s method relative to squared error loss function, of a function ( , )U   , denoted by 

ˆ
BU  

1 1 2 2
ˆ [ ( , ) ] ( , )BU E U x U U U                                                 (25) 

11 11 12 12 21 21 22 22/ 2 ( ) / 2A U U U U        

2 2

1 1 11 2 12 30 11 12 11 22 21 03 21 22[ ( 2 ) ] / 2l l l              

2

2 1 21 2 22 30 12 11 12 21 22 03 22/ 2 3 / 2 / 2l l l              

All functions in Equation (25) are evaluated at the MLE of ( , )  . 

 

5. Numerical results and discussions 

In this section, we use Monte Carlo simulations to compare different methods for 

different parameter values and for different sampling schemes. The term different 

sampling schemes means different sets of R i
’s and for different T  values.   
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We consider different n  , m  and T . We have used three different samplings schemes, see 

Kundu
[6]

, namely: Scheme 1: 
1 1 0mR R     and

mR n m  . Scheme 2: 
1R n m   

and
2 0mR R   . Scheme 3: 

1 1 1mR R     and 2 1mR n m   . Without loss of 

generality we take =0.3  and =0.2  in each case. Two measures, such as bias and MSE 

are used to assess the performance of the proposed methods. We replicate the process 

1000 times and the results are shown in Tab 1. Each value represents the average bias, 

and the corresponding MSE is reported within brackets. From Tab 1, we can observe that 

the biases and MSEs of the parameters are generally smaller using the Bayesian method 

rather than the maximum likelihood estimation method. Due to the difference of MLE, 

the estimates for reliability function using the Bayesian method show relatively large 

differences. When the sample is large, we have more exact maximum likelihood 

estimations, and as a result, we have better Bayesian inference for reliability function. 

But overall, the estimates for reliability function using MLE are better than using the 

Bayesian method. 

 

6. Conclusion 

In this paper, we have discussed the classical and Bayesian inferential procedures for the 

Type-II progressively hybrid censored data from the Lomax distribution. It is shown that 

the maximum likelihood estimate of the parameters can be obtained by using an iterative 

procedure. Under the assumptions of independent gamma and Igamma priors, Bayesian 

estimates of the unknown parameters can be obtained using the important sampling 

method. We also employed the Lindely Bayes approximation to compute the Bayesian 

inference for reliability function. A comparison of the MLEs and Bayesian estimates in 

terms of the average biases and MSEs is made by Monte-Carlo simulation for different 

censoring scheme. It is observed that Bayesian estimates for parameters are generally 

better than MLEs. Bayesian estimates for reliability function display comparatively large 

differences because of MLE. As sample size increases, the biases and MSEs of Bayesian 

inferences for reliability function decrease. However, on the whole, the estimates for 

reliability function using MLE are better than using the Bayesian method. 
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(n, m) T S M̂  ˆ
M  B̂  

B̂  M̂r  B̂r  

(50, 20) 5 1 

2 

3 

0.1749(0.214) 

0.2037(0.216) 

0.1926(0.207) 

0.1743(0.187) 

0.1703(0.186) 

0.1639(0.182) 

0.0718(0.121) 

0.0067(0.054) 

0.0200(0.062) 

0.0428(0.052) 

0.0020(0.006) 

0.0387(0.039) 

0.0012(0.054) 

0.0675(0.054) 

0.0617(0.054) 

0.5791(0.611) 

0.5699(0.775) 

0.4642(0.467) 
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10 1 

2 

3 

0.1535(0.248) 

0.1945(0.207) 

0.1603(0.194) 

0.1287(0.142) 

0.1346(0.171) 

0.1661(0.183) 

0.0885(0.130) 

0.0266(0.066) 

0.0031(0.068) 

0.1013(0.101) 

0.0080(0.009) 

0.0013(0.001) 

0.0524(0.056) 

0.0582(0.060) 

0.0615(0.070) 

0.4547(0.516) 

0.4540(0.455) 

0.3810(0.411) 

(70, 30) 5 1 

2 

3 

0.1106(0.176) 

0.1293(0.181) 

0.1123(0.184) 

0.1027(0.156) 

0.1342(0.171) 

0.1129(0.161) 

0.1030(0.129) 

0.0313(0.053) 

0.1515(0.155) 

0.1026(0.123) 

0.0685(0.071) 

0.1883(0.188) 

0.0043(0.046) 

0.0665(0.083) 

0.0547(0.059) 

0.3032(0.345) 

0.3403(0.542) 

0.2823(0.294) 

10 1 

2 

3 

0.0783(0.197) 

0.0603(0.138) 

0.1455(0.175) 

0.1128(0.161) 

0.1729(0.276) 

0.1209(0.164) 

0.0418(0.054)  

0.0005(0.057) 

0.1138(0.118) 

0.0736(0.086) 

0.1354(0.193) 

0.1130(0.129) 

0.0363(0.040) 

0.0662(0.083) 

0.0398(0.042) 

0.2042(0.219) 

0.2015(0.211) 

0.2667(0.271) 

(90, 40) 5 1 

2 

3 

0.1205(0.180) 

0.1086(0.175) 

0.0987(0.134) 

0.1326(0.169) 

0.1187(0.164) 

0.0477(0.128) 

0.0874(0.088) 

0.0658(0.072) 

0.0977(0.101) 

0.1049(0.104) 

0.1233(0.130) 

0.1220(0.131) 

0.0453(0.045) 

0.0768(0.089) 

0.0475(0.052) 

0.2104(0.216) 

0.1827(0.188) 

0.2272(0.234) 

10 1 

2 

3 

0.1116(0.168) 

0.1354(0.174) 

0.1520(0.176) 

0.1155(0.157) 

0.1222(0.166) 

0.1245(0.166) 

0.0875(0.092) 

0.0933(0.095) 

0.0828(0.085) 

0.1112(0.111) 

0.1053(0.112) 

0.1200(0.132) 

0.0374(0.042) 

0.0477(0.057) 

0.0627(0.065) 

0.2118(0.255) 

0.2268(0.282) 

0.2402(0.242) 

(100, 50) 5 1 

2 

3 

0.1266(0.182) 

0.1030(0.178) 

0.1424(0.179) 

0.1394(0.172) 

0.1462(0.175) 

0.1567(0.178) 

0.1029(0.104) 

0.0803(0.085) 

0.0859(0.092) 

0.1350(0.135) 

0.1353(0.147) 

0.1329(0.123) 

0.0528(0.057) 

0.1187(0.125) 

0.0590(0.065) 

0.2080(0.216) 

0.1929(0.217) 

0.2126(0.216) 

10 1 

2 

3 

0.0910(0.172) 

0.0320(0.156) 

0.1005(0.168) 

0.1127(0.161) 

0.0732(0.142) 

0.1247(0.166) 

0.0909(0.102) 

0.0731(0.076) 

0.0994(0.101) 

0.1050(0.136) 

0.1275(0.136) 

0.1158(0.135) 

0.0596(0.061) 

0.0824(0.089) 

0.0862(0.088) 

0.1704(0.173) 

0.1474(0.157) 

0.1844(0.188) 

Table 1: Biases and MSEs of the MLE estimators and Bayesian estimates 
0 =0.1,a  

0 1 1b b 0.5a    figures in brackets represent the MSEs 
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