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Abstract. The investigation concerns the time-dependent flow of an incompressible unsteady 
conducting Oldroyd fluid through a porous channel, which is under the influence of transverse 
magnetic field. It is assumed that the fluid is injected through lower plate with a constant 
velocity V and it is sucked off with the same velocity through the upper plate. Laplace 
transform method has been employed for t  and the differential equations, which do not involve 
the retardation time constant, are solved using a perturbation scheme treating visco-elastic 
parameter to be small. Results are investigated for relaxation parameter, Hartman number and 
cross-flow Reynolds number on velocity and skin friction of the flow with graphs.  
 
Keywords: Oldroyd Fluid, Hydromagnetic, Cross-flow Reynolds number, Retardation time, 
Perturbation technique 
 
1.  Introduction 
Flow under the influence of magnetic field has wide range of theoretical and practical interest 
to the researchers for last four decades. In the presence of magnetic field fluid particles 
experience a force is induced by the electric current which modifies the flow field. This Lorenz 
force is the interaction between the transverse magnetic field and the electrically conducting 
fluid. In industry, various fluids pass through duct, which is surrounded by electromagnet, are 
porous. This porosity and duct shape depends on the industrial applications. If the fluid 
contains particles, which are influenced by the magnetic field, then the Lorenz force appears to 
prevent the motion of fluid and random motion of fluid particles become obscure. So, the 
advantage of this force may be applied to suppress the week turbulent motion of the fluid. 
Flow through small gap as well as the rheometric experiments is examples of application of 
flow through parallel plates. Most of the industrial fluids are non-Newtonian and some of them 
are electrically conducting. Viscoelastic fluids, containing the viscous stresses as well as elastic 
responses in the constitutive relations exhibit different types of flow phenomenon. The 
Oldroyd two constant models is one of the viscoelastic fluids which exert viscous frictional 
forces between the two layers together with elongated preventive fibers constituted by 
molecules. Here the layers of fluid are the assembled of parallel fibers with equivalent 
properties. Chemicals like, paints, adhesive, coal products etc. are few examples of viscoelastic 
fluids.  Moreover, bio-chemical materials (in liquid states) are also to be included in this class 
of fluids.  Besides, the environmentally polluted material such as industrial wastes in liquid 
state may also considered to be another kind of non-Newtonian fluid. All the aforesaid non-
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Newtonian fluid may not represent the electrical conductivity;   however, fluids with 
constituent ingredients magnetic material may follow the Oldroyd two constant constitutive 
relations. 

As the frictional forces are very high, the flow of a non-Newtonian fluid is usually 
one-dimensional. In reality, bulk material compelled to pass through the channel is time-
dependent because the displacements of material particles are situation dependent. The 
pressure gradient induced the flow may be the combination of separate function of time and 
space or both. A source of fluid may also yield the flow arising from either of the plate. The 
flow analysis of the well-known pressure gradient is important to study the stability of the 
turbulent motion. The investigation of heat and mass transfer is important in view of the 
chemical engineering processes. However, suction and injection of fluid in the channel put 
forward a due advantage to apply the model for research into modern engineering design as 
well as biological systems. 

 Sellers and Walker [2] initiated the hydromagnetic laminar flow between parallel 
planes with non-uniform magnetic field. Mukhopadhya and Chaudhary [3] presented the 
fluctuating flow of Oldroyd type viscoelastic fluid, which is passing over an infinite flat plate. 
Recently Ray et al. [4] obtained an exact solution of conducting Oldroyd two constants 
viscoelastic fluid flow in a horizontal channel in the presence of transverse magnetic field. 
They assumed that the flow is sinusoidal time dependent.  There are also some important 
investigations on the non-Newtonian fluid flow with or without magnetic field [5, 6, 7, 8]. 
Asghar et al. [8] put forward an exact solution of unsteady hydromagnetic flows of an Oldroyd 
-B fluid by employing Fourier transform method. Uddin et. al. [9] put forward some interesting 
results on hydro-magnetic stagnation point flow with heat transfer and the nonlinear 
differential equations are solved by Runge-Kutta method.  Hayat et. al. [9] investigated the 
influence of Hall currents and material parameters of the second grade fluid in a rotating frame 
of reference.  They found periodic solution for steady and unsteady flows. Rajagopal and 
Bhatnagar [10] discussed the flow of Oldroyd -B fluid past an infinite porous plate and the 
longitudinal and torsional oscillations of an infinite rod of finite radius. Very fundamental 
ideas of some periodic and non-periodic flows of an Oldroyd-B can be found in Hayat et al. 
[11].  In the subsequent studies [12] they investigated the same problem by incorporating a 
rigid body rotation.  In a recent study Hayat and Hutter [13] employed the Laplace transform 
method for the solution for the solution of an initial value problem arising out of a second 
order rotating fluid through an infinite porous plate.  

Hydrodynamic (MHD) flow of second grade visco-elastic fluid past a wedge with 
porous suction or injection has been studied by Hsiao [14] with the consideration of mixed 
convective heat transfer. He analyzed governing, momentum and energy equations of the fluid 
flow by the method of combination of series expansion, the similarity transformation and 
finite-difference method. With the other significant result he concluded that the buoyancy force 
can accelerate the fluid motion in the boundary layer and enhance the heat transfer 
performance. 

In the present paper we are solving a generalized time dependent Oldroyd two 
constant fluid flow governing equation along with the constitutive relations by using the 
perturbation method. The integral transform method has been employed and the derived 
ordinary differential equations are solved by perturbation technique [14] when the retardation 
time constant is the perturbation parameter. We have derived the velocity as well as skin 
friction for the flow of fluid with the introduction of impulsive fluid velocity [15]. 
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2. Basic Equations 
The constitutive equation of an incompressible second order fluid based on Oldroyd model [1] 
is  

ijijpijT τδ +−=                                                                                     (1) 
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dt
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where ijT ,  ijτ ,  ije ,  p , µ , ,1λ   and  2λ  are the total stress tensor, deviatoric stress 

tensor, rate of strain tensor, pressure, coefficient of viscosity, relaxation time and retardation 
time respectively. 
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3. Formulation and Solution 
Keeping the view of industrial application in mind we consider the flow of Oldroyd type 
electrically conducting viscoelastic fluid between two parallel plates; here both the plates are in 
oscillatory motion with a constant mean velocityU .  We assume that on one plate the fluid is 
being injected with some constant velocity V  and the opposite plate is sucked off with the 
same velocity. 

It is assumed that the x -direction is parallel to the plate and y -axis, normal to the 
plates. The magnetic field is applied along the transverse direction of the flow and 
perpendicular to the plates. In practice most of the non-Newtonian fluids have a small 
magnetic Reynolds number and for this reason the induced magnetic field may be neglected. 
We introduce an impulsive fluid velocity 1u  into the governing equation. In view of the 
aforesaid considerations, the constitutive and momentum equations of motion of one-
dimensional flow field for Oldroyd fluid may be represented as 
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At first we shall investigate the steady flow field with boundary and initial conditions  
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and later unsteady flow with boundary and initial conditions 
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Now, for steady Newtonian fluid flow the governing equation of motion is 
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Using the non-dimensional form of the boundary condition (8), we obtain a solution as  
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After a little manipulation, we may find the unsteady governing equation as follows 
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It is encouraging to solve the equations governing the flow of non-Newtonian fluids so as to 
challenge the mathematical complexity.  The analytical solution for the flow of second grade 
fluid is really difficult to achieve. One prime reason behind this is the order of differential 
equation is more than the number of available boundary conditions. The difficulty is further 
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accentuated by the fact that a non-Newtonian parameters of the fluid usually occurs in the 
coefficient of highest derivative. To solve this difficulty we generally seek for a perturbation 
solution assuming the non-Newtonian fluid parameter to be small [16]. As the governing 
equations are linear, the Laplace transform technique can be applied for a small time solution. 
With the compatible data we may enforce the initial condition and the inverse transform could 
be found easily [17]. 
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In the sequel,  we shall treat the retardation time to be small and develop the 
perturbation solution to the second order in 2α , we get,                                                                                                             
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Solutions of (17)—(19) are obtained are as follows 
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where ,1X     4X ,   6,5 XX ,   10,9 XX  ,   14,13 XX  are various terms appeared in the 

calculation and are omitted in this paper due to the scarcity of space.  
Ci, i=1, 2, …, 6, are to be evaluated by using the transform boundary condition (9). 

After determining the constants iC  we may apply shifting and convolution theorem of the 
inverse Laplace transform and obtain the final solution in the following    
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The wall shear stress: 
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Here, we have evaluated the approximated value of wall shear stress 
y

u

∂

∂
+= )

1

21(
α

α
υτ  

4. Results and Discussion 
In the present section we shall furnish the results of axial velocity and wall shear stress for 
different fluid parameters. Since the problem generated here is somewhat different than others, 
so, no comparison has been made for the verification of the result.  In the subsequent 
calculation we shall consider the following functions at the appropriate places. 

CCt
t

etp /)cos()(
−

= ,        )cos()( tUtU ω= ,        )sin()( tUtV ω=  
Fig. 1 is the representation of axial velocity distribution for three relaxation constants 1α (in 
figure A1= 1α ).  The other parameter values adopted in this calculation are 5.0=R , 0.9=M , 

01.02 =α , 0.11 =R , 0.6=ω , 0.4=C , 0.3=t ,  0.1=U .  It is indicated that for decreasing values 
of 1λ , fluid particle assumes its greater speed. In the case, when 01 →α , i. e. the relaxation 
time is small, the energy utilized for the viscoelastic response is small and hence more energy 
can be stored in the fluid particle. Thus, the fluid particles enriched with energy accelerated the 
fluid motion.  Hence, higher velocity is obvious and expected for small values of 1λ which is 
also observed in the present investigation. However, for all values of 1λ , velocity profiles are 
rectilinear and with the fixed 0.1=t , upper wall motion changes with 1λ which may be the 
effect of the presence of convective derivative in the constitutive relation. The rectilinearity 
may be attributed to be the fact of cross-flow Reynolds number associated with the problem. 
 The influence of magnetic field on the axial velocity depicted graphically in Fig. 2 
( 5.0=R , 01.02 =α , 0.11 =R , 0.6=ω , 0.4=C , 0.3=t ,  0.1=U ). The impact on the flow 
behavior of the magnetic field is straightforward and as expected.  The increasing values of the 
Hartmann numbers reduce the flow velocity and increase the backward motion to the 
respective order of M .  At the time of computation, it has been found that M  gives only the 
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maximum forward fluid velocity and hence this is the critical value for M  in the present 
model. Moreover, the velocity of the fluid can be determined in 0.20005.0 << M , beyond that 
the problem as well as the method of solution should be made think over. A careful 
observation of the graph introduce some important ideas about the velocity distribution; such 
as, if 0.4=M  then the fluid particle velocity increases gradually but for 05.0=M  it is quit 
curvilinear and produce a backflow and the same is followed by increasing the number 
from 0.4=M .  

             
In spite of the impulsive term in the governing equation, the computational results (not 

shown in figure) are not much influenced by impulsive Reynolds number. It can just increase 
or decrease the magnitude of the axial velocity. The cross-flow Reynolds number is an 
important parameter subjected by the suction and injection in the present study. In order to 
validate the model a rigorous computation has been performed and it is observed that the 
values of R lies between 0.001 and 5.0, when all the other parameter values have a suitable 
choice.  Among many observations we found that the fluid velocity is highly sensible on R  as 
well as 1α . It is to be noted that with this model and method of solution we cannot predict 
exactly the flow characteristics for different values of 1α  because in the present model it has 
been considered as a small quantity. At the time instant 0.0=t , the shear stress distribution at 
the wall ( )0.1=y  in three different suction velocities are given in Fig.3 where. 0.4=M , 

01.02 =α , 0.11 =R , 0.6=ω , 0.4=C , 0.1=t , 0.1=U . In each case distributions are curvilinear. 
Investigation revealed that fluctuation and magnitude of 0.1=yτ  decreases with the increasing 
values of R . It is noteworthy to see that the phase-angle along with the magnitude ofτ differs 
significantly in the higher values ofω . 

An important observation and result of the present investigation has been depicted in 
Fig. 4 ( 0.4=M ,5.0=R 0.11 =α , 01.02 =α , 0.11 =R , 0.4=M , 0.1=U .). This is the 
representation of wall shear stress ( 0.0=yτ ) at two different instants of time. Together with the 
idea of Fig. 3, phase-angle of τ increase with the increasing values ofω , so, we may conclude 
that after certain time τ will linearly increase with ω  following the manner of axial velocity. 
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