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ABSTRACT

Coupled fixed point problems have attracted large attention in recent times. In this paper
we have proved a fuzzy coupled fixed point result. Precisely, we have defined the
concept of strong coupled fixed point and have established the existence of a unique
common strong coupled fixed point for two mappings on fuzzy metric spaces which
satisfy certain contractive inequality. The main theorem has a corollary and is supported
with an example. The example demonstrates that the theorem properly contains its
corollary.

Keywords: fuzzy metric space, completeness, t-norm, strong coupled fixed point,
common fixed point.

1. Introduction

The concept of fuzzy sets was introduced by Zadeh [24] in 1965. Afterwards, fuzzy
concepts made headways in almost all branches of mathematics. In particular, fuzzy
metric space was introduced by Kramosil and Michalek [10]. George and Veeramani
modified the definition of Kramosil and Michalek in [7]. The topology in such spaces is a
Hausdroff topology. There are several fixed point results for mappings defined on fuzzy
metric spaces in the sense of George and Veeramani. We have noted some of these works
in[2, 5, 13, 14, 16] and [22].

Definition 1.1. [20] A binary operation =*: [0,1]%2 > [0,1] is called a #-norm if the
following properties are satisfied:

(1) * is associative and commutative,

(i) ax1=1foralla€ [0,1],

(iii)a * b < ¢ *d whenever a < c and b < d, for each a,b,c,d € [0, 1].
ab

= el fora<i<1

Examples of continuous t--norms are a *; b = min {a, b}, a *, b

and a *; b = ab.
Kramosil and Michalek defined fuzzy metric space in the following way.
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Definition 1.2. [10] The 3-tuple (X, M,*) is called a fuzzy metric space if X is an arbitrary
non-empty set, * is a #-norm and M is a fuzzy set on X? x [0, ) satisfying the following
conditions:
()M (x,y,0) =0,
(i)M(x,y,t) = 1 forall t > 0 ifand only if x =y,
@) M(x,y,t) = M(y, x,t),
()M (x,y,t) * M(y,z,5) < M(x,zt +s) and
(w)M(x,y,.) : (0,00) — [0,1] is left-continuous , where t,s > 0 and x,y, z € X.
George and Veeramani in their paper [7] introduced a modification of the above
definition. The motivation was to make the corresponding induced topology into a
Hausdroff topology. Following Mihet [13], we call such spaces GV-fuzzy metric space.

Definition 1.3.[7] The 3-tuple (X,M,x) is called a GV-fuzzy metric space if X is an
arbitrary non-empty set, * is a continuous #-norm and M is a fuzzy set on X2 x [0, ©)
satisfying the following conditions for each x,y,z € X and t,s > 0:

OM(x,y,t) =0,

(@M (x,y,t) = 1lifand only if x = y,

(i) M(x,y,t) = M(y,x, t),

(AvV)M(x,y,t) * M(y,z,s) < M(x,z,t + s) and

(v) M(x,y,.): (0,00) — [0,1] is continuous.

Let (X, M,x) be a GV-fuzzy metric space. For t > 0, 0 < r < 1, the open ball B(x, t,7)
with center x € X is defined by
B(x,t,r) ={y eX: M(x,y,t) >1—r}.

A subset A c X is called open if for each x € A, there exist t > 0 and 0 <r < 1 such
that B(x,t,r) c A. Let t denote the family of all open subsets of X. Then 7 is called the
topology on X induced by the fuzzy metric M. This topology is Hausdorff and first
countable [7].

Example 1.4.[7]Let X =R. Leta*b =a.b forall a,b € [0,1]. For each t € (0, ), let
M(x,yt) = ———

ey = o)

for all x,y € X. Then (R, M,*) is a GV-fuzzy metric space.

Example 1.5. Let (X,d) be a metric space and 3 be an increasing and a continuous
function of R, into (0,1) such that lim,_, ¥(t) = 1. Three generic examples of these

functions are (t) = H% , Y(t) = sin (ﬁ) and Y(t) =1 —e"t. Let * be any continuous t-

norm. For each t € (0,0), let M(x,y,t) = Y (t)2®¥) for all x,y € X.Then (X, M,¥) is a
fuzzy metric space.

Definition 1.6. [10] Let (X, M,*) be a GV-fuzzy metric space.

(i) A sequence {x,} in X is said to be convergent to a point x € X if lim,_, M(x,, x,t) =1
forall ¢t > 0.

(i1) A sequence {x,} in X 1is called a Cauchy sequence if for each 0 <e <1 and t > 0,
there exists ny, € N such that M(x,, x,,, t) > 1 — ¢ for each n,m = n,.
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(iii)) A GV-fuzzy metric space in which every Cauchy sequence is convergent, is said to
be complete.

Lemma 1.7. [17] M is a continuous function on X2 x (0, ).

Our purpose in this paper is to prove a strong coupled common fixed point theorem in
complete GV-fuzzy metric spaces. Coupled fixed point problems belong to a category of
problems in fixed point theory in which much interest has been generated recently after
the publication of a coupled contraction mapping theorem by Bhaskar and
Lakshmikantham [1]. The result proved by Bhaskar and Lakshmikantham in [1] was
generalised to coupled coincidence point results in [3] and [11] under two separate sets of
conditions. Some other works in this line of research are noted in [6, 12, 15, 19]. Coupled
fixed point problems have also been studied in probabilistic metric spaces [23], in cone
metric spaces [9, 18] and in G- metric spaces [4]. One of the reasons of this widespread
interest in coupled fixed point problems is their potential applicability [1].

Definition 1.8. [1] An element x,y € X x X is called a coupled fixed point of the
mapping F: X x X - X if F(x,y) = x,F(y,x) = y.

Further Lakshmikantham and Ciric have introduced the concept of coupled coincidence
point.

Definition 1.9. [1] An element x,y € X x X is called a coupled coincidence point of a
mapping F: X xX > Xand g: X > X if F(x,y) = g(x), F(y,x) = g(y).
If, in particular, x = g(x) = F(x,y) and y = g(y) = F(y,x), then (x,y) is a coupled
common fixed point of g and F .

Here we define strong coupled fixed point in the following.

Definition 1.10. In particular, if x = y in the coupled common fixed point of g and we
call (x,x) or simply x a strong coupled common fixed point of g and F. If further g =1,
the identity map, then we call (x, x) or simply x a strong coupled fixed point of F.
Coupled fixed point results were established in fuzzy metric spaces by Sedghi et al [21]
in which they had established a fuzzy version of the result of Bhaskar et al [1]. After that,
common coupled fixed point results in fuzzy metric spaces were established by Hu [8].

Definition 1.11. [3, 11] Let X be a non-empty set and F: X XX - X and g : X » X. We
say that F and g commute ifg(F(x, y)) =F(g(x),g(y)) forall x,y € X.

In this paper we have established that for two mappings F:X XX - X and g : X - X,
where (X, M,*) is a GV-fuzzy metric space, under certain conditions, there exists a unique
strongly coupled common fixed point for g and F. The theorem has a corollary and is
supported with an example.

2. Main Results

Theorem 2.1. Let (X,M,x) be a complete GV-fuzzy metric space where * is any
continuous t-norm satisfying a*b > a.b for all a,b €[0,1]. Let there be functions
F:XxX - X and g : X - X such that

M(F(x,y), F(u,v),t) 2 y(M(g(x),g(w),t) * M(g(y), g(w), 1)) 2.1
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for all x,y,u,v € X, t >0 where y:[0,1] - [0,1] is a monotone increasing continuous
function such that y(a) > va for each a € (0,1). Let g be continuous, commute with F and
is such that F(X x X) € g(X). Then g and F have a unique strongly coupled common fixed
point.

Proof. Let xg,y0 € X. Since F(X x X) € g(X), we can choose x;,y; € X such that
9(x1) = F(xq,y,) and that g(y,) = F(yg,xo) for some x,,y, € X. Again we can choose
X,, ¥, € X such that g(x;) = F(x1,¥1) and g(y,) = F(y1,x;) Continuing this process, we
construct two sequences {x,} and {y,} in X such that

g(xn+1) = F(xn, yn) and g(yn+1) = F(Yn, yn) foralln = 0. (2.2)

Let, forallt >0,n >0,

On(t) = M(g(xn), (g(xp41),t) * M(g(Vn), (V41 1) - (2.3)

From (2.1) and (2.2), for all t > 0,n = 0, we have

M(g(xn)a(g(xml)at):M(F(Xn—l,YH—l)a F(Xn,Yn)at)

> y(M(g(xn-1), (g(xa), ©) * M(g(¥,,_,), (9(¥,), 1))

=¥(6,-1(0)). (2.4)
Similarly, from (2.1) and (2.2) for all t > 0,n > 0, we have

M(g(Yn)a(g(ym-l)at):M(F(Yn—l,Xn—l), F(Yn,xn),t)
2YMG,_1) G,) ) * M(g(xn-1), (9(xn), 1))

= ¥ (61 (0)). (2.5)
From (2.4) and (2.5), forallt > 0,n > 0,
we have
5n(£) 2 ¥(8n-1()) * ¥ (6n-1()) = (¥ (6n-1(1)))? (Since a * b = ab). (2.6)

From (2.6), by a property of y, we have 6, (t) = y(8,-,(¢)) forall t > 0.

Thus for each t > 0,{6,,(t);n = 0} is an increasing sequence in [0,1] and hence tends to a
limit a(t) < 1. We claim that a(t) =1 for all ¢t > 0. If there exists ¢, > 0 such that
a(ty) < 1, then taking limit as n —» o for t = ¢, in (2.6), and using the properties of y, we
get a(ty) = (v(a(t)))? > a(ty), which is a contradiction. Hence a(t) = 1 for every ¢ > 0,
that is, for all t > 0,
1My, o 8, (8) = limyeo M (g (), (9Ons1), ) * M(g(¥,), (V41 1) (2.7)
Now we prove that {g(x,)} and {g(y )} are Cauchy sequences. Let, to the
contrary, at least one of {g(x,)} and {g(y, )} be not a Cauchy sequence. Then there exist
€,2 € (0,1) such that for each integer k, there are two integers l(k) and m(k) such that
m(k) > l(k) = k and
either M(g(xl(k)),g(xm(k)), €)<1-2 forallk >1
or  M(9(yig) 9may) €) <1—2 forallk >1
Let us write, forall t > 0,k > 0,
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1 (t) = M(g(xl(k))'g(xm(k))'t) *M (g (yl(k))’g (ym(k)) ’ t)'

Then, from the above, for all k > 0,

r1(6) = M(g(x10) 9 (xmg ). €) * M (9 (yl(k))’g (ym(k))’e) s1-12 2g8)

By choosing m(k) to be the smallest integer exceeding /(k) for which (2.8) holds, for all
k > 0, we have

M(g(xl(k));g(xm(k)—l): €) * M(g(yl(k))fg(ym(k)—l); €)>1-A

From the above inequality, by the continuity of M, we can have some a with 0 < 2a <€
such that, for all k > 1,

M(g(x100) 9 (Xmao-1), € = 2a) * M(g(V1019), 9 (Ymay-1), € — 22) > 1= 2 (2.9)
From (2.8) and (2.9), for all k > 0, we have
1-A=2n(e) =2 M(g(xl(k));g(xm(k)—l): €—a)x M(g(xm(k)—l):g(xm(k)): )
* M(g(V10) 9Ymao-1), € = @) * M(G(Yma)-1), 9 Ymao)» @)

= M(g(x19): 9(xmg-1) € —a) * M (9 (yl(k))’g (ym(k)—l) € “) * Om(i)-1(@)
> (1= 2) * Em(gey-1(@).
Taking the limit as k — oo, and using (2.7), we get
lim,_ o 1 (€) =1 — A
Since M(x,y,t;) = M(x,y,t,) whenever t, > t,, it follows that M(x,y,e) <1—-2
implies
M(x,y,e;) <1—A, forall x,y € X whenever ¢, < €.
Hence the above derivation is valid if € is replaced by any smaller value. Thus we
conclude that

limy_,1,(€) =1—21 forall0 <e¢ <e (2.10)

Again, forall k > 0,
1(€) = M(g(x10), 9 (Xmai ) €) * M(9 (k) 9 Ymary) s €)

> M(g(xiw ), 9(xi+1) @) * M(g(xigya1), 9 (kmgo 1), € — 22)

* M(g(xm(k)+1),g(xm(k)), a) *M (g (yl(k))’g (yl(k)+1) , a)
M (9 (1) (Frn) €= 20) 4 (9 (var2) 9 () )

Using the notation of (2.3), for all k > 0, we have
1 (€) = 81y (@) * Eiipey (@) * M(g(X10)41), 9 (Xmary+1), € — 2a)
* M(g(yl(k)+1); g(ym(k)+1): €— 20!) (2.11)

From (2.1) and (2.2, for all k > 0, it follows that
M(g(x10041), 9 (mao+1), € = 2a) = M(F (X1, Vgt )» F (¥mgieys Ymaioy)» € — 2@)
> yM(9(x100), 9(Xmao ) € — 2a) * M(g(viey) 9 Vi), € — 2a))

=y (i (e — 2a) (2.12)
Also from (2.1) and (2.2) we have, for all k > 0,

M(g(Ymao+1)s 9Vmao+1)s € = 2a) = M(F (Ymaoy *¥mao) F Vig» X100 ) € — 2)

5
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M(g(Ymao+1), 9(Ymao+1), € = 2a) = M(F (Ymao Xmao)) F (Vi Xago)), € — 202)
= y(M(g(xi0), 9(Xmao ) € = 2a) * M(g(yi00)> 9 (Vo)) € — 2a))
=y(r.(e — 2a) (2.13)
Inserting (2.12) and (2.13) in (2.11) we obtain, for all k£ > 0,
1 (€) = O1(s) (A) * Opypey (@) * y(r(e — 2a)) * ¥ (1. (e — 2a)
> 610y (@) * Sy (@) * (v (1 (€ — 22)))?
(Sincea * b = a . b).

1-2=2@FA=-1))?2>1-2), (2.14)

which is a contradiction. Therefore, {g(x,,)} and {g(y,)} are
Cauchy sequences.

Since X complete, there exist x, y € X such that

lim,_ g(x,) = x and lim,_,., gOm) =y . (2.15)
From (2.15), and the continuity of g, we obtain
limy, e g(g(xn)) = g(x)  and limy,_,o, g(g(¥n)) = g(v) (2.16)
From (2.2), and the commutativity of g and F , for alln = 0, we have
9(9(ns1)) = g(F Cen yn)) = F(g(xn), g)), (2.17)
and
9(9On+1)) = 9(F O, 0)) = F(G(n), 9 (x0)), (2.18)

We now show that g(x) = F(x,y) and g(y) = F(y, x)

From (2.1) and (2.17), forall t > 0,n = 0, we have
M(g(9(xn11)), F(,9),t) = M(g(F Gt ¥)), F(x,9),8)
= M(F(9(xn), gOm)), F(x, ), 1)

>yM(g(9(xn) g0, t) * M(g(g()), g, t).
Letting n — oo in the above inequality, by (2.16), the continuity of ¥ and lemma 1.7, for

all t > 0, we have

M(g(),F(x,y),t) 2y(1) =1,
that is, g(x) = F(x,y) (2.19)

Again from (2.1) and (2.18) we get, forallt > 0,n > 0,

M(g(gWn+1), F,%),t) = M(g(F (vn, xn)), F(, %), 1)
>yM(9(9()), g, t) * M(g(g(xn)), g(x),t)

Letting n — oo in the above inequality, by (2:16), the continuity of y and lemma 1.7, for all
t >0, we haveM (g(y), F(y,x),t) = y(1) = 1 for all £>0, that is

6
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G)=F(yx). (2.20)

Thus (x,y) is a coupled coincidence point of g and F.
Now we prove that x = y. Let, to the contrary, x # y. Then, M(x,y,s) < 1 for s > 0. Then,
from (2.1) and (2.2), we get

M(g(xn+1), g()’n+1): S) = M(F(xn'yn)rF(xn'Yn)l S)
>y (M(g(xn)), g0n), s) * M(g(n)), g (xn), 5)) .

Letting n — oo in the above inequality, by (2:15), lemma 1.7, the continuity of * and the
properties of Y, we have

M(x,y,5) Zy(M(x,y,5) * M(y,x,5) =2 A(M(x,y,5)%) > M(x,y,5),

which is a contraction.

Thus we have proved that x = y. From (2.19) and (2.20) we have that

gx) =F(x,y). (2.21)
Next we prove that g(x) = x. If otherwise, then 0 < M(x,y,s) < 1 fors > 0.

From (2.1), (2.2) and (2.21), we have that
M(g()), 9(x),5) = M(F (Yo, X, F (x, %), 5)
> y(M(g(xn)), g(x),5) * M(g(xn)), g(x),5)).

Letting n — oo in the above inequality, by (2.15), lemma 1.7, the properties y, and the fact
that x = y, we have
M(x,g(x),s) 2 y(M(x, g(x),s) * M(y, g(y),s))
=y(M(x,9(x),s) * M(x, g(x),s))
=y(M(x, g(x),5)%)

> M(x,g(x),s,
which is contraction. Hence we have established that x = g(x) = F(x, x), thatis, g and F
have a strongly coupled common fixed point. Next we prove the uniqueness of the fixed
point.

If x and u are such that, x = g(x) = F(x,x) and u = g(u) = F(u, w),

then, by (2.1) and a property of y, for all t > 0, we have

M(g(x), gw), 1) = y (M(F (x, x), F (v, u), 1)
>y (M(g(x), g(u), 1) * M(g(x), g(u), 1)) (by (2.1))
> M(g(x), g(u), 1),

which is a contradiction.

Hence the strongly coupled x common fixed point is unique.

This completes the proof of the theorem.
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Corollary 2.2. Let (X, M, *) be a complete GV-fuzzy metric space such thata *b > a.b
for all a, b € [0,1]. Let there be a function F: X x X — X such that

M(F (x, ), F(u, v), )=2y(M(x,u,t) * M(y, v, t)) (2.22)
for all x, y, u, v € X, where y: [0,1] - [0,1] is a continuous function such that y(a) > +a for
each a € (0,1). Then there exists a unique strongly coupled fixed point of F, that is, a
unique x € X such that x = F' (x, x).

Proof. If we take g = I, the identity map, in theorem 2.1, then there exists a unique x €

X such that x = F' (x, x).

Example 2.3. Let (X, M, *) be a fuzzy metric space, where X = [-2,2], a*b = a.b for all a,
b € [0,1] and, forx, ye X, t > 0,

M(x, v, = ()
where ¢ is an increasing and continuous function of R, into (0, 1) given by
o(t) = # for each t € (0, ). We define the map F: X X X — X as:
2 2
F(r,y)=>—t2—~
24 24 ,forall x,y € X.
Let g:X - X be given by g(x) = —|x| forall x € X.

F(Xx X) =[2,22] < g(X) =[-2,0]
Then 3 .
1
Let y:[0,1] — [0,1] be defined as y(a) = as for each a € (0,1),y(0) = 0and y(1) = 1.
Then, for all x,y,u,v € X , t > 0, we have

|x2—u2+y2—v2| |[x—ul+|y-v|

MEY)Fen = () >(m)

t+1 t+1
lx—u] ly-v| ! 1

(L) 7 (H) T = MEm.e)0” Mem.emo
_r(M(g(x),g(u),0)*M(g(y),g(v),1))

Thus all the conditions of theorem 2.1 hold. Here (6-2V 15 , 62V 15 ) is the unique strong
common coupled fixed point of F.
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