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ABSTRACT
In this paper we prove the existence, uniqueness of a mild solution of mixed Volterra-
Fredholm functional integrodifferential equation of Sobolev type with nonlocal condition.
The results are established by using the semigroup theory and the Banach fixed point
theorem.
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1. Introduction
Byszewski and Acka [6] established the existence, uniqueness and continuous
dependence of a mild solution of a semilinear functional differential equation with
nonlocal condition of the form

u'(t) + Au(t) = f(t,u,), te€]0,al,

u(s) + g (uey, e, )| (8) = 0(s), s € [-r,0],

where 0<t; <--<t,<a(p€N) —A is the infinitesimal generator of a C,
semigroup of operators on a general Banach space, f,g and @ are given functions and
u;(s) =u(t+s)for t € [0,a],s € [-r,0].

In this paper, we shall prove the existence and uniqueness of a mild solution for a
mixed Volterra-Fredholm functional integrodifferential equation of Sobolev type with
nonlocal condition of the form

t a
(Bu(®) + 4u(® = £ t,u, f k(b s,1,)ds, f h(t s, u)ds |, ¢ € [0,al, )
0 0

u(s) + [g (utl, .,utp)] () =0(s), se[-r0] (2)
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where B and A are linear operators with domains contained in a Banach space @ and
range contained in a Banach space E, @ € C([-7r,0],E), f:] XX XX XX > E,
g:XP > Xandk,h:] xJ X X - X.

The work on abstract nonlocal semilinear initial value problems was initiated by
Byszewski [7, 8]. Such problems with nonlocal conditions have been extensively studied
in the literature [1, 3, 4, 9, 10, 11, 14]. Sobolev type equations arise in various
applications such as in the flow of fluid through fissured rocks, thermodynamics and
shear in the second order fluids. For more details, we refer to [5, 11, 12]. Recently,
Xiaoping Xu [13] studied the existence for delay integrodifferential equations of sobolev
type with nonlocal conditions by using the theory of semigroup and the method of fixed
points. Balachandran and Park [2] established the existence and uniqueness of a mild
solution of a functional integrodifferential equation of Sobolev type with nonlocal
condition using the theory of semigroup and the Banach fixed point principle. In this
paper, we generalize the results of Balachandran and Park [2] for a mixed Volterra-
Fredholm functional integrodifferential equation of Sobolev type with nonlocal condition.

2. Preliminaries

In order to prove our main theorem we consider some conditions on the operators A and
B. Let Q and E be Banach space with norm |.| and ||.|| respectively. The operators
A:D(A) c Q » E and B: D(B) c Q — E satisfy the assumptions which are given below:
(A;) A and B are closed linear operators,

(A,) D(B) c D(A) and B is bijective,
(A3) B~1:E - D(B) is continuous.

From the above fact and the closed graph theorem imply the boundedness of the
linear operators AB™':E — E. Again -AB~! generates a uniformly continuous
semigroup S(t),t =0 and SO maxe[oq]lIS(t)Il is finite. In this  continuation the
operator norm ||. ||gz will be denoted by ||.||. Consider J, = [-7,0],] = [0,a] and
X =C(-r,0],E), Y =C([-r,a],E), Z =C([0,a],E). We denote
M = maxeeo o1 /IB~*S(®)BI|, and R = [|B~1S(¢)||. We make the following hypothesis:

(H;) Foreveryu,v,weYandte€[0,al, f(.,us, v, w;) € Z.
(H,) There exists a constant L > 0 such that

ILf Ct, xe, Ve, 2e) — f(& up, ve, Wl
< L(le —ulle=-ra.e) Ty — vllcqramntllz — W”C([—r,t],E))

forx,y,z,u,v,w €Y,t € [0,al.
(H3) There exists a constant K > 0 such that
lk(t,s,us) — k(t,s,v)|l < Kllu —vll¢-rs,5), foru,v €Y,s € [0,al.

(H,) There exists a constant H > 0 such that
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lh(t,s,us) — h(t, s, vl < Hllu — vll¢(-rs,5), fOru,v € Y,s € [0,al.

(Hs) Let g:XP — X and there exists a constant G > 0 such that

” [g (utl, ....,utp)] (s) - [g (vtl, ....,vtp)] (s)” < Gllu —vlly,
foru,veY,s e [—r,0].
(H)) MG + RLa+ RLKa? + RLHa? < 1.
A function u € Y satisfying
i) u(®)=B7'S®BOO) - BB |g (uey, .. ur, )| (0)

t N a

+ f B71S(t — s)f | s, us, f k(s, & ug)dé, f h(s, & ug)dé |ds,t € [0,al,
0

0 0

(i) u(s) + [g (utl, ....,utp)] (s) =0(s), se][-r0]
is called a mild solution of the nonlocal Cauchy problem (1) — (2).

3. Existence of a mild solution

Theorem 3.1: Consider that the assumptions (A;) — (A,) holds and the functions f, g, h
and k satisfy the conditions (Hy) — (Hg). Then the nonlocal Cauchy problem (1) — (2)
has a unique mild solution.

Proof: Define an operator F on the Banach space Y by the formula

(Fu)(t)

([ @(t) — [g (utl, ....,utp)] (t),t € [-7,0]

] B‘:S(t)B(D(O) - B‘lS(t)f’ g (ue, utp)] (0) (3)

+fB‘1S(t—s)f s,us,fk(s,f,ug)df,fh(s,f,ug)df ds,t € [0,q]
0

\ 0 0

where u €Y. It is easy to see that F maps Y into itself. Now, we will show that F is
contractionon Y.

Consider the following two differences

Fu)() = Fv)() = [g (eys e, )] 0 = [g (veys e, )| 0, 4)

foru,veY,t € [-r,0]and
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FW© - ED© = BSOB|(9 (e -or,)) 0 = (9 (01422, ) O]

t N a
+ | B7IS(t - ) f(s,us, k(s, & ug)dé, h(s,f,uf)d5>
frose-al(onfrecoin]

0

_f<5’ vs,fk(s, £, ve)d{,j h(s,f,vddf)] ds,
0 0

foru,v €Y, t €[0,al. (5)
From (4) and (Hs), we have
IFW@ — F)ONl <Gllu—vlly,  foruveY,te[-r0] (6)

Moreover by (5),(H,) — (He),

IF0® = EDON < 1BSOBN || (g (e 2e,) ) O = (9 (v, 38,) ) O

t
+ [ 1Bt =)l
!

f(s,us,fk(s, f,ug)df,f h(s, E,u;)d{)
0

0

ds

—f<s,vs,fk(s,f, vf)df,f h(s, ¢, def)
0

0

t
< MGl —vll, + RLf
0

s
llu — v”C([—r,s],E) + f”k(s, $, uf) - k(S, S, Ug)”dg(
0

+ f||h(5, &ug) = h(s,¢, Ug)”df] ds
0

t
< MGl —vlly + RLf
0

S
nu—ﬂqHﬁﬂ+Kfm—vmmmwﬂf
0

a
4 H [ = vlleqor e ds | ds
0
t S a
SMGIIu—v||y+RL||u—v||Yj 1+Kjd€+de§]ds
0 0 0
< [MG + RLa + RLKa? + RLHa?]||lu — vlly. (7
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From the equation (6) and (7) we get
I(Fu)(®) — (Fv)OIl < gllu —vlly, foru,v ey, (8)

where ¢ = MG + RLa + RLKa? + RLHa?. Since, q < 1 then equation (8) shows that F
is a contraction on Y. Consequently, the operator F satisfies all the assumptions of the
Banach contraction mapping theorem. Therefore, in space Y there is a unique fixed point
for F and this point is the mild solution of the considered problem (1) — (2). O

4. Continuous dependence of mild solution

Theorem 4.1: Assume that the assumptions (A,) — (A3) hold and that the function
f, 9,k and h satisfy the hypothesis (H,) — (Hg). Then for each ®1,0, € X and for the
corresponding mild solutions uq, u, of the problems

t a
(Bu(t))'+Au(t) =flt ut,f k(t,s, us)ds,j h(t,s,ug)ds |, t€[0,al, 9
0 0
u(s) + [ g (uey e, )| 5) = 0:(5), s € [-1,00, (i = 1,2) (10)

the following inequality
luy — wzlly < Me@RLAHKD[|g, — @, ||y + (G + LHa?)|luy — uylly] (11)
is true. Additionally, if (G + LHa?) < %e_aRL(“'Ka) then,

MeARL(+Ka)

[1— M(G + LHa?)eaRL(1+Ka)]

19, — D, llx. (12)

lluy —uzlly <

Proof: Suppose that @; (i = 1,2) be an arbitrary functions belonging to X and suppose
u; (i = 1,2) be the mild solutions of the problem (9) - (10). Consequently,

uy (8) —up(t) = B1S(£)B[01(0) — 9,(0)]

87508 (g (@ey -rr )e,)) ©) = (9 (Weys ors (), )) O]

t N a

n f B15(t— ) || s, un)s, f k()& (u)e)de, f h(s,&, (u)e)dé
0

0 0
s a

(5@, [ K(s. ), [ (s, et | as, ces, (13)
0

0

and for t € J, we have

ur (6) —uz(t) = [01(6) — 92(8)]
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(9 (e, @2, )) © = (9 (@Deys s ), )) @] (1)
By our assumptions,

[luy (6) — up (DI < M1 — B, llx + MGllug — uylly
S a

5
; f 156 = |1 { s s, f k(s,&, (up)e)dE, f h(s,&, (up)e)de
0 0

0
N a

~ f{ 5@ [ k(o6 Gude)ds, [ Ao, Cude)s || s
0

0

)
< M[|@; — Dllx + MGllu; —uy|ly + RLf lws — uzlle=rs16)
0

+ [l e = k(s &, @ae)lla g + [ (s & nde) = h(s & <uz>;>||de] ds
0 0

)
< M0y — Byllx + MGllus — wylly + RL f s — wolleorsye)
0

S a
1K f iy — s lloqrermyd €+ H f ey — uznc([_r,g],g)df] ds
0 0

< M||@1 — D,llx + M(SG||U1 —Ully + RLHa?||lu; — uylly

+RLf[|Iu1 —Wlleqororm + Kalluy — walleqorem] ds
0

< M@, — D,llx + (MG + R%Haz)llul —Uyly
+RL(1 + akK) fllul — Uzl c((=r.s1.0) 45, for0<é<di<t<a.
0

Therefore,

supseqo,e1llus (8) — u ()|l < M||B; — B,llx + (MG + RLHa?)|luy — us|ly
t

+RL(1 + ak) j s = wallersymds, ¢ € [0,a] (15)
0

From (Hs) and (14) we have
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lluy (8) —u (O < 101 — B2llx + Gllug —uzlly fort € Jo. (16)
Since, M = 1, (15) and (16) imply that

lug (&) — u, (Ollc=r,e0,6) < MI[@1 — B2llx + (MG + RLHa*)|luy — uylly
t

+RL(1 + ak) f s — wlleqorsymds,  fort €. a7
0

By Gronwall’s inequality, we have
luy () — u, Dlly < [MII01 — D2 llx + (MG + RLHa?)|luy — u,|ly]e@REC+Ka),

and therefore inequality (11) is true. Finally, inequality (12) is a consequence of
inequality (11). Thus, the proof is complete. O
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