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ABSTRACT 
This paper aims at introducing a new approach for finding the maximum flow of a 
maximal- flow problem requiring less number of iterations and less augmentation than 
Ford-Fulkerson algorithm. To illustrate the proposed method, a numerical example is 
presented. We have also formulated the maximal-flow problem as a linear programming 
problem (LPP) and solved it by using Bounded Variable Simplex Method.    
 
Keywords: Maximal-Flow Model, Residual network, Source-Sink cut, Source-Sink cut 
capacity, Bounded variable simplex method.      
 
1.  Introduction 
Network flow problems have always been among the best studied combinatorial 
optimization problems. Maximal-flow problem is the classical network flow problem in 
weighted graphs. The objective of the maximal flow problem is to find the maximum 
flow that can be sent through the arc of the network from some specified node source (s) 
to specified node sink (t). Maximal flow problems play an important role in a number of 
practical contexts including design and operation of telecommunication networks, oil-
pipeline systems, water through a system of aqueducts etc [2]. Maximal flow problem 
can be formulated as an LPP and hence could be solved by usual simplex method. In 
literature, a good amount of research [5,6,7] is available for solving such kind of 
problems. Originally the maximal flow problem was invented by Fulkerson and Dantzig 
[1] and solved by specializing the simplex method for the linear programming, and Ford 
and Fulkerson [3] solved it by augmenting path algorithm. The improvement of the Ford- 
Fulkerson method is Edmonds-Karp algorithm [4] which performs better than the 
previous one. C. Jain and D. Garg [8] proposed an improved version of Edmonds-Karp 
algorithm to solve the maximum flow problem, which requires less number of iterations 
and less augmentation to calculate the maximum flow. The algorithm [9,10] is based on 
finding breakthrough paths with net positive flow between the source and sink nodes. In 
this paper we have proposed an effective algorithm to find maximum flow in network and 
formulated as an LPP and solved it by using Bounded Variable Simplex Method.     
 
2.  Preliminaries 
In this section some basic definitions and notations are reviewed related to maximal-flow 
problem. 
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2.1. Flow network 
Let G = (V, E) be a directed graph with vertex set V and edge set E. A flow network  
G=(V,E) is a directed graph in which each edge (u, v)∈E has a nonnegative capacity  
c(u, v) ≥  0 and a distinguished source vertex  s and sink vertex  t [11]. If (u, v) ∉E, then 
for convenience we define c(u, v) = 0. A flow in G is a real-valued function f : V ×  V →
IR, that satisfies these constraints: 
        f(u, v) ≤  c(u, v)  for all VVvu ×∈),(                       (capacity constraint), 
       ),(),( uvfvuf −=  for all VVvu ×∈),(                    (antisymmetry constraint), 
        ∑

∈Vu
wuf ),( =  ∑

∈Vv
vwf ),(  for all w ∈V – {s, t}        (flow conservation constraint).        

The value of a flow  f  is denoted by | f | and defined as | f | = ∑
∈Vv

vsf ),( –  ∑
∈Vv

svf ),( . 

 

2.2. Residual network and residual capacity 
For a given flow network G and a flow f, the residual network  ܩ௙ consists of edges with 
capacities that represent how we can change the flow on edges of G. An edge of the flow 
network can admit an amount of additional flow equal to the edge’s capacity minus the 
flow on that edge. If that value is positive, we place that into  ܩ௙  with a “residual 
capacity” of ௙ܿሺݑ,  ௙  are those thatܩ  ሻ = c(u,v) – f(u,v). The only edges of G that are inݒ
can admit more flow; those edges (u,v) whose flow equals their capacity  ௙ܿሺݑ,  ,ሻ = 0ݒ
and they are not in  ܩ௙.  
 

2.3. Augmenting path  
An augmenting path p in a network G = (V,E) with a flow f  is a path from  s to  t in 
which every edge has positive capacity in the residual network  ܩ௙ . We can put more 
flow from  s to  t through p. We call the maximum capacity by which we can increase the 
flow on  p the residual capacity of p, given by ௙ܿ(p) = min { ௙ܿ(u, v) : (u, v) is on  p}. 
 

 2.4. Source-Sink cut and its capacity 
 A source-sink cut [S,T ] of flow network  G=(V,E) consists of the edges from a source 
set  S to a sink set  T, where  S and  T partition the set of nodes, with s∈S and  t∈T. 
 
                
                                                   
            
 

  
                                                 Figure 1: 
The capacity of the cut [S,T ], written  cap(S,T ), is the total of the capacities on the edges 
of  [S,T], that is, 
                                       cap(S,T ) = ∑∑

∈ ∈Su Tv
vuc ),( . 

         Note that in a directed network [S,T ] denotes the set of edge with tail in  S and head 
in  T. Thus the capacity of a cut [S,T ] is completely unaffected by edges from  T to  S.  
 

Ss  tT
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3.  A proposed algorithm 
 

The major steps of the algorithms are given below: 
Step  1 : For each edge (u, v)∈  E, initialize f(u, v) = f(v, u) = 0. 
Step  2 : Calculate lower capacity )( cL  and upper capacity )( cU in the flow 

network and then calculate cc LUD −= . 
Step  3 : If 0=D , then set cc LorUD = . 

Step  4 : If there exists an augmenting path p from s to t in the residual network 

fG with capacity at least D  then select it; otherwise go to step 9.  
Step  5 : Set  ௙ܿ(p) = ௙ܿሺݑ, ሻሺ௨,௩ሻ∈௣ݒ

௠௜௡ . 
Step  6 : For each (u, v)∈p, if (u, v)∈E set f(u, v) = f(u, v) + ௙ܿ(p) else f(v, u) = 

f(v,u) – ௙ܿ(p). 
Step  7 : Calculate the flow value.
Step  8 : If there exist any source-sink cut [S, T ] such that cap(S, T ) is equal to the 

flow value, then go to step 10; otherwise go to step 4.
 
Step  9 

 
: Set ⎥⎦

⎤
⎢⎣
⎡=

2
DD . If 1≥D go to step 4; otherwise go to step10. 

Step 10 : The flow is maximum.
 

4.  Numerical illustration 
We consider the flow network given by Figure 2. Here the source node is denoted by 1 
and the sink node is denoted by 6. The capacities are shown on the respective arcs. It is 
required to find the maximum flow in this network between source 1 to sink 6.  

                                  
                                                       Figure 2: 
Now we construct the following source-sink cut [S, T ] table from Figure 2.                              
                Source-sink cut [S, T ]         cap(S, T ) 
            S                 T 
{1}  {2, 3, 4, 5, 6} 16+13=29
{1, 2}  {3, 4, 5, 6} 12+13+10=35
{1, 3}  {2, 4, 5, 6} 16+4+14=34
{1, 2, 3}  {4, 5, 6}  12+14=26
{1, 2, 4}  {3, 5, 6}  13+10+9+20=52
{1, 3, 5}  {2, 4, 6}  16+4+7+4=31
{1, 2, 3, 4}  {5, 6}  14+20=34
{1, 2, 3, 5}  {4, 6}  12+7+4=23
{1, 2, 3, 4, 5ሽ  {6}  20+4=24

Table 1: Source-sink cut and its capacity 
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Initialization: Initialize the value of  f  for each edge to 0. Here the flow network G is 
shown with each edge (u, v) labeled as f (u, v) /c(u, v). 
 

                                       
                                                              Figure 3: 
Now the upper capacity in the flow network, cU = 20 and the lower capacity in the flow 
network, cL = 4. So,  cc LUD −= = 20 – 4 = 16. 
 
Iteration 1:   
The residual network ܩ௙ of the initial flow network (Figure 3) is 
 

                       
Figure 4: 

 
Since 16=D , we have to choose an augmenting path with capacity at least 16. But there 
is no augmenting path with capacity at least 16. 
 
Iteration 2: 

⎥⎦
⎤

⎢⎣
⎡=

2
DD = ⎥⎦

⎤
⎢⎣
⎡

2
16

= 8. So, we have to choose an augmenting path with capacity at least 8 

in Figure 4. 
 
1st augmentation:  An augmenting path found in 2nd iteration is 1 – 2 – 4 – 6 with ௙ܿ(p) = 
min {16, 12, 20}= 12. 

16 

12

20 

4 

14 

13 

10 

4 

9

7 

 

2

3

4

5

1  6 

0/16 

0/12

0/20 

0/4 

0/14 

0/13 

0/10 

0/4 

0/9

0/7

 

2

3

4

5

1  6 



An Innovative Approach for Solving Maximal-Flow Problems 

147 
 

                                     
  Figure 5: 

 
Update the values of f  for each edge along the path. 

                                               
     Figure 6: 

 
Now there is no augmenting path with capacity at least 8. 
The flow value f  = 12 + 0 = 12.  
We see that there does not exist any source-sink cut [S, T ] in table-1such that cap(S, T ) = 
12. Therefore, the flow is not maximum. 
 
Iteration 3:  

⎥⎦
⎤

⎢⎣
⎡=

2
DD = ⎥⎦

⎤
⎢⎣
⎡
2
8

= 4. Now the augmenting path with capacity at least 4 will be searched. 

 
2nd augmentation: 
Since 4=D , we select an augmenting path with capacity 4 in the residual network 
given by figure-7. 

                                    
           

               Figure 7: 
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The augmenting path found in third iteration is 1 – 3 – 5 – 4 – 6 with ௙ܿ(p) = min {13, 14, 
7, 8}= 7. Update the values of f  for each edge along the path. 

                                          
      Figure 8: 

 
The flow value f  = 12 + 7 = 19.  
We see that there does not exist any source-sink cut [S, T ] in table-1such that cap(S, T ) = 
19. Therefore, the flow is not maximum. 
The residual network after the 2nd augmentation is shown below 

                                    
               Figure 9: 

 
3rd augmentation: 
Now again there is a path with capacity at least 4 and  the path found in the same 3rd  
iteration is 1 – 3 – 5 – 6 with ௙ܿ(p) = min {6, 7, 4}= 4. Update the values of f  for each 
edge along the path. 
                                            

                                                                                                                
   Figure 10: 
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Therefore, the resulting flow f  =11 + 12 = 23.We see that there exists a source-sink cut 
[S,T ] in table-1, where S = {1, 2, 3, 5} and T = {4, 6}, such that cap(S, T ) = 23. So the 
algorithm terminates and the flow in iteration 4 is therefore maximum flow. The value of 
the maximum flow through the network is 23. 
 
5.  Solution using Ford-Fulkerson algorithm 
Now we are going to solve the same network-flow problem by using Ford-Fulkerson 
algorithm. The procedure is summarized in below. 
Iteration 1 : Select the augmenting path 1 – 2 – 4 – 3 – 5 – 6 with capacity 4. 

Maximum flow value f = 4. 

Iteration 2 : Select the augmenting path 1 – 2 – 3 – 5 – 4 – 6 with capacity 7. 
Maximum flow value f = 4 + 7 = 11. 

Iteration 3 : Select the augmenting path 1 – 3 – 2 – 4 – 6 with capacity 8. Maximum 
flow value f = 11 + 8 = 19. 

Iteration 4 : Select the augmenting path 1 – 3 – 4 – 6 with capacity 4. Maximum 
flow value f  = 19 + 4 = 23. 

After 4th iteration there is no augmenting path with capacity at least 1. Thus, the 
algorithm terminates and the resulting flow in network returns the maximum flow. 
Therefore, Maximum flow value f  = 23. 
 
6.  Comparison 
In the Ford-Fulkerson algorithm only one augmenting path is possible to choose in each 
iteration but in our proposed algorithm we can choose zero (0) or more augmenting path 
in each iteration. 
Now we construct the following table to compare between Ford-Fulkerson algorithm and 
our proposed algorithm. 

Iteration No. Ford-Fulkerson algorithm 
(No. of augmentation ) 

Our proposed algorithm 
(No. of augmentation) 

1st 1 0 
2nd 1 1 
3rd 1 2 
4th 1 Terminates in 3rd iteration 

 
From the table we see that to calculate the maximum flow by using Ford-Fulkerson 
algorithm we need four augmenting paths with four iterations while by using our 
proposed algorithm we need only three augmenting paths with three iterations. 
 
7.  Bounded variable simplex method 
In a linear programming problem some or all the variables may have lower or upper 
bounds        i.e., constraints of the type 
                                                             ௝݈ ≤ ≥ ௝ݔ    ௝ݑ
where ݔ௝ is the jth variable of the problem and  ௝݈ and  ݑ௝ are its lower and upper bounds 
respectively. 
The lower bound constraint can be handled directly by substituting 
௝ݔ + ௝ =  ௝݈ݔ                                                     

ᇱ,  where   ݔ௝
ᇱ ≥  0. 
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For an upper bound constraint of the type ݔ௝ ≤ ௝ݔ  − ௝ݑ  = ௝ݔ  ௝, the substitutionݑ 
ᇱᇱ , 

௝ݔ
ᇱᇱ ≥  0 does not guarantee that ݔ௝ will remain non-negative. This difficulty is overcome 

by using a special technique called bounded variable simplex method, which consists of 
the following steps: 
Step 1 : In any constraint if the R.H.S. is negative, make it positive by multiplying the  

constraint by ‘ – 1’. 
Step 2 : If any constraint is in inequality, then convert the inequality into equations by 

adding suitable slacks or surplus variables and obtain an initial basic feasible 
solution. 

Step 3 : Calculate the net evaluation jj cz − . For a maximization problem, if 

0≥− jj cz  for the non-basic variable, optimum basic feasible solution is 

attained. If 0<− jj cz for any non-basic variable, go to step 4. For a 
minimization problem reverse is true. 

Step 4 : Select the most negative of  ݖ௝−  ௝ܿ. 
Step 5 : Let ݔ௝ be a non-basic variable at zero level which is selected to enter the 

solution. Compute the quantities 

 = ଵߠ                              
i

min {
( )

ij

iB

a
X ∗

}   where  ܽ௜௝ >  0, 

  = ଶߠ                              
i

min {
( )

ij

iiB

a
uX −∗

}  where  ܽ௜௝ < 0,  

                   and  ߠ = min { ߠଵ, ߠଶ, ݑ௜}, 
 where ݑ௜ is the upper bound for the variable ݔ௜. Let ሺܺ஻ሻ௥  be the variable 
corresponding to  ߠ = min { ߠଵ, ߠଶ, ݑ௜}. Then  

(a)  If ߠ = ߠଵ, ሺܺ஻ሻ௥  leaves the solution and ݔ௝ enters by using the      
 regular row operations of the simplex method. 

(b)  If  ߠ = ߠଶ, ሺܺ஻ሻ௥  leaves the solution and  ݔ௝ enters; then 
  ሺܺ஻ሻ௥  being non-basic at its upper bound must be substituted   
  out by using  
             ሺܺ஻ሻ௥ = ݑ௥ – ሺܺ஻ሻ௥

ᇱ , where 0 ≤ ሺܺ஻ሻ௥
ᇱ  ≤  .௥ݑ 

(c)  If  ݑ = ߠ௝, ݔ௝ is substituted at its upper bound difference  ݑ௝ – ݔ௝
ᇱ,  

 while remaining non-basic.  
 

8.  LP formulation of maximal-flow model 
Let f  be the amount of flow from source node  s to sink node t and  ݔ௜௝ be the flow from 
node i to node j over arc ),( ji  in a flow network ),( EVG = .Then the LP formulation 
of the flow network is   
                      Maximize        f 
                      Subject to: 
                                         ∑

∈Vj
sjx   -  ∑

∈Vk
ksx  = f ,  
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                                         ∑
∈Vj

tjx   -  ∑
∈Vk

ktx  = f− ,  

                                         ∑
∈Vj

ijx  - ∑
∈Vk

kix  = 0      for all  i ∈V –   {s, t},         

                                          0≤ ≥ ௜௝ݔ  ௜௝   for all Ejiݑ  ∈),( . 
where,  ݑ௜௝ is the upper bound of the flow over the arc ),( ji . 
Now we are going to find the maximum flow in the network given in Figure 2 by using 
Bounded Variable Simplex method. The associated Linear programming problem is 
             Maximize   z =  ݔଵଶ +  ݔଵଷ  
             Subject to                   ݔଵଶ െ ଶସݔ − ଶଷݔ ൅ xଷଶ  = 0 
ଷହݔ −  ଷଶݔ − ଶଷݔ + ଵଷݔ                                        ൅ xସଷ = 0 
ସଷݔ − ଶସݔ                                                 െ xସ଺ ൅ xହସ  = 0 
    ହ଺ = 0ݔ ହସെݔ ଷହ െݔ                                                           
0≤ ଵଶݔ ≤ 16, 0≤ ଵଷݔ ≤ 13, 0≤ ଶଷݔ ≤ 10, 0≤ ଶସݔ ≤ 12, 0≤ ଷଶݔ ≤ 4, 0≤ ଷହݔ ≤ 14, 0≤ ସଷݔ ≤ 9,  
0≤ ସ଺ݔ ≤ 20, 0≤ ହସݔ ≤ 7, 0≤ ହ଺ݔ ≤ 4. 
It will be very difficult when we will try to solve this LPP by the simplex method. 
Because we have to write the bounded variables as constraints by inserting slack 
variables and therefore we obtain a large set of constraints.    
This problem can be solved by using Bounded Variable Simplex method. The initial table 
is: 

   0     0   0     0    0    0    0    0    1    1    ࢐ࢉ
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ ݔଷଶ ݔଷହ ݔସଷ ݔସ଺ ݔହସ ݔହ଺ ܺ஻

כ  ࡮ܿ 
࢞૚૛   1   0  -1  -1   1   0   0   0   0   0   0    1 
࢞૚૜   0   1   1   0  -1  -1   1   0   0   0   0    1 
࢞૝૟   0   0   0  -1   0   0   1   1  -1   0   0    0  
࢞૞૟   0   0   0   0   0  -1   0   0   1   1   0    0 

   0   0   0   1   1-  0    1-  0   1   1   ࢐ࢠ  
   0   0   0   1   1-  0   1-   0   0   0   ࢐ࢉ-࢐ࢠ
   4  7   20 9  14 4  12  10 13   16  ࢐࢏࢛  
 
Iteration 1:       
Here ݔଷହ is the entering variable, because the corresponding jj cz −  is negative. Now 
,∞ } ଵ =  minߠ             ∞}                                     (corresponding to ݔଵଶ and ݔସ଺) 
                 = ∞, 

} ଶ =  minߠ            
)1(

)130(
−
−

 , 
)1(
)40(

−
−

}               (corresponding to ݔଵଷ and ݔହ଺) 

                 = 4,                                                       (corresponding to ݔହ଺)        
 and    ݑଷହ = 14 
  {ଷହݑ ,ଶߠ ,ଵߠ } min = ߠ ∴
        = min { ∞, 4, 14 }  = 4 (= ߠଶ) 
Since 2θθ = ହ଺ݔ - ହ଺ = 4ݔ  ,.ହ଺ is substituted at its upper bound difference i.eݔ ,

ᇱ  but it 
remains non-basic. Then we obtain the following table 
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0    0    1    1    ࢐ࢉ   0   0   0    0  0    0   
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ ݔଷଶ ݔଷହ ݔସଷ ݔସ଺ ݔହସ   ܺ஻

כ  ࡮ܿ 
࢞૚૛   1   0  -1  -1   1   0   0   0   0   0   0    1 
࢞૚૜   0   1   1   0  -1  -1   1   0   0   0   0    1 
࢞૝૟   0   0   0  -1   0   0   1   1  -1   0   0    0  
࢞૞૟

ᇱ    0   0   0   0   0  -1   0   0   1  -1  -4    0 
 
Now the entering variable ݔଷହ becomes basic and the leaving variable  ݔହ଺

ᇱ   becomes non-
basic at zero level, which yields: 
 

0    0    1    1    ࢐ࢉ   0   0   0    0  0    0   
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ ݔଷଶ ݔଷହ ݔସଷ ݔସ଺ ݔହସ ݔହ଺

ᇱ  ܺ஻
כ  ࡮ܿ 

࢞૚૛   1   0  -1  -1   1   0   0   0   0   0   0    1 
࢞૚૜   0   1   1   0  -1   0   1   0  -1   1   4    1 
࢞૝૟   0   0   0  -1   0   0   1   1  -1   0   0    0  
࢞૜૞   0   0   0   0   0   1   0   0  -1   1   4    0 

0  1-  0   1   1   ࢐ࢠ    0  1  0 -1  1   
   1   1-  0   1   0   0   1-   0   0   0   ࢐ࢉ-࢐ࢠ
   4  7   20 9  14 4  12  10 13   16  ࢐࢏࢛  
 
Iteration 2:       
Here ݔହସ is the entering variable, because the corresponding jj cz −  is negative. Now 
 (ଵଶݔ corresponding to)                                       ,∞ =    {∞ } ଵ =  minߠ            

} ଶ =  minߠ            
)1(

)134(
−
−

 , 
)1(

)200(
−
−

 , 
)1(

)144(
−
−

}  (corresponding to ݔଵଷ, ݔସ଺ and ݔହ଺) 

                 = 9,                                                                (corresponding to ݔଵଷ)        
 and    ݑହସ = 7 
 ( ହସݑ =) min { ∞, 9, 7 }   = 7 =   {ହସݑ ,ଶߠ ,ଵߠ } min = ߠ ∴
 

Because ݔହସ enters at its upper bound, ∗
BX  remains unchanged and ݔହସ becomes non-

basic at its upper bound. By the substitution ݔହସ = 7 - ݔହସ
ᇱ  , we get 

 

0    0    1    1    ࢐ࢉ   0   0   0    0  0    0   
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ ݔଷଶ ݔଷହ ݔସଷ ݔସ଺ ݔହସ

ᇱ ହ଺ݔ 
ᇱ  ܺ஻

כ  ࡮ܿ 
࢞૚૛   1   0  -1  -1   1   0   0   0   0   0   0    1 
࢞૚૜   0   1   1   0  -1   0   1   0   1   1  11    1 
࢞૝૟   0   0   0  -1   0   0   1   1   1   0   7    0  
࢞૜૞   0   0   0   0   0   1   0   0   1   1  11    0 

0  1-  0   1   1   ࢐ࢠ    0  1  1  1  1   
   1   1   1   1   0   0   1-   0   0   0   ࢐ࢉ-࢐ࢠ
   4  7   20 9  14 4  12  10 13   16  ࢐࢏࢛  
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Iteration 3:       
Here ݔଶସ is the entering variable, because the corresponding jj cz −  is negative. Now 
∞ ,∞ } ଵ =  minߠ             }                                           (corresponding to ݔଵଷ, ݔଷହ) 
                 = ∞, 

} ଶ =  minߠ            
)1(

)160(
−
−

 , 
)1(

)207(
−
−

}                    (corresponding to ݔଵଶand ݔସ଺) 

                = min {16, 13} 
                 = 13,                                                             (corresponding to ݔସ଺)        
 and    ݑଶସ = 12 
  {ଶସݑ ,ଶߠ ,ଵߠ} min = ߠ ∴
        = min {∞, 13, 12 } 
 ( ଶସݑ =) 12 =        
 
Because ݔଶସ enters at its upper bound, ∗

BX  remains unchanged and ݔଶସ becomes non-
basic at its upper bound. By the substitution ݔଶସ = 12 - ݔଶସ

ᇱ  , we get 
 

   0     0   0     0    0    0    0    0    1    1    ࢐ࢉ
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ

ᇱ ହସݔ ସ଺ݔ ସଷݔ ଷହݔ ଷଶݔ 
ᇱ ହ଺ݔ 

ᇱ  ܺ஻
כ  ࡮ܿ 

࢞૚૛   1   0  -1   1   1   0   0   0   0   0  12    1 
࢞૚૜   0   1   1   0  -1   0   1   0   1   1  11    1 
࢞૝૟   0   0   0   1   0   0   1   1   1   0  19    0  
࢞૜૞   0   0   0   0   0   1   0   0   1   1  11    0 

   1   1   1   1   0   0    1   0   1   1   ࢐ࢠ  
   1   1   1   1   0   0   1    0   0   0   ࢐ࢉ-࢐ࢠ
   4  7   20 9  14 4  12  10 13   16  ࢐࢏࢛  
 
 
The last table is feasible and optimal. The optimal values are obtained by back 
substitution.  
 ,ସଷ = 0ݔ    ,ଷଶ = 0ݔ    ,ଶଷ = 0ݔ    ,ସ଺ = 19ݔ    ,ଷହ = 11ݔ    ,ଵଷ = 11ݔ    ,ଵଶ = 12ݔ  
   
ଶସݔ              

ᇱ = 0 gives  ݔଶସ = 12 - ݔଶସ
ᇱ   = 20 – 0 =20;  

  
ହସݔ              

ᇱ  = 0 gives ݔହସ = 7 - ݔହସ
ᇱ  = 7 – 0 = 7; 

   
ହ଺ݔ             

ᇱ = 0 gives ݔହ଺ = 4 - ݔହ଺
ᇱ  = 4 – 0 = 4. 

 
Therefore, the optimal solution is  
         ,ସଷ = 0ݔ      ,ଷଶ = 0ݔ      ,ଶଷ = 0ݔ      ,ସ଺ = 19ݔ      ,ଷହ = 11ݔ      ,ଵଷ = 11ݔ      ,ଵଶ = 12ݔ     
 .ହ଺ = 4ݔ       ,ହସ = 7ݔ      ,ଶସ = 20ݔ     
 
and the associated maximum amount of flow is  
                                                                   z =  ݔଵଶ ൅  .ଵଷ = 12 + 11 = 23ݔ
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9. Conclusion 
We have provided a new algorithm for finding the maximum amount of flow from source 
to sink in a flow network. The proposed algorithm returns a maximum flow and to 
calculate the maximum flow  this algorithm takes less number of iterations and less 
augmentation. A numerical example is solved to illustrate the proposed algorithm. By 
using bounded variable simplex method we have also solved the flow network problem, 
which is very easy than simplex method because it reduces a set of large number of 
constraints into a small one.   
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