Journal of Physical Sciences, Vol. 17, 2013, 111-115 ISSN: 0972-8791, www.vidyasagar.ac.in/journal Published on 26 December 2013

Semiprime Γ-rings with Jordan Derivations

A. K. Halder and A. C. Paul

Department of Mathematics, University of Rajshahi Rajshahi-6205, Bangladesh Email: halderamitabh@yahoo.com; acpaulrubd math@yahoo.com

ABSTRACT

Let M be a 2-torsion free semiprime Γ -ring and d:M \rightarrow M a Jordan left derivation. We find the existence of a positive integer n with the condition $(d(x)\alpha)^n d(x)=0$, for all $x \in M$ and $\alpha \in \Gamma$, which gives d=0. With the help of this assertion, we show that the presence of Jordan derivations d and g on the 2-torsion free Γ -ring M such that $d^2(x)=g(x)$, for all $x \in M$ implies d=0.

Keywords: n-torsionfree, Jordan derivation, Jordan left derivation, commutativity, semiprime Γ -rings.

1. Introduction

Let M and Γ be additive abelian groups. M is said to be a Γ -ring if there exists a mapping $M \times \Gamma \times M \longrightarrow M$ (sending (x, α ,y) into x α y) such that

(a) $(x+y)\alpha z = x\alpha z + y\alpha z$,

 $x(\alpha+\beta)y=x\alpha y+x\beta y$,

 $x\alpha(y+z)=x\alpha y+x\alpha z,$

(b) $(x\alpha y)\beta z = x\alpha(y\beta z)$, for all x, y, $z \in M$ and $\alpha, \beta \in \Gamma$.

A subset A of a Γ -ring M is a left(right) ideal of M if M Γ A(A Γ M) is contained in A. A ideal P of a Γ -ring M is prime if P \neq M and for any ideals A and B of M, A Γ B \subseteq P, then A \subseteq P or B \subseteq P. M is prime if a Γ M Γ b=0 with a, b \in M, then a = 0 or b = 0. M is semiprime if a Γ M Γ a=0 with a \in M, then a = 0. M is n – torsion free if na=0 for a \in M implies a=0,where n is an integer. We denote the commutator a α b-b α a by [a, b]_{α} for all a,b \in M and \in Γ . A Γ -ring M is commutative if a α b=b α a, for all a \in M and $\alpha \in \Gamma$. A Γ ring M is non-commutative if it is not commutative. An element a of a Γ -ring M is nilpotent if (a α)ⁿa=0, for all $\alpha \in \Gamma$ and for some positive integer n. An ideal I of a Γ -ring M is nilpotent if (I Γ)ⁿI=0, for some positive integer n. A Γ -ring M is nil if every element of M is nilpotent. An additive mapping d:M \rightarrow M is a derivation if d(a α b)=a α d(b)+d(a) α b, a left derivation if d(a α b)=a α d(b)+b α d(a),a Jordan derivation if d(a α a)=a α d(a)+d(a) α a and a Jordan left derivation if d(a α a)=2 α ad(a), for all a, b \in M and $\alpha \in \Gamma$.

Ceven [4] worked on Jordan left derivations on completely prime Γ -rings. He investigated the existence of a nonzero Jordan left derivation on a completely prime Γ -ring that makes the Γ -ring commutative with an assumption. With the same assumption, he showed that every Jordan left derivation on a completely prime Γ -ring is a left derivation on it. In this paper, he gave an example of Jordan left derivation for Γ -ring. Mustafa Asci and Sahin Ceran [7] studied on a nonzero left derivation d on a prime Γ -

A. K. Halder and A. C. Paul

ring M for which M is commutative with the conditions $d(U) \subseteq U$ and $d^2(U) \subseteq Z$, where U is an ideal of M and Z is the centre of M. They also proved the commutativity of M by the nonzero left derivation d_1 and right derivation d_2 on M with the conditions $d_1(U) \subseteq U$ and $d_1 d_2(U) \subseteq Z$.

In [9], Sapanci and Nakajima defined a derivation and a Jordan derivation on Γ rings and investigated a Jordan derivation on a certain type of completely prime Γ -ring which is a derivation. They also gave examples of a derivation and a Jordan derivation of Γ -rings.

Bresar and Vukman [2] proved that a Jordan derivation on a prime Γ -ring is a derivation.Furthermore, in [3], Bresar and Vukman showed that the existence of a nonzero Jordan left derivation of R into X implies R is commutative, where R is a ring and X is a 2-torsion free and 3-torsion free left R-module. In [6], Jun and Kim proved their results without the property 3-torsion free. Qing Deng [5] worked on Jordan left derivation of prime ring R of characteristic not 2 into a nonzero faithful and prime left R-module X. He proved the commutativity of R with Jordan left derivation d.

JosoVukman [10] studied on Jordan left derivations on semiprimerings. He investigated a Jordan left derivation d on a 2-torsion free semiprime ring R such that d=0 with the condition $(d(x))^n=0$, for all $x \in M$. He also showed that d=0 if d and g are Jordan derivations on a 2-torsion free and 3-torsion free semiprime ring R with the condition $d^2(x)=g(x)$, for all $x \in M$.

In this present study, we motivate the results of Joso Vukman [10] in Γ -rings. We show that the existence of a positive integer n makes the Jordan left derivation d on a 2-torsion free semiprime Γ -ring M zero with $(d(x)\alpha)^n d(x)=0$, for all $x \in M$ and $\alpha \in \Gamma$. We also investigate the Jordan derivations d and g on M with the conditiond²(x)=g(x), for all $x \in M$, which gives d=0.

Throughout this work, we denote the condition $a\alpha b\beta c = a\beta b\alpha c$, for all $a,b,c \in M$ and $\alpha,\beta \in \Gamma$, by (*) for convenience.

2. Supporting lemmas

Lemma 2.1. Let M be a Γ -ring satisfying (*). If d:M \rightarrow M is a Jordan left derivation then (a) d(xay+yax)=2xad(y)+2yad(x),

(b) $d(x\alpha y\beta x)=x\alpha x\beta d(y)+3x\alpha y\beta d(x)-y\alpha x\beta d(x)$, for all $x,y \in M$ and $\alpha,\beta \in \Gamma$. The proof is given in Y.Ceven [4].

Lemma 2.2. Let M be a 2-torsion free and 3-torsion free Γ –ring satisfying (*), and d:M \rightarrow M a Jordan left derivation then. If $(d[[d(x), x]_{\alpha}, x]_{\beta})=0$ holds for all $x \in M$ and $\alpha, \beta \in \Gamma$ the $[d(x), x]_{\alpha}\beta d(x)=0$, for all $x \in M$ and $\alpha, \beta \in \Gamma$.

Proof: Suppose that for all $x \in M$ and $\alpha, \beta \in \Gamma$,

 $0 = (d[[d(x), x]_{\alpha}, x]_{\beta}) = 6 [d(x), x]_{\alpha}\beta d(x)$, by Lemma 2.1 and (*). Since M is 2-torsion free and 3-torsion free, $[d(x), x]_{\alpha}\beta d(x)=0$, for all $x \in M$ and $\alpha, \beta \in \Gamma$.

For our work, we only state the following lemma

Lemma 2.3. Let M be a non-commutative prime Γ -ring of characteristic not 2, and d:M \rightarrow M a Jordan left derivation. Then d=0.

Semiprime Γ -rings with Jordan Derivations

Lemma 2.4. Let M be a semi-prime Γ -ring. Then M contains no nonzero nilpotent ideals. **Proof:** Let I be a nilpotent ideal of M. Then $(I\Gamma)^n I=0$, for some positive integer n. Let us assume that n is minimal. Now, suppose that n>1. Since I $\Gamma I \subseteq I$, we have $(I\Gamma)^{n-1}I\Gamma M\Gamma (I\Gamma)^{n-1}I \subseteq (I\Gamma)^{n-1}I\Gamma (I\Gamma)^{n-1}I= (I\Gamma)^n I\Gamma (I\Gamma)^{n-2}I=0$. Hence by thr semiprimeness of M, we have $(I\Gamma)^{n-1}I=0$, a contradiction to the minimality of n. Therefore, n=1. This implies that $I\Gamma I=0$. Then we get $I\Gamma M\Gamma I \subseteq I\Gamma I=0$. But, since M is semiprime, it yields I=0.

Lemma 2.5. Let M be a Γ -ring. Then the following conditions are equivalent.

(a) M has no nonzero nilpotent elements.

(b) For every $a \in M$ and $\alpha \in \Gamma$, $(a\alpha)^n a=0$ implies a=0, for some positive integern.

Proof: Let $a \neq 0$, then a is a nonzero nilpotent element of M, which is a contradiction.

Hence (a) implies (b). Let $(a\neq 0) \in M$ be a nilpotent element. Then $(\alpha\alpha)^m a=0$, for every $\alpha \in \Gamma$ and for some positive integer m. Suppose that m is minimal. If n<m, then n is the degree of nilpo- tency, a contradiction. If n=m, then by hypothesis a is a zero nilpotent element, which is also a contradiction. If n>m, say n=m+k, k\geq 1. Then we have $(\alpha\alpha)^m((\alpha\alpha)(\alpha\alpha)...(\alpha\alpha))_{k-factors}a=0$. This gives $(\alpha\alpha)^{m+k}a=0$. This implies that $(\alpha\alpha)^n a=0$. By hypothesis, a=0, a contradiction. Hence M has no nonzero nilpotent elements. Thus (b) implies (a).

3. Main theorems

Theorem 3.1. Let M be a 2-torsion free semi-prime Γ -ring satisfying (*) and d:M \rightarrow M a Jordan left derivation. If there exists a positive integer n such that

 $(d(x)\alpha)^n d(x)=0$, for all $x \in M$ and $\alpha \in \Gamma$, then d=0.

Proof: Since M is semi-prime, $\cap P=(0)$, where the intersection runs over all prime ideals P of M. We need to show that $d(P) \subseteq P$, for every prime ideal P of M. Let

 $a \in P, x \in M$. Then by Lemma2.1(a), We have

 $0=d(a\alpha x+x\alpha a)\alpha d(a\alpha x+x\alpha a) = 2^{2}(a\alpha d(x)\alpha a\alpha d(x)+a\alpha d(x)\alpha x\alpha d(a)+x\alpha d(a)\alpha a\alpha d(x)+x\alpha d(a)\alpha x\alpha d(a)).$

Since M is 2-torsion free, $aad(x) \in P$ and $xad(a) \in M$,

 $(x\alpha d(a)\alpha)(x\alpha d(a)) \equiv 0 \pmod{P}$, for all $\alpha \in \Gamma$. Also,

 $0=d(a\alpha x+x\alpha a)\alpha d(a\alpha x+x\alpha a)\alpha d(a\alpha x+x\alpha a)$

 $= 2^{3}(a\alpha d(x)\alpha a\alpha d(x)\alpha a\alpha d(x) + x\alpha d(a)\alpha a\alpha d(x)\alpha a\alpha d(x) + a\alpha d(x)\alpha x\alpha d(a)\alpha a\alpha d(x)$

+ $x\alpha d(a)\alpha x\alpha d(a)\alpha a\alpha d(x)$ + $a\alpha d(x)\alpha a\alpha d(x)\alpha x\alpha d(a)$ + $x\alpha d(a)\alpha a\alpha d(x)\alpha x\alpha d(a)$ + $a\alpha d(x)\alpha x\alpha d(a)\alpha x\alpha d(a) \alpha x\alpha d(a) \alpha x\alpha d(a)$.

Since M is 2-torsion free, $a\alpha d(x) \in P$ and $x\alpha d(a) \in M$, $(x\alpha d(a)\alpha)^2(x\alpha d(a))\equiv 0(,mod)P$, for all $\alpha \in \Gamma$.

Proceeding in this way, we have

 $(x\alpha d(a)\alpha)^n(x\alpha d(a))\equiv 0(,mod)P$, for all $\alpha \in \Gamma$.

Thus, in the prime Γ -ring, M'=M/P, we have $(x'\alpha d(a)'\alpha)^n x'\alpha d(a)'=0$, for all $x' \in M'$ and $\alpha \in \Gamma$. By Lemma 2.5, $x'\alpha d(a)'=0$, for all $x' \in M'$ and $\alpha \in \Gamma$. Since M' is prime, d(a)=0. This gives $d(a) \in P$, and so $d(P) \subseteq P$. Therefore, $d(P) \subseteq P$, for all prime ideals P of M, and so d induces a Jordan left derivation d' on the prime Γ - ring, M'=M/P. Let us first assume that M' is commutative. In this case, d' is a derivation and we also

A. K. Halder and A. C. Paul

have $(d'(x')\alpha)^n d'(x')=0$, which follows that d'=0. In case, M' is non-commutative, it follows by Lemma 2.3 that d'=0. Thus, in any case, d'(M')=0, that is, $d(M)\subseteq P$, for all prime ideals P of M. Since $\cap P=(0)$, we obtain d(M)=0, and hence d=0.

Theorem 3.2. Let M be a 2-torsion free and 3-torsion free semi-prime Γ -ring satisfying (*). If d:M \rightarrow M and g:M \rightarrow M are Jordan derivations such that d²(x)=g(x), for all x \in M, then d=0.

Proof: We have, $d^2(x)=g(x)$, for all $x \in M$.	(1)
Replacing $x\alpha x$ for x in (1), and then using the condition that M is 2-torsion fre	e, we
get $d(x\alpha d(x))=x\alpha g(x)$, for all $x \in M$ and $\alpha \in \Gamma$.	(2)
Then by Lemma 2.1(a), and using (1) and (2), we have	
$d(d(x)\alpha x)=2d(x)\alpha d(x)+x\alpha g(x)$, for all $x \in M$ and $\alpha \in \Gamma$	(3)
Taking (3)-(2), we get $d([d(x), x]_{\alpha})=2d(x)\alpha d(x)$,	(4)
for all $x \in M$ and $\alpha \in \Gamma$.	
Replacing x by x+y in (4), we have $d([d(x), y]_{\alpha} + [d(y), x]_{\alpha}) = 2d(x)\alpha d(y) + 2d(y)\alpha d(x)$ Replacing x αx for y in the above equation and then using Lemma 2.1(a) and the condition that M is 2-torsion free, we have	
$d(x\alpha[d(x), x]_{\alpha})=d(x)\alpha x\alpha d(x)+x\alpha d(x)\alpha d(x),$ for all $x \in M$ and $\alpha \in \Gamma$. By Lemma 2.1(a), equation (4) and equation (5), we have	(5)
$d([d(x), x]_{\alpha}\alpha x) = d(x)\alpha x\alpha d(x) + x\alpha d(x)\alpha d(x)$, for all $x \in M$ and $\alpha \in \Gamma$. Taking (6)-(5) and then applying Lemma 2.4, we get	(6)
$[d(x), x]_{\alpha} \alpha d(x) = 0$, for all $x \in M$ and $\alpha \in \Gamma$.	(7)
Using Lemma $2.1(a),(1),(4)$ and (7), we obtain	
$d(d(x)\alpha[d(x),x]_{\alpha})=4d(x)\alpha d(x)\alpha d(x)+2[d(x),x]_{\alpha}\alpha g(x)$, for all $x \in M$ and $\alpha \in \Gamma$. By Lemma 2.1(b),(7)and (1), we have	(8)
$d(x\alpha d(x)\alpha d(x))=d(x)\alpha d(x)\alpha d(x)+3d(x)\alpha x\alpha g(x)-x\alpha d(x)\alpha g(x)$, for all $x \in M$ and $\alpha \in \Gamma$. By using (1),(9) and Lemma 2.1, we have	(9)
$d(d(x)\alpha d(x)\alpha x)=d(x)\alpha d(x)\alpha d(x)+5x\alpha d(x)\alpha g(x)-3d(x)\alpha x\alpha g(x)$, for all $x \in M$ and $\alpha \in \Gamma$ Applying (10)-(9), we have	.(10)
$d(d(x)\alpha d(x)\alpha x - x\alpha d(x)\alpha d(x)) = -6[d(x), x]_{\alpha} \alpha g(x)$, for all $x \in M$ and $\alpha \in \Gamma$. On the other hand, by (7), we obtain	(11)
$d(d(x)\alpha d(x)\alpha x - x\alpha d(x)\alpha d(x)) = d(d(x)\alpha[d(x), x]_{\alpha})$, for all $x \in M$ and $\alpha \in \Gamma$. From (11) and (12), we have	(12)
$d(d(x)\alpha[d(x), x]_{\alpha}) = -6[d(x), x]_{\alpha}\alpha g(x)$, for all $x \in M$ and $\alpha \in \Gamma$. Combining (8) and (13) and using the condition that M is 2-torsion free, we have	(13)
$d(x)\alpha d(x)\alpha d(x) + 2d(x)\alpha[d(x), x]_{\alpha}\alpha g(x)=0$, for all $x \in M$ and $\alpha \in \Gamma$. By Lemma 2.1(b).(1) and (4), we have	(14)
$2d(x)\alpha d(x)\alpha d(x)+3d(x)\alpha[d(x),x]_{\alpha}\alpha g(x)=0$, for all $x \in M$ and $\alpha \in \Gamma$. Now, taking $(15)\times 2-(14)\times 3$, we have	(15)
$d(x)\alpha d(x)\alpha d(x) = 0$, for all $x \in M$ and $\alpha \in \Gamma$. That is $(d(x)\alpha)^3 d(x) = 0$, for all $x \in I$.	
M and $\alpha \in \Gamma$.	
Finally by Theorem 3.1, we have d=0.	

Semiprime Γ -rings with Jordan Derivations

REFERENCES

- 1. W.E.Barnes, On the Γ-rings of Nobusawa, Pacific J.Math., 18 (1966) 411-422.
- 2. M.Bresar and J.Vukman, Jordan derivations on prime rings, Bull. Austral. Math. Soc., 37 (1988) 321-322.
- 3. M.Bresar and J.Vukman, On the left derivations and related mappings, Proc. of the AMS., 110(1) (1990) 7-16.
- 4. Y.Ceven, Jor dan left derivations on completely prime gamma rings, C.U. Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi (2002) Cilt 23 Sayi 2.
- 5. Qing Deng, On Jordan left derivations, Math. J. Okayama Univ., 34(1992) 145-147.
- 6. A.K.Halder and A.C.Paul, Commutativity of two torsion free σ -prime gamma rings with nonzero derivations, Journal of Physical Sciences, 15 (2011) 27-32.
- K.W.Jun and B.D.Kim, A note on Jordan left derivations, Bull. Korean Math. Soc., 33(2) (1996) 221-228.
- 8. Mustafa Asci and Sahin Ceran, The commutativity in prime gamma rings with left derivation, International Mathematical Forum, 2(3) (2007) 103-108.
- 9. N.Nobusawa, On a generalization of the ring theory, Oska J.Math., 1 (1964).
- 10. A.C.Paul and A.K.Halder, Jordan left derivations of two torsion free ΓM-modules, Journal of Physical Sciences, 13 (2009) 13-19.
- 11. M.Sapanci and A.Nakajima, Jordan derivations on completely prime gamma rings, Math. Japonica, 46(1) (1997) 47-51.
- 12. J.Vukman, Jordan left derivations on semiprime rings, Math. J. Okayama Univ., 39 (1997) 1-6.