
Journal of Physical Sciences, Vol. 17, 2013, 143-154
ISSN: 0972-8791, www.vidyasagar.ac.in/journal
Published on 26 December 2013

143

An Innovative Approach for Solving Maximal-Flow
Problems

Md. Al-Amin Khan, Abdur Rashid, Aminur Rahman Khan and Md. Sharif Uddin

Department of Mathematics, Jahangirnagar University, Bangladesh.
Email: aminur@juniv.edu

Received 11 November 2013; accepted 11 December 2013

ABSTRACT
This paper aims at introducing a new approach for finding the maximum flow of a
maximal- flow problem requiring less number of iterations and less augmentation than
Ford-Fulkerson algorithm. To illustrate the proposed method, a numerical example is
presented. We have also formulated the maximal-flow problem as a linear programming
problem (LPP) and solved it by using Bounded Variable Simplex Method.

Keywords: Maximal-Flow Model, Residual network, Source-Sink cut, Source-Sink cut
capacity, Bounded variable simplex method.

1. Introduction
Network flow problems have always been among the best studied combinatorial
optimization problems. Maximal-flow problem is the classical network flow problem in
weighted graphs. The objective of the maximal flow problem is to find the maximum
flow that can be sent through the arc of the network from some specified node source (s)
to specified node sink (t). Maximal flow problems play an important role in a number of
practical contexts including design and operation of telecommunication networks, oil-
pipeline systems, water through a system of aqueducts etc [2]. Maximal flow problem
can be formulated as an LPP and hence could be solved by usual simplex method. In
literature, a good amount of research [5,6,7] is available for solving such kind of
problems. Originally the maximal flow problem was invented by Fulkerson and Dantzig
[1] and solved by specializing the simplex method for the linear programming, and Ford
and Fulkerson [3] solved it by augmenting path algorithm. The improvement of the Ford-
Fulkerson method is Edmonds-Karp algorithm [4] which performs better than the
previous one. C. Jain and D. Garg [8] proposed an improved version of Edmonds-Karp
algorithm to solve the maximum flow problem, which requires less number of iterations
and less augmentation to calculate the maximum flow. The algorithm [9,10] is based on
finding breakthrough paths with net positive flow between the source and sink nodes. In
this paper we have proposed an effective algorithm to find maximum flow in network and
formulated as an LPP and solved it by using Bounded Variable Simplex Method.

2. Preliminaries
In this section some basic definitions and notations are reviewed related to maximal-flow
problem.

Md. Al-Amin Khan, Abdur Rashid, Aminur Rahman Khan and Md. Sharif Uddin

144

2.1. Flow network
Let G = (V, E) be a directed graph with vertex set V and edge set E. A flow network
G=(V,E) is a directed graph in which each edge (u, v)∈E has a nonnegative capacity
c(u, v) ≥ 0 and a distinguished source vertex s and sink vertex t [11]. If (u, v) ∉E, then
for convenience we define c(u, v) = 0. A flow in G is a real-valued function f : V × V →
IR, that satisfies these constraints:
 f(u, v) ≤ c(u, v) for all VVvu ×∈),((capacity constraint),
),(),(uvfvuf −= for all VVvu ×∈),((antisymmetry constraint),
 ∑

∈Vu
wuf),(= ∑

∈Vv
vwf),(for all w ∈V – {s, t} (flow conservation constraint).

The value of a flow f is denoted by | f | and defined as | f | = ∑
∈Vv

vsf),(– ∑
∈Vv

svf),(.

2.2. Residual network and residual capacity
For a given flow network G and a flow f, the residual network ܩ௙ consists of edges with
capacities that represent how we can change the flow on edges of G. An edge of the flow
network can admit an amount of additional flow equal to the edge’s capacity minus the
flow on that edge. If that value is positive, we place that into ܩ௙ with a “residual
capacity” of ௙ܿሺݑ, ௙ are those thatܩ ሻ = c(u,v) – f(u,v). The only edges of G that are inݒ
can admit more flow; those edges (u,v) whose flow equals their capacity ௙ܿሺݑ, ,ሻ = 0ݒ
and they are not in ܩ௙.

2.3. Augmenting path
An augmenting path p in a network G = (V,E) with a flow f is a path from s to t in
which every edge has positive capacity in the residual network ܩ௙ . We can put more
flow from s to t through p. We call the maximum capacity by which we can increase the
flow on p the residual capacity of p, given by ௙ܿ(p) = min { ௙ܿ(u, v) : (u, v) is on p}.

 2.4. Source-Sink cut and its capacity
 A source-sink cut [S,T] of flow network G=(V,E) consists of the edges from a source
set S to a sink set T, where S and T partition the set of nodes, with s∈S and t∈T.

 Figure 1:
The capacity of the cut [S,T], written cap(S,T), is the total of the capacities on the edges
of [S,T], that is,
 cap(S,T) = ∑∑

∈ ∈Su Tv
vuc),(.

 Note that in a directed network [S,T] denotes the set of edge with tail in S and head
in T. Thus the capacity of a cut [S,T] is completely unaffected by edges from T to S.

Ss tT

An Innovative Approach for Solving Maximal-Flow Problems

145

3. A proposed algorithm

The major steps of the algorithms are given below:
Step 1 : For each edge (u, v)∈ E, initialize f(u, v) = f(v, u) = 0.
Step 2 : Calculate lower capacity)(cL and upper capacity)(cU in the flow

network and then calculate cc LUD −= .
Step 3 : If 0=D , then set cc LorUD = .

Step 4 : If there exists an augmenting path p from s to t in the residual network

fG with capacity at least D then select it; otherwise go to step 9.
Step 5 : Set ௙ܿ(p) = ௙ܿሺݑ, ሻሺ௨,௩ሻ∈௣ݒ

௠௜௡ .
Step 6 : For each (u, v)∈p, if (u, v)∈E set f(u, v) = f(u, v) + ௙ܿ(p) else f(v, u) =

f(v,u) – ௙ܿ(p).
Step 7 : Calculate the flow value.
Step 8 : If there exist any source-sink cut [S, T] such that cap(S, T) is equal to the

flow value, then go to step 10; otherwise go to step 4.

Step 9

: Set ⎥⎦

⎤
⎢⎣
⎡=

2
DD . If 1≥D go to step 4; otherwise go to step10.

Step 10 : The flow is maximum.

4. Numerical illustration
We consider the flow network given by Figure 2. Here the source node is denoted by 1
and the sink node is denoted by 6. The capacities are shown on the respective arcs. It is
required to find the maximum flow in this network between source 1 to sink 6.

 Figure 2:
Now we construct the following source-sink cut [S, T] table from Figure 2.
 Source-sink cut [S, T] cap(S, T)
 S T
{1} {2, 3, 4, 5, 6} 16+13=29
{1, 2} {3, 4, 5, 6} 12+13+10=35
{1, 3} {2, 4, 5, 6} 16+4+14=34
{1, 2, 3} {4, 5, 6} 12+14=26
{1, 2, 4} {3, 5, 6} 13+10+9+20=52
{1, 3, 5} {2, 4, 6} 16+4+7+4=31
{1, 2, 3, 4} {5, 6} 14+20=34
{1, 2, 3, 5} {4, 6} 12+7+4=23
{1, 2, 3, 4, 5ሽ {6} 20+4=24

Table 1: Source-sink cut and its capacity

16

12

20

4

14

13

10

4

9

7

2

3

4

5

1 6

Md. Al-Amin Khan, Abdur Rashid, Aminur Rahman Khan and Md. Sharif Uddin

146

Initialization: Initialize the value of f for each edge to 0. Here the flow network G is
shown with each edge (u, v) labeled as f (u, v) /c(u, v).

 Figure 3:
Now the upper capacity in the flow network, cU = 20 and the lower capacity in the flow
network, cL = 4. So, cc LUD −= = 20 – 4 = 16.

Iteration 1:
The residual network ܩ௙ of the initial flow network (Figure 3) is

Figure 4:

Since 16=D , we have to choose an augmenting path with capacity at least 16. But there
is no augmenting path with capacity at least 16.

Iteration 2:

⎥⎦
⎤

⎢⎣
⎡=

2
DD = ⎥⎦

⎤
⎢⎣
⎡

2
16

= 8. So, we have to choose an augmenting path with capacity at least 8

in Figure 4.

1st augmentation: An augmenting path found in 2nd iteration is 1 – 2 – 4 – 6 with ௙ܿ(p) =
min {16, 12, 20}= 12.

16

12

20

4

14

13

10

4

9

7

2

3

4

5

1 6

0/16

0/12

0/20

0/4

0/14

0/13

0/10

0/4

0/9

0/7

2

3

4

5

1 6

An Innovative Approach for Solving Maximal-Flow Problems

147

 Figure 5:

Update the values of f for each edge along the path.

 Figure 6:

Now there is no augmenting path with capacity at least 8.
The flow value f = 12 + 0 = 12.
We see that there does not exist any source-sink cut [S, T] in table-1such that cap(S, T) =
12. Therefore, the flow is not maximum.

Iteration 3:

⎥⎦
⎤

⎢⎣
⎡=

2
DD = ⎥⎦

⎤
⎢⎣
⎡
2
8

= 4. Now the augmenting path with capacity at least 4 will be searched.

2nd augmentation:
Since 4=D , we select an augmenting path with capacity 4 in the residual network
given by figure-7.

 Figure 7:

4

4
13

10

4

9

7

2

3

4

5

1 6

12

12

14

812

12/16

12/12

12/20

0/4

0/14

0/13

0/10

0/4

0/9

0/7

2

3

4

5

1 6

16

12

20

4

14

13

10

4

9

7

2

3

4

5

1 6

Md. Al-Amin Khan, Abdur Rashid, Aminur Rahman Khan and Md. Sharif Uddin

148

The augmenting path found in third iteration is 1 – 3 – 5 – 4 – 6 with ௙ܿ(p) = min {13, 14,
7, 8}= 7. Update the values of f for each edge along the path.

 Figure 8:

The flow value f = 12 + 7 = 19.
We see that there does not exist any source-sink cut [S, T] in table-1such that cap(S, T) =
19. Therefore, the flow is not maximum.
The residual network after the 2nd augmentation is shown below

 Figure 9:

3rd augmentation:
Now again there is a path with capacity at least 4 and the path found in the same 3rd
iteration is 1 – 3 – 5 – 6 with ௙ܿ(p) = min {6, 7, 4}= 4. Update the values of f for each
edge along the path.

 Figure 10:

11/16

12/12

19/20

4/4

11/14

12/13

0/10

1/4

0/9

7/7

2

3

4

5

1 6

4

4
6

10

4

9

7

2

3

4

5

1 6

12

12

7

119

7

7

12/16

12/12

19/20

0/4

7/14

7/13

0/10

0/4

0/9

7/7

2

3

4

5

1 6

An Innovative Approach for Solving Maximal-Flow Problems

149

Therefore, the resulting flow f =11 + 12 = 23.We see that there exists a source-sink cut
[S,T] in table-1, where S = {1, 2, 3, 5} and T = {4, 6}, such that cap(S, T) = 23. So the
algorithm terminates and the flow in iteration 4 is therefore maximum flow. The value of
the maximum flow through the network is 23.

5. Solution using Ford-Fulkerson algorithm
Now we are going to solve the same network-flow problem by using Ford-Fulkerson
algorithm. The procedure is summarized in below.
Iteration 1 : Select the augmenting path 1 – 2 – 4 – 3 – 5 – 6 with capacity 4.

Maximum flow value f = 4.

Iteration 2 : Select the augmenting path 1 – 2 – 3 – 5 – 4 – 6 with capacity 7.
Maximum flow value f = 4 + 7 = 11.

Iteration 3 : Select the augmenting path 1 – 3 – 2 – 4 – 6 with capacity 8. Maximum
flow value f = 11 + 8 = 19.

Iteration 4 : Select the augmenting path 1 – 3 – 4 – 6 with capacity 4. Maximum
flow value f = 19 + 4 = 23.

After 4th iteration there is no augmenting path with capacity at least 1. Thus, the
algorithm terminates and the resulting flow in network returns the maximum flow.
Therefore, Maximum flow value f = 23.

6. Comparison
In the Ford-Fulkerson algorithm only one augmenting path is possible to choose in each
iteration but in our proposed algorithm we can choose zero (0) or more augmenting path
in each iteration.
Now we construct the following table to compare between Ford-Fulkerson algorithm and
our proposed algorithm.

Iteration No. Ford-Fulkerson algorithm
(No. of augmentation)

Our proposed algorithm
(No. of augmentation)

1st 1 0
2nd 1 1
3rd 1 2
4th 1 Terminates in 3rd iteration

From the table we see that to calculate the maximum flow by using Ford-Fulkerson
algorithm we need four augmenting paths with four iterations while by using our
proposed algorithm we need only three augmenting paths with three iterations.

7. Bounded variable simplex method
In a linear programming problem some or all the variables may have lower or upper
bounds i.e., constraints of the type
 ௝݈ ≤ ≥ ௝ݔ ௝ݑ
where ݔ௝ is the jth variable of the problem and ௝݈ and ݑ௝ are its lower and upper bounds
respectively.
The lower bound constraint can be handled directly by substituting
௝ݔ + ௝ = ௝݈ݔ

ᇱ, where ݔ௝
ᇱ ≥ 0.

Md. Al-Amin Khan, Abdur Rashid, Aminur Rahman Khan and Md. Sharif Uddin

150

For an upper bound constraint of the type ݔ௝ ≤ ௝ݔ − ௝ݑ = ௝ݔ ௝, the substitutionݑ
ᇱᇱ ,

௝ݔ
ᇱᇱ ≥ 0 does not guarantee that ݔ௝ will remain non-negative. This difficulty is overcome

by using a special technique called bounded variable simplex method, which consists of
the following steps:
Step 1 : In any constraint if the R.H.S. is negative, make it positive by multiplying the

constraint by ‘ – 1’.
Step 2 : If any constraint is in inequality, then convert the inequality into equations by

adding suitable slacks or surplus variables and obtain an initial basic feasible
solution.

Step 3 : Calculate the net evaluation jj cz − . For a maximization problem, if

0≥− jj cz for the non-basic variable, optimum basic feasible solution is

attained. If 0<− jj cz for any non-basic variable, go to step 4. For a
minimization problem reverse is true.

Step 4 : Select the most negative of ݖ௝− ௝ܿ.
Step 5 : Let ݔ௝ be a non-basic variable at zero level which is selected to enter the

solution. Compute the quantities

 = ଵߠ
i

min {
()

ij

iB

a
X ∗

} where ܽ௜௝ > 0,

 = ଶߠ
i

min {
()

ij

iiB

a
uX −∗

} where ܽ௜௝ < 0,

 and ߠ = min { ߠଵ, ߠଶ, ݑ௜},
 where ݑ௜ is the upper bound for the variable ݔ௜. Let ሺܺ஻ሻ௥ be the variable
corresponding to ߠ = min { ߠଵ, ߠଶ, ݑ௜}. Then

(a) If ߠ = ߠଵ, ሺܺ஻ሻ௥ leaves the solution and ݔ௝ enters by using the
 regular row operations of the simplex method.

(b) If ߠ = ߠଶ, ሺܺ஻ሻ௥ leaves the solution and ݔ௝ enters; then
 ሺܺ஻ሻ௥ being non-basic at its upper bound must be substituted
 out by using
 ሺܺ஻ሻ௥ = ݑ௥ – ሺܺ஻ሻ௥

ᇱ , where 0 ≤ ሺܺ஻ሻ௥
ᇱ ≤ .௥ݑ

(c) If ݑ = ߠ௝, ݔ௝ is substituted at its upper bound difference ݑ௝ – ݔ௝
ᇱ,

 while remaining non-basic.

8. LP formulation of maximal-flow model
Let f be the amount of flow from source node s to sink node t and ݔ௜௝ be the flow from
node i to node j over arc),(ji in a flow network),(EVG = .Then the LP formulation
of the flow network is
 Maximize f
 Subject to:
 ∑

∈Vj
sjx - ∑

∈Vk
ksx = f ,

An Innovative Approach for Solving Maximal-Flow Problems

151

 ∑
∈Vj

tjx - ∑
∈Vk

ktx = f− ,

 ∑
∈Vj

ijx - ∑
∈Vk

kix = 0 for all i ∈V – {s, t},

 0≤ ≥ ௜௝ݔ ௜௝ for all Ejiݑ ∈),(.
where, ݑ௜௝ is the upper bound of the flow over the arc),(ji .
Now we are going to find the maximum flow in the network given in Figure 2 by using
Bounded Variable Simplex method. The associated Linear programming problem is
 Maximize z = ݔଵଶ + ݔଵଷ
 Subject to ݔଵଶ െ ଶସݔ − ଶଷݔ ൅ xଷଶ = 0
ଷହݔ − ଷଶݔ − ଶଷݔ + ଵଷݔ ൅ xସଷ = 0
ସଷݔ − ଶସݔ െ xସ଺ ൅ xହସ = 0
 ହ଺ = 0ݔ ହସെݔ ଷହ െݔ
0≤ ଵଶݔ ≤ 16, 0≤ ଵଷݔ ≤ 13, 0≤ ଶଷݔ ≤ 10, 0≤ ଶସݔ ≤ 12, 0≤ ଷଶݔ ≤ 4, 0≤ ଷହݔ ≤ 14, 0≤ ସଷݔ ≤ 9,
0≤ ସ଺ݔ ≤ 20, 0≤ ହସݔ ≤ 7, 0≤ ହ଺ݔ ≤ 4.
It will be very difficult when we will try to solve this LPP by the simplex method.
Because we have to write the bounded variables as constraints by inserting slack
variables and therefore we obtain a large set of constraints.
This problem can be solved by using Bounded Variable Simplex method. The initial table
is:

 0 0 0 0 0 0 0 0 1 1 ࢐ࢉ
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ ݔଷଶ ݔଷହ ݔସଷ ݔସ଺ ݔହସ ݔହ଺ ܺ஻

כ ࡮ܿ
࢞૚૛ 1 0 -1 -1 1 0 0 0 0 0 0 1
࢞૚૜ 0 1 1 0 -1 -1 1 0 0 0 0 1
࢞૝૟ 0 0 0 -1 0 0 1 1 -1 0 0 0
࢞૞૟ 0 0 0 0 0 -1 0 0 1 1 0 0

 0 0 0 1 1- 0 1- 0 1 1 ࢐ࢠ
 0 0 0 1 1- 0 1- 0 0 0 ࢐ࢉ-࢐ࢠ
 4 7 20 9 14 4 12 10 13 16 ࢐࢏࢛

Iteration 1:
Here ݔଷହ is the entering variable, because the corresponding jj cz − is negative. Now
,∞ } ଵ = minߠ ∞} (corresponding to ݔଵଶ and ݔସ଺)
 = ∞,

} ଶ = minߠ
)1(

)130(
−
−

 ,
)1(
)40(

−
−

} (corresponding to ݔଵଷ and ݔହ଺)

 = 4, (corresponding to ݔହ଺)
 and ݑଷହ = 14
 {ଷହݑ ,ଶߠ ,ଵߠ } min = ߠ ∴
 = min { ∞, 4, 14 } = 4 (= ߠଶ)
Since 2θθ = ହ଺ݔ - ହ଺ = 4ݔ ,.ହ଺ is substituted at its upper bound difference i.eݔ ,

ᇱ but it
remains non-basic. Then we obtain the following table

Md. Al-Amin Khan, Abdur Rashid, Aminur Rahman Khan and Md. Sharif Uddin

152

0 0 1 1 ࢐ࢉ 0 0 0 0 0 0
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ ݔଷଶ ݔଷହ ݔସଷ ݔସ଺ ݔହସ ܺ஻

כ ࡮ܿ
࢞૚૛ 1 0 -1 -1 1 0 0 0 0 0 0 1
࢞૚૜ 0 1 1 0 -1 -1 1 0 0 0 0 1
࢞૝૟ 0 0 0 -1 0 0 1 1 -1 0 0 0
࢞૞૟

ᇱ 0 0 0 0 0 -1 0 0 1 -1 -4 0

Now the entering variable ݔଷହ becomes basic and the leaving variable ݔହ଺

ᇱ becomes non-
basic at zero level, which yields:

0 0 1 1 ࢐ࢉ 0 0 0 0 0 0
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ ݔଷଶ ݔଷହ ݔସଷ ݔସ଺ ݔହସ ݔହ଺

ᇱ ܺ஻
כ ࡮ܿ

࢞૚૛ 1 0 -1 -1 1 0 0 0 0 0 0 1
࢞૚૜ 0 1 1 0 -1 0 1 0 -1 1 4 1
࢞૝૟ 0 0 0 -1 0 0 1 1 -1 0 0 0
࢞૜૞ 0 0 0 0 0 1 0 0 -1 1 4 0

0 1- 0 1 1 ࢐ࢠ 0 1 0 -1 1
 1 1- 0 1 0 0 1- 0 0 0 ࢐ࢉ-࢐ࢠ
 4 7 20 9 14 4 12 10 13 16 ࢐࢏࢛

Iteration 2:
Here ݔହସ is the entering variable, because the corresponding jj cz − is negative. Now
 (ଵଶݔ corresponding to) ,∞ = {∞ } ଵ = minߠ

} ଶ = minߠ
)1(

)134(
−
−

 ,
)1(

)200(
−
−

 ,
)1(

)144(
−
−

} (corresponding to ݔଵଷ, ݔସ଺ and ݔହ଺)

 = 9, (corresponding to ݔଵଷ)
 and ݑହସ = 7
 (ହସݑ =) min { ∞, 9, 7 } = 7 = {ହସݑ ,ଶߠ ,ଵߠ } min = ߠ ∴

Because ݔହସ enters at its upper bound, ∗
BX remains unchanged and ݔହସ becomes non-

basic at its upper bound. By the substitution ݔହସ = 7 - ݔହସ
ᇱ , we get

0 0 1 1 ࢐ࢉ 0 0 0 0 0 0
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ ݔଷଶ ݔଷହ ݔସଷ ݔସ଺ ݔହସ

ᇱ ହ଺ݔ
ᇱ ܺ஻

כ ࡮ܿ
࢞૚૛ 1 0 -1 -1 1 0 0 0 0 0 0 1
࢞૚૜ 0 1 1 0 -1 0 1 0 1 1 11 1
࢞૝૟ 0 0 0 -1 0 0 1 1 1 0 7 0
࢞૜૞ 0 0 0 0 0 1 0 0 1 1 11 0

0 1- 0 1 1 ࢐ࢠ 0 1 1 1 1
 1 1 1 1 0 0 1- 0 0 0 ࢐ࢉ-࢐ࢠ
 4 7 20 9 14 4 12 10 13 16 ࢐࢏࢛

An Innovative Approach for Solving Maximal-Flow Problems

153

Iteration 3:
Here ݔଶସ is the entering variable, because the corresponding jj cz − is negative. Now
∞ ,∞ } ଵ = minߠ } (corresponding to ݔଵଷ, ݔଷହ)
 = ∞,

} ଶ = minߠ
)1(

)160(
−
−

 ,
)1(

)207(
−
−

} (corresponding to ݔଵଶand ݔସ଺)

 = min {16, 13}
 = 13, (corresponding to ݔସ଺)
 and ݑଶସ = 12
 {ଶସݑ ,ଶߠ ,ଵߠ} min = ߠ ∴
 = min {∞, 13, 12 }
 (ଶସݑ =) 12 =

Because ݔଶସ enters at its upper bound, ∗

BX remains unchanged and ݔଶସ becomes non-
basic at its upper bound. By the substitution ݔଶସ = 12 - ݔଶସ

ᇱ , we get

 0 0 0 0 0 0 0 0 1 1 ࢐ࢉ
Basis ݔଵଶ ݔଵଷ ݔଶଷ ݔଶସ

ᇱ ହସݔ ସ଺ݔ ସଷݔ ଷହݔ ଷଶݔ
ᇱ ହ଺ݔ

ᇱ ܺ஻
כ ࡮ܿ

࢞૚૛ 1 0 -1 1 1 0 0 0 0 0 12 1
࢞૚૜ 0 1 1 0 -1 0 1 0 1 1 11 1
࢞૝૟ 0 0 0 1 0 0 1 1 1 0 19 0
࢞૜૞ 0 0 0 0 0 1 0 0 1 1 11 0

 1 1 1 1 0 0 1 0 1 1 ࢐ࢠ
 1 1 1 1 0 0 1 0 0 0 ࢐ࢉ-࢐ࢠ
 4 7 20 9 14 4 12 10 13 16 ࢐࢏࢛

The last table is feasible and optimal. The optimal values are obtained by back
substitution.
 ,ସଷ = 0ݔ ,ଷଶ = 0ݔ ,ଶଷ = 0ݔ ,ସ଺ = 19ݔ ,ଷହ = 11ݔ ,ଵଷ = 11ݔ ,ଵଶ = 12ݔ

ଶସݔ

ᇱ = 0 gives ݔଶସ = 12 - ݔଶସ
ᇱ = 20 – 0 =20;

ହସݔ

ᇱ = 0 gives ݔହସ = 7 - ݔହସ
ᇱ = 7 – 0 = 7;

ହ଺ݔ

ᇱ = 0 gives ݔହ଺ = 4 - ݔହ଺
ᇱ = 4 – 0 = 4.

Therefore, the optimal solution is
 ,ସଷ = 0ݔ ,ଷଶ = 0ݔ ,ଶଷ = 0ݔ ,ସ଺ = 19ݔ ,ଷହ = 11ݔ ,ଵଷ = 11ݔ ,ଵଶ = 12ݔ
 .ହ଺ = 4ݔ ,ହସ = 7ݔ ,ଶସ = 20ݔ

and the associated maximum amount of flow is
 z = ݔଵଶ ൅ .ଵଷ = 12 + 11 = 23ݔ

Md. Al-Amin Khan, Abdur Rashid, Aminur Rahman Khan and Md. Sharif Uddin

154

9. Conclusion
We have provided a new algorithm for finding the maximum amount of flow from source
to sink in a flow network. The proposed algorithm returns a maximum flow and to
calculate the maximum flow this algorithm takes less number of iterations and less
augmentation. A numerical example is solved to illustrate the proposed algorithm. By
using bounded variable simplex method we have also solved the flow network problem,
which is very easy than simplex method because it reduces a set of large number of
constraints into a small one.

REFERENCES

1. D.R.Fulkerson and G.B. Dantzig, Computation of maximum flow in network, Naval
Research Logistics Quarterly, 2 (1955) 277-283.

2. Kanti Swarup, P.K. Gupta, Mon Mohan, Operations Research, Sultan Chand and
Sons, 14th Edition, 2008.

3. L.R.Ford and D.R.Fulkerson, Maximal Flow through a Network, Canadian Journal of
Mathematics, (1956)399-404.

4. J.Edmonds and R.M. Karp, Theoretical improvements in algorithmic efficiency for
network flow problems, Journal of the ACM, 19(2) (1972) 248-264.

5. A.V. Goldberg, E.Tardos and R.E.Tarjan, A new approach to the maximum-flow
problem, Journal of the ACM, 35(1988) 921-940.

6. R.K.Ahuja, James B. Orlin, A fast and simple algorithm for the maximum flow
problem, Operations Research, 35(5) (1989) 748-759.

7. Dorit S. Hochbaum, The Pseudo-flow algorithm: A new algorithm for the maximum
flow problem, Operations Research, 56(4) (2008) 992-1009.

8. Chintan Jain, Deepak Garg, Improved Edmond-Karps algorithm foe network flow
problem, International Journal of Computer Applications, 37(1) (2012) 48-53.

9. H.A.Taha, Operation Research- An Introduction, Prentice Hall, 7th Edition, 2007.
10. Bazarra, M. and J. Jarvis, Linear Programming and Network Flows, John Wiley &

Sons, 1977.
11. S. Mandal and M. Pal, A Sequential Algorithm to Solve Next-to-Shortest Path

problem on Circular-arc Graphs, Journal of Physical Sciences, 10 (2006) 201-217.

