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ABSTRACT

In this paper, single objective and multi-objective stochastic transportation problem with
Cauchy random variables and their deterministic equivalents are presented. Multi-choice
programming solves some optimization problems, where multiple information exists for a
parameter. A stochastic transportation problem in which the source parameters are either
Cauchy random variables or multi-choice type and the demand parameters are either
multi-choice type or Cauchy random variables is presented in this paper. The proposed
stochastic transportation problem is converted to an equivalent deterministic problem and
solved by goal programming method. A Numerical example is presented to illustrate the
solution procedure.

Keywords: transportation problem, multi-objective decision making, stochastic
programming, cauchy distribution, goal programming technique, interpolating
polynomial, multi-choice programming.

1. Introduction
The classical transportation problem is one of the many well-structured decision making
problems in Operations Research. The basic transportation problem was originally stated
by Hitchcock[7] and later discussed in detail by Koopmans[13]. The problem is called
transportation problem because it involves the transportation or physical distribution of
goods from several supply points to a number of demand points. When the market demands
for a commodity are not known with certainty, the problem of scheduling shipments to a
number of demand points from several supply points is a stochastic transportation problem
(Williams[25]). Sometimes the coefficients of the transportation problem can be
characterized by uncertain parameters such as, random, fuzzy and multi-choice
parameters. These uncertainties occurs mainly due to scarcity of data or, incomplete
information and knowledge regarding the data, or difficult to obtain the data, or to estimate
or the system is subject to changes. This type situations mostly present in the real world.
Transportation problems modeled in this situations are known as stochastic transportation
problems or fuzzy transportation problems or multi-choice transportation problems.
Intensive investigations on stochastic transportation problem with random
variables have been made by several researchers, namely Kataoka[14], Szwarc[23],
Leclercq[15], Kall[12], Cooper[5], Isermann[11l], Qi[18], Hassin[6], Roubens[21],
Arunachalam[1], Holmberg[9], Verma et al.[24], Hulsurkar et al.[10], Mohan[17], Biswal
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[3], Sahoo [22], Roghanian [19], Mahapatra et al. [16] and Romeijn [20].
The general model of an unbalanced stochastic, or fuzzy or multi-choice
transportation problem is given as:

min:Z = izn:cij X; 1

i=1 j=1

subject to
D x;<a,i=12,...,m )
j=1
Dx;=b;, j=12,...,n (3)
i=1
x; =20, foralli, j 4)
D a, > b, (feasibility condition) (5)
i=1 j=1

where the decision variable X; represents the amount of the commodity to be shipped

from i -th source to j -th destination. Some or all the coefficients G & and bj are
considered as random variables with known probability distributions, or known fuzzy

numbers with membership functions, or multi-choice parameters.

2. Single objective stochastic transportation problem with cauchy random variable
Mathematical model of a single objective stochastic transportation problem with Cauchy
random variable can be stated as :

min:Z = Zm:zn:cij X; (6)

i=1 j=1
subject to
Prx; <a)21-a;,i=12,...,m @)
j=1
Pr(d x; =b))=1-4,,j=12,...,n (8)
i=1
X;20,1=12,...,m, j=12,..,n 9)
where 0<¢; <1 , 0<p; <1 are specified probability levels and a , b; are

Cauchy random variables. Assume that the decision variables X;; are deterministic.

a; are Cauchy random variables.
It is given that the i-th Cauchy random variable &, has two known parameters
I, and s, , where the location parameter I, is the median and s, is the scale
1 1

P}
1 al

parameter of a,.
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The probability density function of the random variable a; is given by

f(a)= —oo<ai<oo,sai>0

g
7Z'[S§i + (ai - Iai )2] ,
Now the probabilistic constraint (7) can be rewritten as
n
Pr(a; 2> %) >1-¢;,i =12,...,m
j=1
Let zr;:lxij =u, . Hence (11) reduced to
Pr(a, >2u,)>21-¢,,i=12,....m
which can further be stated as
[
s als? +(a -1, )]

Integrating we obtain

3

1 I .
—ftan”(—)]; 21-¢;,i=1.2,...,m
T Ss, i
After substituting the limit of the integration, we get
Ui — Ia-

2

which can be further simplified to
u; —I

g

—tan’l(s—a‘) > (%—ﬂai),i =1,2,...,m

8

Taking the tangent of both the sides, it becomes
u, —I
(

1 ai

) < tan(ze, —%),i =1.2,...,m

which is same as

U <l +s, tan(ze, —%),i =1,2,...,m

Finally, this can be expressed as a linear constraint of the form

n

=1

119

da, >1-¢;,i=12,...,m

T tan () > (1-a)7i=12,....,m
S

D x; <1, +s, tan(re —Z),i =12,...,m
i i 2

(10)

(11)

(12)

(13)

(14)

(15)

(16)

(17)

(18)

(19)
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b ; are Cauchy random variables.

It is given that bj is a Cauchy random variable with known parameters |, and
J

S, , where the location parameter |, isthe medianand s, is the scale parameter of bj
J J J

The probability density function of the random variable bj is given by

Sy
f(b.)= ! ,—o<b. <oo,5 >0 20
&) ﬂ-[slfj +(b; _ij)z] RIS, 20)

Now the probabilistic constraint (8) reduces to

1-Pr(b; > > x;)=1-4,,j=1.2,..,n (21)
i=1
which is same as
Prib; 2> %)< B;,j=12,...,n (22)
i=1

Let zim:lxij =V, . Hence the probabilistic constraint (22) reduced to
Pr(bj ZVj) <pB; j=12,...,n (23)

which can be written as

S

0 b
! db. <p.,j=12,...,n (24)
J.VJ' ”[Stfj +(bj _ij)z] : :

After integration, we get

b, -1,

Zftan*(— )L, £y, =12 25)
b
j
Substituting the limit of integration, we find
. v, =1,
7 tan (L ' —) <z, j=12,. (26)
2 sbj
which can be further simplified as
v; -1,
—tan (1 J)< (——nﬂ) j=12,...,n (27)
S,
J
Taking the tangent of both the sides, we get
v. -1,
i >tan(——7zﬂ) j=1.2,.. (28)
S,

]
which is same as
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T .
vV, 2 ij +sbj tan(E—ﬁ,Bj), j=1.2,...,n (29)

Now, the probabilistic constraint (8) can be expressed as a linear constraint of the form

DXy 2l +5, '[an(%—ﬂ'ﬂj), j=12,...n (30)
i=1

Hence the equivalent single objective deterministic transportation problem of the
stochastic problem (6) - (9) can be formulated as:

min:Z = iicij X (31)

i=1 j=1
subject to
D% <1, +s, tan(za, —%),i =12,...m (32)
j=1
m T i
;xij > ij S, tan(E—rz,Bj), j=12,...,n (33)
X; 20,i=1,2,...,m; j=1,2,...,n (34)
where,

u V4 4 Vs o o\
;Iai +s, tan(ze; _E) > Zlbj 8, tan(z—ﬁﬁj) ( feasibility condition) (35)

=

3. Multi-objective stochastic transportation problem with cauchy random variables
A multi-objective stochastic transportation problem with source and demand constraints
involving Cauchy random variables can be defined as:

min:Z, =Y >cix; i k=12,...,K (36)
i=1 j=1
subject to
Pr X <a)>1-¢,i=12,...,m (37)
=1
Pr(O x; =b))>=1-4,,j=12,...,n (38)
i=1
X 20,i=12,...,m; j=12,...,n (39)

where 0<¢a; <1, 0<p; <1 are specified probability levelsand a;, b; are
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Cauchy random variables. In the model, the decision variables X; are considered as

deterministic variables.
As discussed in case of single objective transportation problem case, the

equivalent multi-objective deterministic transportation problem of the stochastic
transportation problem (36) - (39) is given as:

min:Z,=>>cix; 1 k=12,..,K (40)
i=L j=1
subject to
ZX”— < Iai +5, tan(ze, —%),i =1,2,...,m (41)
j=1
DX = ij Sy, tan(%—;zﬁj), j=1,2,...,n (42)
i=1
X;20,1=12,...,m; j=12,...,n (43)
where,
D, +s, tan(ze, —%) 23, +5, tan(%—ﬁﬁj) ( feasibility condition) (44)
i=1 i=1

4. Multi-objective stochastic transportation problem with cauchy random variables and

multi-choice parameters
We shall consider two special cases for this transportation problem where

(i) @, are Cauchy random variables and bj are multi-choice parameters and
(i) & are multi-choice parameters and b ; are Cauchy random variables.

(i) Source parameters, a, are Cauchy random variables and destination parameters, bj

are multi-choice type.
Let us consider a multi-objective stochastic transportation problem with source
constraints involving Cauchy random variables where demand parameters are multi-choice

type.

min:Z, =Y >cix; i k=12,...,K (45)
i=1 j=1
subject to
PrOx; <a)>1-g,i=12,...,m (46)
j=1
3 (CI I
Z‘X” >b;,b; e{b}l’,bj@,bj@,...,bj "} j=12,...,n (47)
X; 20,i=12,...,m; j=12,...,n (48)
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where 0 < ¢; <1 are specified probability levels and &, are Cauchy random variables
with two known parameters |, and s, where the location parameters |, are the
1 1 1

mediansand s, are the scale parameters of @, and b; are multi-choice parameters. Let
1

us consider the decision variables X; are deterministic.

As discussed earlier an equivalent deterministic constraint of the probabilistic
constraint (46) has been obtained as

s Ty . _
> <, +s, tan(za, —ohi=l2,..m (49)

i1

Let us consider the constraint (47) of the stochastic transportation problem (45) -
(48) as

i .
3x, 20®,b?,b, b}, j=1,2,...n (50)
i=1

Right hand side of j -th constraint (50) has a set of g; number of goals where

only one goal is to be selected.
Let 012,..(9;-1) be @; number of node points, where

@) . . . .
bf”,b}z),b?),...,qu‘ are the associated functional values of the interpolating

polynomial at q; different node points as shown in Table 1.

Table 1: Node Points
s 0 1 2 qj71

f(é‘(])) :bj bj(l) bJ§2) bj@) b;qj)

We derive a polynomial P, ,(5'V) of degree (q;—1) which interpolates the
J
given data:
- Doy oy .
qu_1(5<”) =b", 60 =0,12,...,(q;-1), j=1,23,...,n.

Let us formulate an interpolating polynomial for j -th multi-choice parameters by
the Lagrange interpolation formula as

(6P 1D -2)...(8D —q, +1)
GO

5(1’)(5(1) _2)'_'(5(1') —q, +1)
bj? + @2 by

Pq-—l(é‘(j)) - ;
’ (q; -1)! 1" (9, -2
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5(1)(5(1) 1)(5(1) 3) (5“)—Q,+1)
(-1)"7 (g, -3)12!

b +

SN _1). . (6D -q. +2) (.
( ). ( q; + )bﬁql),jzl,Z,...,n- (51)
(qj_l)!

Thus the transformed form of the constraint (50) becomes

m (5(1) 1)(5(1) 2) (5(1) +1) b, 5(1)(5“) 2) (5(])_qj+1)

I @D ( Ji
ij = q; J q; J
i=1 -1 (g ;—1)! (-1 ( i —2)!
5(1)(5(1) 1)(5(1) 3).. (5(1) _+1) b(3)
-1 (q, -3)12!
SV (W -1)...(6"V -q,+2 ,
Lo ) (0774, )bﬁql),jzl,z,...,n. (52)
(qj _1)!
Hence the equivalent deterministic problem (45) - (48) is presented as:
min:Z, => > cix; k=12,...,K (53)
i=1 j=1
subject to
ZX” <l, +s, tan(ze, ——) i=1.2,. (54)

j=1
(50) (5D -2).. -(5“)‘(11+1)bg1)+5“)(5“) 2).. (§(j)_qi+1)b@
0" (q, -1 | " -2
5(1)(50) ~1)(sD -3)...(sV —q ;+1)

b® +
-1 (q, -3)12! ‘
5(]) 5(])_1 5(1)_ 2
( ). ( q; + )b“”,j:1,2,...,n. (5)
(q; -1)!
s"=012,...,9,-1,j=12..,n (56)
X; 20,i=1,2,..,m; j=1,2,...,n (57)

where

ZI +s, tan(7e, ——) >Zmax{bf1),bf2’,bf3), b (q‘ } (feasibility condition) (58)

(if) Source parameters, a; are multi-choice type and destination parameters, bj are
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Cauchy random variables
Let us consider a multi-objective stochastic transportation problem in which the
source parameters are multi-choice type and demand parameters are Cauchy random
variables.

min:Z, =Y >cix; i k=12,...,K (59)
i=1 j=1
subject to
DX <a,a efa®,a® a®,....a%}i=1,2...m (60)
=1
P> x; 2b,]>1-;, j=1.2,...,n (61)
i=1
X;20,i=12,...,m; j=12,...,n (62)

where, 0< ,Bj <1 are specified probability levels and bj are Cauchy random variables

with two known parameters |, and S, where the location parameters I, are the
J J ]
medians and s, are the scale parameters of b;, & are multi-choice parameters. Let us
J

consider the decision variables X; are deterministic.

Let 012,...(g;-1) be g number of node points, where

a® a® a®, ..., 2l

are the associated functional values of the interpolating
polynomial at q; different node points as given in Table 2.

Table 2: Node Points
S0 0 1 2 9.

f (5(0) =a ai(l) ai(Z) ai(3) ai(qi)

We derive a polynomial qul(é(i)) of degree (g, —1) which interpolates the
given data:
P, 1(69) = a®" 50 =012, ...(q -1),i=1,23,...,m.

Let us formulate an interpolating polynomial for i—th multi-choice parameters
by the Lagrange interpolation formula as

P (502 @V D@ -2).. (60 -4 +1) 1 89V -2).(8V =g D) g
(-1 (g, -1)! | D °@-2r
L0 -0 -8)..(6V g +1) o,
(-1 (g, -3)12! |
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LYY -1)...(5% —q +a
(Qi _1)!

Thus the transformation of the constraint (60) becomes
e GV -DEY-2). 0V —g+D) o, 8960 -2). (Vg +1)

i=12,. (63)

2% = (-1)" % (g, -1)! ' -1 (q, - 2)!
+6<'>(5">—1)(qu';— 3)...(6" —q; +1) af3>+...+5(')(5(')‘ 1)...(6 — g, +2) 2
(1) (g, - 3)12! (g, -1t
i=12,...m. (64)

As discussed earlier an equivalent deterministic constraint of the probabilistic
constraint (61) has been obtained as

2% = +s, tan(z—ﬁﬂ,—), j=12,...,n
i=1 ] ] 2

Thus, the stochastic transportation problem (59) - (62) reduced to the deterministic form
as:

min:Z, =Y >cix; i k=12,...,K (65)
i=1 j=1
subject to

oy < (0016 -2)... 6V -q+1) o 676V -2)...(6V ~q+1) ¢
ah (1) (q, -1)! | 1) (q, - 2)!

5“@” (" -3).. @W>q+nam+ +ywym4y“ww_i+a

(-1 (g, -3)12! - (0, - 1) -
i=12,. (66)
ZXU 21, +s, tan(——;z,B) j=1.2,.. (67)
x_ijlzo,l =1,2,...m;j=1.2,...,n (68)

where,

> min{a®,a®,a?,..., aly> Zij +s,, tan (% — ;) (feasibility condition) (69)

=t

4.1. Numerical example

A numerical example is considered for the multi-objective transportation problem in which
the supply parameters are multi choice type and the demand parameters are Cauchy
random variables with known location parameters ij and scale parameters Sb,-' The

objectives are non-commensurable and conflicting in nature.
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mMin:Z; = 8X,; +9X, + X5 + 2X, +5X5; + 6%, + 4Xo5 + 7Xyy +3Xgy + 7 Xgy + 7 X5 +5Xy,

(70)
Min:Z, = 2X;; + 9%, +8X3 + Xi4 +4X,, 4+ Xy +6Xo5 + 7Xp +5Xg; +2Xg, +8Xg5 + Xy,
(71)
Min:Z, = 2X,, + 4%, + 7X5 +3X, +6X,; + 4%y, +8Xy + 48Xy, +8Xgy + 2Xg, +5Xg5 +3X,,
(72)
subject to
4
D x; <a, a, €{26,27,29,30} (73)
j=1
4
szj <a,, a,€{29,30,31,32,36} (74)
j=1
4
D X, <@y, a, €{40,42,45} (75)
j=1
3
P> x, >b1>1- 4, (76)
i=1
3
P> X, 2b,]>1- 5, (77)
i=1
3
P x5 2b]>1- 5, (78)
i=1
3
P X, 2b,]21- 5, (79)
i=1
x; 20,i=123;j=123/4 (80)

Let us take the the location parameters |, , the scale parameters S, of the
] ]

Cauchy random variables bj , ]=1,2,3,4 along with the specified probabilities
B;,1=1,2,3,4 asgiven in the Table 3.

Table 3: Parameters with specified probabilities of b i

LocationPa rameters |ScaleParameters |Specified Probabilities
l, = S,, = B,=0.05
l, = s,, = B, =0.06
Iy, = Sp, = S, =0.07
l, = S, = B, =0.08
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Using the relations (66) and (67), the equivalent deterministic linear transportation
problem of the stochastic transportation problem (70)-(80) can be derived as:

Min:Z, =8X;; +9X;, + 7Xj5 +2X, +5Xy; +6X,, +4X5 + 7Xyy +3Xgy + 7 X5y + 7 Xg5 +5X5,

(81)
Min:Z, = 2X;; + 9%, +8X;5 + Xiy + 48Xy, 4 Xpp +6Xo5 + 7 Xy +5Xg; +2Xg, +8Xg5 + X5,
(82)
Min:Z, = 2X,, +4X, + X5 + 3%y, + 6X,51 + 48X, + 8%y +4X,, +8Xgy + 2X5, +5Xg5 +3X,,
(83)
subject to
1 3o 1
x11+x12+x13,+x14326—E51+55l ) (84)
121 11 3 1
x21+x22+x23+x24§29+Tﬁz+§5§—z5§+§5§ (85)
Xy + Xgp + Xag + Xg s40+%53+%532 (86)
Xi1 + Xy + Xy = 26.941256 (87)
Xpp + Xpp + X5, = 24.968736 (88)
Xi3 + Xpg + X33 = 27.368715 (89)
Xpq + Xop + X, 214.789486 (90)
x; 20,i1=1,2,3;]=1,23,4 (91)

where, 6, =0,1,23; 6,=0,1,23,4 and 0,=0,1,2

Let us consider the goals of the three objectives as 500, 375 and 425 respectively. Using
goal programming method, (81)-(91) can be derived as

min: p, + p, + p, (92)
subject to
8Xyy + 99Xy, + X5 + 2%y, +5Xy; +6Xyy +4Xy5 +7Xyy +3Xg; + 7Xgy, + 7 X553 +5X%,, +17, — o, =500
(93)
2Xy; + 9%, +8X5 + Xy, + 4%, + Xy +6Xp5 + T Xy, +5Xg; +2Xg, +8Xgg + Xy +177, — p, =325
(94)
2%y, +4X, + TX5 + 3%, + 06Xy +4X,, +8Xy5 +4X,, +8Xy; +2Xg, +5Xg5 + 3%y, +177; — p; = 250
(95)
Xy, + Xpp + Xgg + Xy < 26—%51+25f —%513 (96)
x21+x22+x23+x24§29+£152+1—1522—§523+l524 (97)
4 8 4 8
3 1.,
Xaq + Xgp + Xgg + Xgy s40+553 +E53 (98)
Xpq + Xy + X, = 26.941256 (99)
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Xp, + Xy + Xg, > 24.968736 (100)
Xy3 + X5 + Xq3 > 27.368715 (101)
Xi4 + Xpq + X5y 214.789486 (102)
X;20,i=1,23;j=1,2,3,4, (103)

where, 6, =0,1,23; 6,=0,1234 and 6,=0,1,2.

Solving the above linear programming problem (92) - (103) by LINGO 10
package, the Optimal compromise solution is obtained as given in Table 4.

Table 4: Optimal Solution

Decision Variables | Optimal ObjectiveValues | Deviational Variables
X,, = 5.6710 p, =0
X, =1.8066
X,, =14.7895 p,=0
X,, =14.3340 Z, = 499.9999
X,3 =12.4671 p;=0
X, = 6.9363 Z,=374.7482
X5, = 23.1621 n=0
X5, =14.9016 Z, =395.1967

Xi3 = Xy = n, =0.2517

Xos = X34 =0

0,=3,6,=0,0,=2 7, =0

5. Conclusions

Solution procedure for single objective and and multi-objective stochastic transportation
problems considering source and demand parameters as Cauchy random variables are
presented in this chapter. Equivalent deterministic models of the stochastic transportation
problem are established using chance constrained programming technique. After
establishing the deterministic model, the goal programming model is formulated. The
problem is solved by standard non-linear programming software. Further, stochastic
transportation problems with source and demand parameters as Cauchy random variables
and multi-choice type is also presented in this chapter. Lagrange interpolating polynomials
of corresponding multi-choice parameters are established.
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