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ABSTRACT 
Coupled fixed point problems have attracted large attention in recent times. In this paper 
we have proved a fuzzy coupled fixed point result. Precisely, we have defined the 
concept of strong coupled fixed point and have established the existence of a unique 
common strong coupled fixed point for two mappings on fuzzy metric spaces which 
satisfy certain contractive inequality. The main theorem has a corollary and is supported 
with an example. The example demonstrates that the theorem properly contains its 
corollary. 
 
Keywords: fuzzy metric space, completeness, t-norm, strong coupled fixed point, 
common fixed point. 
 
1. Introduction 
The concept of fuzzy sets was introduced by Zadeh [24] in 1965. Afterwards, fuzzy 
concepts made headways in almost all branches of mathematics. In particular, fuzzy 
metric space was introduced by Kramosil and Michalek [10]. George and Veeramani 
modified the definition of Kramosil and Michalek in [7]. The topology in such spaces is a 
Hausdroff  topology. There are several fixed point results for mappings defined on fuzzy 
metric spaces in the sense of George and Veeramani. We have noted some of these works 
in [2, 5, 13, 14, 16] and [22]. 
 
Definition 1.1. [20] A binary operation כ ሾ, ሿ ՜ ሾ, ሿ is called a t-norm if the 
following properties are satisfied: 

(i)  is associative and commutative,  
(ii) ܽ כ 1 ൌ 1 for all ܽ א ሾ, ሿ,  
(iii) ܽ כ ܾ  ܿ כ ݀ whenever ܽ  ܿ and ܾ  ݀, for each ܽ, ܾ, ܿ, ݀ א ሾ, ሿ. 

Examples of continuous t--norms are ܽ ଵכ ܾ ൌ min ሼܽ, ܾሽ, ܽ ଶכ ܾ ൌ 
ெ௫ሼ,,ఒሽ

 for ܽ ൏ ߣ ൏ 1 
and ܽ ଷכ ܾ ൌ ab. 
Kramosil and Michalek defined fuzzy metric space in the following way. 
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Definition 1.2. [10] The 3-tuple ሺܺ,  is an arbitrary  ࢄ ሻ is called a fuzzy metric space ifכ,ܯ
non-empty set,  is a t-norm and ܯ  is a fuzzy set on ܺଶ ൈ ሾ0, ∞ሻ satisfying the following 
conditions: 

(i) ܯሺݔ, ,ݕ 0ሻ ൌ 0,  
(ii) ܯሺݔ, ,ݕ ሻݐ ൌ 1 for all ݐ  0 if and only if ݔ ൌ   ,ݕ

      ሺ݅݅݅ሻ ܯሺݔ, ,ݕ ሻݐ ൌ ,ݕሺܯ ,ݔ  ,ሻݐ
       ሺ݅ݒሻܯሺݔ, ,ݕ ሻݐ כ ,ݕሺܯ ,ݖ ሻݏ  ,ݔሺܯ ,ݖ ݐ    ሻ andݏ
      ሺݒሻܯሺݔ, ,ݕ . ሻ  ሺ0, ∞ሻ ื ሾ0,1ሿ is left-continuous , where ݐ, ݏ  0 and ݔ, ,ݕ ݖ א ܺ.  

George and Veeramani in their paper [7] introduced a modification of the above 
definition.  The motivation was to make the corresponding induced topology into a 
Hausdroff  topology. Following Mihet [13], we call such spaces GV-fuzzy metric space. 
 
Definition 1.3.[7] The 3-tuple ሺܺ,  is an ࢄ ሻ is called a GV-fuzzy metric space ifכ,ܯ
arbitrary non-empty set, כ is a continuous t-norm and ܯ is a fuzzy set on  ܺଶ ൈ ሾ0, ∞ሻ 
satisfying the following conditions for each ݔ, ,ݕ ݖ א ܺ and ݐ, ݏ  0: 
        ሺ݅ሻܯሺݔ, ,ݕ ሻݐ ൌ 0,  
       ሺ݅݅ሻܯሺݔ, ,ݕ ሻݐ ൌ 1 if and only if ݔ ൌ   ,ݕ

(iii) ܯሺݔ, ,ݕ ሻݐ ൌ ,ݕሺܯ ,ݔ  ,ሻݐ
(iv) ܯሺݔ, ,ݕ ሻݐ כ ,ݕሺܯ ,ݖ ሻݏ  ,ݔሺܯ ,ݖ ݐ   ሻ andݏ
(v)  ܯሺݔ, ,ݕ . ሻ  ሺ0, ∞ሻ ื ሾ0,1ሿ is continuous. 

 
       Let ሺܺ, ݐ ሻ be a GV-fuzzy metric space. Forכ,ܯ  0,  0 ൏ ݎ ൏ 1, the open ball ܤሺݔ, ,ݐ  ሻݎ
with center ݔ א ܺ is defined by 
,ݔሺܤ        ,ݐ ሻݎ ൌ ሼݕ א ܺ  ,ݔሺܯ ,ݕ ሻݐ  1 െ  .ሽݎ
    A subset ܣ ؿ ܺ is called open if for each ݔ א ݐ there exist ,ܣ  0 and 0 ൏ ݎ ൏ 1 such 
that ܤሺݔ, ,ݐ ሻݎ ؿ  Let ߬ denote the family of all open subsets of ܺ. Then ߬ is called the .ܣ
topology on ܺ induced by the fuzzy metric ܯ. This topology is Hausdorff and first 
countable [7]. 
 
Example 1.4. [7] Let ࢄ ൌ Թ.  Let ࢇ כ ࢈ ൌ . ࢇ ,ࢇ for all ࢈ ࢈ א ሾ, ሿ. For each ࢚ א ሺ, ∞ሻ, let 

,ݔሺܯ ,ݕ ሻݐ ൌ
ݐ

ݐ  ݔ| െ  |ݕ

for all ݔ, ݕ א ܺ.  Then ሺԹ,  .ሻ is a GV-fuzzy metric spaceכ,ܯ
 
Example 1.5. Let ሺܺ, ݀ሻ be a metric space and ࣒ be an increasing and a continuous 
function of Թା into ሺ0,1ሻ such that lim௧՜ஶ ߰ሺݐሻ ൌ 1. Three generic examples of these 
functions are ሺݐሻ ൌ ௧

௧ାଵ
 , ߰ሺݐሻ ൌ sin ሺ గ௧

ଶ௧ାଵ
ሻ and ߰ሺݐሻ ൌ 1 െ ݁ି௧. Let  be any continuous t-

norm. For each ݐ א ሺ0, ∞ሻ, let ܯሺݔ, ,ݕ ሻݐ ൌ ߰ሺݐሻௗሺ௫,௬ሻ for all ݔ, ݕ א ܺ.Then ሺܺ,  ሻ is aכ,ܯ
fuzzy metric space. 
 
Definition 1.6. [10] Let ሺܺ,  .ሻ be a GV-fuzzy metric spaceכ,ܯ
(i) A sequence ሼݔሽ in ܺ is said to be convergent to a point ݔ א ܺ if  lim՜ஶ ,ݔሺܯ ,ݔ ሻݐ ൌ 1 
for all ݐ  0. 
(ii) A sequence ሼݔሽ in ܺ  is called a Cauchy sequence if for each 0 ൏ ߝ ൏ 1 and ݐ  0, 
there exists ݊ א Գ such that ܯሺݔ, ,ݔ ሻݐ  1 െ ,݊ for each ߝ ݉  ݊. 
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(iii) A GV-fuzzy metric space in which every Cauchy sequence is convergent, is said to 
be complete. 
 
Lemma 1.7. [17] ࡹ  is a continuous function on ࢄ ൈ ሺ, ∞ሻ. 
  Our purpose in this paper is to prove a strong coupled common fixed point theorem in 
complete GV-fuzzy metric spaces. Coupled fixed point problems belong to a category of 
problems in fixed point theory in which much interest has been generated recently after 
the publication of a coupled contraction mapping theorem by Bhaskar and 
Lakshmikantham [1]. The result proved by Bhaskar and Lakshmikantham in [1] was 
generalised to coupled coincidence point results in [3] and [11] under two separate sets of 
conditions. Some other works in this line of research are noted in [6, 12, 15, 19]. Coupled 
fixed point problems have also been studied in probabilistic metric spaces [23], in cone 
metric spaces [9, 18] and in G- metric spaces [4]. One of the reasons of this widespread 
interest in coupled fixed point problems is their potential applicability [1]. 
 
Definition  1.8. [1] An  element  ݔ, ݕ א ܺ ൈ ܺ  is  called  a  coupled  fixed  point  of  the  
mapping ܨ: ܺ ൈ ܺ ՜ ܺ if  ܨሺݔ, ሻݕ ൌ ,ݔ ,ݕሺܨ ሻݔ ൌ  .ݕ
  Further Lakshmikantham and Ciric have introduced the concept of coupled coincidence 
point. 
 
Definition 1.9. [1] An element ݔ, ݕ א ܺ ൈ ܺ is called a coupled coincidence point of a 
mapping ܨ: ܺ ൈ ܺ ՜ ܺ and ݃  ܺ ՜ ܺ if ܨሺݔ, ሻݕ ൌ ݃ሺݔሻ, ,ݕሺܨ ሻݔ ൌ ݃ሺݕሻ. 
If, in particular, ݔ ൌ ݃ሺݔሻ ൌ ,ݔሺܨ ݕ ሻ andݕ ൌ ݃ሺݕሻ ൌ ,ݕሺܨ ,ݔሻ, then ሺݔ  ሻ is a coupledݕ
common fixed point of ݃ and ܨ . 
  Here we define strong coupled fixed point in the following. 
 
Definition 1.10. In particular, if ࢞ ൌ  and  we ࢍ in the coupled common fixed point of ࢟
call ሺݔ, ݃ If further .ܨ a strong coupled common fixed point of ݃ and ݔ ሻ or simplyݔ ൌ  ,ܫ
the identity map, then we call ሺݔ,  .ܨ a strong coupled fixed point of ݔ ሻ or simplyݔ
  Coupled fixed point results were established in fuzzy metric spaces by Sedghi et al [21] 
in which they had established a fuzzy version of the result of Bhaskar et al [1]. After that, 
common coupled fixed point results in fuzzy metric spaces were established by Hu [8]. 

 
Definition 1.11. [3, 11] Let ࢄ be a non-empty set and ܨ: ܺ ൈ ܺ ՜ ܺ and ݃  ܺ ՜ ܺ. We 
say that ܨ and ݃ commute if ݃൫ܨሺݔ, ሻ൯ݕ ൌ ,ሻݔሺ݃ሺܨ ݃ሺݕሻሻ for all ݔ, ݕ א ܺ. 
  In this paper we have established that for two mappings ܨ: ܺ ൈ ܺ ՜ ܺ and ݃  ܺ ՜ ܺ, 
where ሺܺ,  ሻ is a GV-fuzzy metric space, under certain conditions, there exists a uniqueכ,ܯ
strongly coupled common fixed point for ݃ and ܨ. The theorem has a corollary and is 
supported with an example. 
 
2.  Main Results 
Theorem 2.1. Let ሺܺ,  ሻ  be a complete GV-fuzzy metric space where  is anyכ,ܯ
continuous t-norm satisfying ܽ כ ܾ  ܽ. ܾ for all ܽ, ܾ א ሾ0,1ሿ. Let there be functions 
:ܨ ܺ ൈ ܺ ՜ ܺ and ݃  ܺ ՜ ܺ such that 
,ݔሺܨሺܯ ,ሻݕ ,ݑሺܨ ,ሻݒ ሻݐ  ,ሻݔሺ݃ሺܯሺߛ ݃ሺݑሻ, ሻݐ כ ,ሻݕሺ݃ሺܯ ݃ሺݒሻ,  ሻሻ                     (2.1)ݐ
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for all ݔ, ,ݕ ,ݑ ݒ א ݐ ,ܺ  0 where ߛ  ሾ0,1ሿ ՜ ሾ0,1ሿ is a monotone increasing continuous 
function such that ߛሺܽሻ  √ܽ for each ܽ א ሺ0,1ሻ. Let ݃ be continuous, commute with ܨ and 
is such that ܨሺܺ ൈ ܺሻ ك ݃ሺܺሻ. Then ݃ and ܨ have a unique strongly coupled common fixed 
point. 
Proof.  Let ࢞, ࢟ א ሺܺܨ Since  .ࢄ ൈ ܺሻ ك ݃ሺܺሻ, we can choose ࢞, ࢟ א  such that  ࢄ
ሻ࢞ሺࢍ ൌ ,࢞ሺࡲ  ሻ࢟ሺࢍ ሻ and that࢟ ൌ ,࢟ሺࡲ ,ݔ ሻ for some࢞ ݕ א ܺ. Again we can choose 
,ଶݔ ଶݕ א ܺ such that ࢍሺ࢞ሻ ൌ ,࢞ሺࡲ ሻ࢟ሺࢍ ሻ and࢟ ൌ ,࢟ሺࡲ  ሻ Continuing this process, we࢞
construct two sequences ሼݔሽ and ሼݕሽ in ܺ   such that 
݃ሺݔାଵሻ ൌ ,ݔሺܨ ାଵሻݕ) and  ݃ሺݕ ൌ ,ݕሺܨ ݊ ) for allݕ  0.                                     (2.2)  

Let, for all ݐ  0 , ݊  0, 
 
  

ሻݐሺߜ     ൌ ,ሻݔሺ݃ሺܯ ሺ݃ሺݔାଵሻ, ሻݐ כ ,ሻݕሺ݃ሺܯ ሺ݃ሺݕାଵሻ,     (ሻ .                            (2.3)ݐ

From (2.1) and (2.2), for all ݐ  0 , ݊  0, we have   
 
M(g(xn),(g(xn+1),t)=M(F(xn-1,yn-1), F(xn,yn),t)              
                               ,െ1ሻ݊ݔሺ݃ሺܯሺߛ ሺ݃ሺ݊ݔሻ, ሻݐ כ ,െ1൯݊ݕሺ݃൫ܯ ሺ݃൫݊ݕሻ,  ൯ሻݐ
                              ൌ  ሻሻ.                                                                                         (2.4)ݐିଵሺߜሺߛ
Similarly, from (2.1) and (2.2) for all ݐ  0 , ݊  0, we have 
 
M(g(yn),(g(yn+1),t)=M(F(yn-1,xn-1), F(yn,xn),t) 
                                          ,െ1൯݊ݕሺ݃൫ܯሺߛ ሺ݃൫݊ݕሻ, ൯ݐ כ ,െ1ሻ݊ݔሺ݃ሺܯ ሺ݃ሺ݊ݔሻ,  ሻሻݐ
                                             ൌ        ሻሻ.                                                                              (2.5)ݐିଵሺߜሺߛ

     From (2.4) and (2.5), for all ݐ  0 , ݊  0, 
we have    

ሻݐሺߜ  ሻ൯ݐିଵሺߜ൫ߛ כ ሻሻݐିଵሺߜሺߛ  ሺߛ൫ߜିଵሺݐሻ൯ሻଶ   (Since ܽ כ ܾ  ܾܽ).             (2.6)  
 
From (2.6), by a property of ߛ, we have ߜሺݐሻ  ݐ ሻ൯ for allݐିଵሺߜ൫ߛ  0. 
   

Thus for each ݐ  0, ሼߜሺݐሻ; ݊  0ሽ is an increasing sequence in ሾ0,1ሿ and hence tends to a 
limit ܽሺݐሻ  1. We claim that ܽሺݐሻ ൌ 1 for all ݐ  0. If there exists ݐ  0 such that 
ܽሺݐሻ ൏ 1, then taking limit as ݊ ՜ ∞ for ݐ ൌ  we ,ߛ  in (2.6), and using the properties ofݐ
get ܽሺݐሻ  ሺߛ൫ܽሺݐሻ൯ሻଶ  ܽሺݐሻ, which is a contradiction. Hence ܽሺݐሻ ൌ 1 for every ݐ  0, 
that is, for all ݐ  0, 
lim՜ஶ ሻݐሺߜ ൌ lim՜ஶ ,ሻ݊ݔሺ݃ሺܯ ሺ݃ሺ݊ݔ1ሻ, ሻݐ כ ,൯݊ݕሺ݃൫ܯ ሺ݃൫݊ݕ1ሻ,                     ൯                    (2.7)ݐ

Now we prove that ሼ݃ሺ݊ݔሻሽ and ሼ݃൫݊ݕ൯ሽ  are Cauchy sequences. Let, to the 
contrary, at least one of ሼ݃ሺ݊ݔሻሽ  and ሼ݃൫݊ݕ൯ሽ be not a Cauchy sequence. Then there exist 
߳, ߣ א ሺ0,1ሻ such that for each integer ݇, there are two integers ݈ሺ݇ሻ and ݉ሺ݇ሻ such that 
݉ሺ݇ሻ  ݈ሺ݇ሻ  ݇ and 
either ܯ൫݃൫ݔሺሻ൯, ݃൫ݔሺሻ൯, ߳൯  1 െ ݇ for all  ߣ  1  
or       ܯ൫݃൫ݕሺሻ൯, ݃ሺݕሺሻሻ, ߳൯  1 െ ݇ for all   ߣ  1 

Let us write, for all ݐ  0 , ݇  0, 
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ሻݐሺݎ  ൌ ,ሺ݇ሻ൯݈ݔ൫݃൫ܯ ݃൫݉ݔሺ݇ሻ൯, ൯ݐ כ ܯ ቀ݃ ቀ݈ݕሺ݇ሻቁ , ݃ ቀ݉ݕሺ݇ሻቁ ,  .ቁݐ

Then, from the above, for all ݇  0,  

ሺ߳ሻ݇ݎ ൌ ,ሺ݇ሻ൯݈ݔ൫݃൫ܯ ݃൫݉ݔሺ݇ሻ൯, ߳൯ כ ܯ ቀ݃ ቀ݈ݕሺ݇ሻቁ , ݃ ቀ݉ݕሺ݇ሻቁ , ߳ቁ  1 െ (2.8) ߣ
By choosing ݉ሺ݇ሻ to be the smallest integer exceeding l(k) for which (2.8) holds, for all 
݇  0, we have 
,ሺሻ൯ݔ൫݃൫ܯ ݃൫ݔሺሻିଵ൯, ߳൯ כ ,ሺሻ൯ݕ൫݃൫ܯ ݃൫ݕሺሻିଵ൯, ߳൯  1 െ  .ߣ
 
  From the above inequality, by the continuity of ܯ, we can have some ߙ with 0 ൏ ߙ2 ൏ ߳ 
such that, for all ݇  1, 
,ሺሻ൯ݔ൫݃൫ܯ ݃൫ݔሺሻିଵ൯, ߳ െ ൯ߙ2 כ ,ሺሻ൯ݕ൫݃൫ܯ ݃൫ݕሺሻିଵ൯, ߳ െ ൯ߙ2  1 െ  (2.9)                    ߣ
From (2.8) and (2.9), for all ݇  0, we have 

1 െ ߣ  ሺ߳ሻݎ  ,ሺሻ൯ݔ൫݃൫ܯ ݃൫ݔሺሻିଵ൯, ߳ െ ൯ߙ כ ,ሺሻିଵ൯ݔ൫݃൫ܯ ݃൫ݔሺሻ൯, ൯ߙ
כ ,ሺሻ൯ݕ൫݃൫ܯ ݃൫ݕሺሻିଵ൯, ߳ െ ൯ߙ כ ,ሺሻିଵ൯ݕ൫݃൫ܯ ݃൫ݕሺሻ൯,  ൯ߙ

        ൌ ,ሺ݇ሻ൯݈ݔ൫݃൫ܯ ݃൫݉ݔሺ݇ሻെ1൯, ߳ െ ൯ߙ כ ܯ ቀ݃ ቀ݈ݕሺ݇ሻቁ , ݃ ቀ݉ݕሺ݇ሻെ1ቁ , ߳ െ ቁߙ כ  ሻߙሺ݇ሻെ1ሺ݉ߜ
         ሺ1 െ ሻߣ כ  .ሻߙሺሻିଵሺߜ
Taking the limit as ݇ ՜ ∞, and using (2.7), we get 
lim՜ஶ ሺ߳ሻݎ ൌ 1 െ  .ߣ
Since  ܯሺݔ, ,ݕ ଵሻݐ  ,ݔሺܯ ,ݕ ଵݐ  ଶሻ  wheneverݐ  ,ݔሺܯ  ଶ,  it  follows  thatݐ ,ݕ ߳ሻ  1 െ   ߣ
implies 
,ݔሺܯ ,ݕ ߳ଵሻ  1 െ ,ݔ for all ¸ ߣ ݕ א ܺ whenever ߳ଵ  ߳. 
Hence the above derivation is valid if ߳ is replaced by any smaller value.  Thus we 
conclude that 
   lim՜ஶ ሺ߳ሻݎ ൌ 1 െ for all 0   ߣ ൏ ߳1  ߳.                                  (2.10)
  
Again, for all ݇  0, 

ሺ߳ሻݎ ൌ ,ሺሻ൯ݔ൫݃൫ܯ ݃൫ݔሺሻ൯, ߳൯ כ ,ሺሻ൯ݕ൫݃൫ܯ ݃൫ݕሺሻ൯, ߳൯ 
 

 ,ሺ݇ሻ൯݈ݔ൫݃൫ܯ ݃൫݈ݔሺ݇ሻ1൯, ൯ߙ כ ,ሺ݇ሻ1൯݈ݔ൫݃൫ܯ ݃൫݉ݔሺ݇ሻ1൯, ߳ െ ൯ߙ2
כ ,ሺ݇ሻ1൯݉ݔ൫݃൫ܯ ݃൫݉ݔሺ݇ሻ൯, ൯ߙ כ ܯ ቀ݃ ቀ݈ݕሺ݇ሻቁ , ݃ ቀ݈ݕሺ݇ሻ1ቁ , ቁߙ

כ ܯ ቀ݃ ቀ݈ݕሺ݇ሻ1ቁ , ݃ ቀ݉ݕሺ݇ሻ1ቁ , ߳ െ ቁߙ2 כ ܯ ቀ݃ ቀ݉ݕሺ݇ሻ1ቁ , ݃ ቀ݉ݕሺ݇ሻቁ ,  ቁߙ
Using the notation of (2.3), for all ݇  0, we have 

ሺ߳ሻݎ  ሻߙሺ݇ሻሺ݈ߜ כ ሻߙሺ݇ሻሺ݉ߜ כ ,ሺሻାଵ൯ݔ൫݃൫ܯ ݃൫ݔሺሻାଵ൯, ߳ െ  ൯ߙ2
כ                                     ,ሺሻାଵ൯ݕ൫݃൫ܯ ݃൫ݕሺሻାଵ൯, ߳ െ                                        ൯                                            (2.11)ߙ2
 
From (2.1) and (2.2, for all ݇  0, it follows that 

,ሺሻାଵ൯ݔ൫݃൫ܯ ݃൫ݔሺሻାଵ൯, ߳ െ ൯ߙ2 ൌ ,ሺሻݔ൫ܨ൫ܯ ,ሺሻ൯ݕ ,ሺሻݔ൫ܨ ,ሺሻ൯ݕ ߳ െ  ൯ߙ2
 ,ሺሻ൯ݔ൫݃൫ܯሺߛ ݃൫ݔሺሻ൯, ߳ െ ൯ߙ2 כ ,ሺሻ൯ݕ൫݃൫ܯ ݃൫ݕሺሻ൯, ߳ െ  ൯ሻߙ2

                 ൌ ሺ߳ݎሺߛ െ     ሻ                                                                                          (2.12)ߙ2
  Also from (2.1) and (2.2) we have, for all ݇  0, 

,ሺሻାଵ൯ݕ൫݃൫ܯ ݃൫ݕሺሻାଵ൯, ߳ െ ൯ߙ2 ൌ ,ሺሻݕ൫ܨ൫ܯ ,ሺሻ൯ݔ ,ሺሻݕ൫ܨ ,ሺሻ൯ݔ ߳ െ  ൯ߙ2
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,ሺሻାଵ൯ݕ൫݃൫ܯ ݃൫ݕሺሻାଵ൯, ߳ െ ൯ߙ2 ൌ ,ሺሻݕ൫ܨ൫ܯ ,ሺሻ൯ݔ ,ሺሻݕ൫ܨ ,ሺሻ൯ݔ ߳ െ  ൯ߙ2
 ,ሺሻ൯ݔ൫݃൫ܯሺߛ ݃൫ݔሺሻ൯, ߳ െ ൯ߙ2 כ ,ሺሻ൯ݕ൫݃൫ܯ ݃൫ݕሺሻ൯, ߳ െ  ൯ሻߙ2

                ൌ ሺ߳ݎሺߛ െ           ሻ                         (2.13)ߙ2
Inserting (2.12) and (2.13) in (2.11) we obtain, for all ݇  0, 

ሺ߳ሻݎ  ሻߙሺ݇ሻሺ݈ߜ כ ሻߙሺ݇ሻሺ݉ߜ כ ሺ߳ݎ൫ߛ െ ሻ൯ߙ2 כ ሺ߳ݎሺߛ െ ሻߙ2
 ሻߙሺ݇ሻሺ݈ߜ כ ሻߙሺ݇ሻሺ݉ߜ כ ሺߛ൫ݎሺ߳ െ  ሻ൯ሻଶߙ2

     (Since ܽ כ ܾ  ܽ . ܾ). 

1 െ ߣ  ሺߛሺ1 െ ሻሻଶߣ  ሺ1 െ ሻ,                                                                          (2.14)ߣ  
which is a contradiction.  Therefore, ሼ݃ሺݔሻሽ and ሼ݃ሺݕሻሽ  are 
Cauchy sequences. 
 
Since ܺ complete, there exist ݔ, ݕ א ܺ such that 
                     lim՜ஶ ݃ሺݔሻ ൌ and lim՜ஶ ݔ ݃ሺݕሻ ൌ  (2.15)                                  . ݕ
 
From (2.15), and the continuity of ݃, we obtain 
lim՜ஶ ݃ሺ݃ሺݔሻሻ ൌ ݃ሺݔሻ    and  lim՜ஶ ݃ሺ݃ሺݕሻሻ ൌ ݃ሺݕሻ                           (2.16)

From (2.2), and the commutativity of ݃ and ܨ , for all ݊  0, we have
݃൫݃ሺݔାଵሻ൯ ൌ ݃൫ܨሺݔ, ሻ൯ݕ ൌ ,ሻݔሺ݃ሺܨ ݃ሺݕሻሻ,                                             (2.17) 

and   

݃൫݃ሺݕାଵሻ൯ ൌ ݃൫ܨሺݕ, ሻ൯ݔ ൌ ,ሻݕሺ݃ሺܨ ݃ሺݔሻሻ,                                              (2.18) 
We now show that ݃ሺݔሻ ൌ ,ݔሺܨ ሻݕሻ and ݃ሺݕ ൌ ,ݕሺܨ  ሻݔ
 
From (2.1) and (2.17), for all ݐ  0 , ݊  0, we have 

,ାଵሻ൯ݔ൫݃൫݃ሺܯ ,ݔሺܨ ,ሻݕ ൯ݐ ൌ ,ݔሺܨሺ݃൫ܯ  ,ሻ൯ݕ ,ݔሺܨ ,ሻݕ  ሻݐ
                                                      ൌ ,ሻݔ൫݃ሺܨሺܯ ݃ሺݕሻ൯, ,ݔሺܨ ,ሻݕ  ሻݐ
                                              ,ሻ൯ݔ൫݃൫݃ሺܯሺߛ ݃ሺݔሻ, ൯ݐ כ ሺܯ൫݃൫݃ሺݕሻ൯, ݃ሺݕሻ,  .൯ݐ
Letting ݊ ՜ ∞ in the above inequality, by (2.16), the continuity of ߛ and lemma 1.7, for 
all ݐ  0, we have 

,ሻݔሺ݃ሺܯ                                         ,ݔሺܨ ,ሻݕ ሻݐ  ሺ1ሻߛ ൌ 1,
that is, ݃ሺݔሻ ൌ ,ݔሺܨ ሻ                                                                                                   (2.19)ݕ
 
Again from (2.1) and (2.18) we get, for all ݐ  0 , ݊  0, 
 

,ାଵሻ൯ݕ൫݃൫݃ሺܯ ,ݕሺܨ ,ሻݔ ൯ݐ ൌ ,ݕሺܨሺ݃൫ܯ  ,ሻ൯ݔ ,ݕሺܨ ,ሻݔ  ሻݐ
 ,ሻ൯ݕ൫݃൫݃ሺܯሺߛ ݃ሺݕሻ, ൯ݐ כ ሺܯ൫݃൫݃ሺݔሻ൯, ݃ሺݔሻ,  ൯ݐ

 
Letting ݊ ՜ ∞ in the above inequality, by (2:16), the continuity of ߛ and lemma 1.7, for all 
ݐ  0, we haveܯሺ݃ሺݕሻ, ,ݕሺܨ ,ሻݔ ሻݐ  ሺ1ሻߛ ൌ 1 for all t>0, that is  
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G(y) = F(y,x).                                                                                                                 (2.20) 
 
Thus ሺݔ,  .ܨ ሻ is a coupled coincidence point of ݃ andݕ
Now we prove that ݔ ൌ ݔ ,Let, to the contrary .ݕ ് ,ݔሺܯ ,Then .ݕ ,ݕ ሻݏ ൏ 1 for ݏ  0. Then, 
from (2.1) and (2.2), we get 

,ାଵሻݔሺ݃ሺܯ ݃ሺݕାଵሻ, ሻݏ ൌ ,ݔሺܨሺܯ  ,ሻݕ ,ݔሺܨ ,ሻݕ  ሻݏ
                                        
 ,ሻ൯ݔ൫݃ሺܯሺߛ ݃ሺݕሻ, ሻݏ כ ,ሻ൯ݕ൫݃ሺܯ ݃ሺݔሻ,  . ሻሻݏ
 
Letting ݊ ՜ ∞ in the above inequality, by (2:15), lemma 1.7, the continuity of  and the 
properties of ߛ, we have 

,ݔሺܯ ,ݕ ሻݏ  ,ݔሺܯሺߛ ,ݕ ሻݏ כ ,ݕሺܯ ,ݔ ሻݏ  ,ݔሺܯሺߣ ,ݕ ሻଶሻݏ  ,ݔሺܯ ,ݕ  ,ሻݏ
which is a contraction. 

Thus we have proved that ݔ ൌ From (2.19) and (2.20) we have that  .ݕ  

݃ሺݔሻ ൌ ,ݔሺܨ ሻ.                                                                                                              (2.21)ݕ  

Next we prove that ݃ሺݔሻ ൌ If otherwise, then 0  .ݔ ൏ ,ݔሺܯ ,ݕ ሻݏ ൏ 1 for ݏ  0. 

From (2.1), (2.2) and (2.21), we have that
,ሻ൯ݕ൫݃ሺܯ ݃ሺݔሻ, ሻݏ ൌ ,ݕሺܨሺܯ ,ሻݔ ,ݔሺܨ ,ሻݔ  ሻݏ

                                               ,ሻ൯ݔ൫݃ሺܯሺߛ ݃ሺݔሻ, ሻݏ כ ,ሻ൯ݔ൫݃ሺܯ ݃ሺݔሻ,  .ሻሻݏ
  
Letting ݊ ՜ ∞ in the above inequality, by (2.15), lemma 1.7, the properties ߛ, and the fact 
that ݔ ൌ  we have ,ݕ

,ݔሺܯ ݃ሺݔሻ, ሻݏ  ,ݔሺܯሺߛ ݃ሺݔሻ, ሻݏ כ ,ݕሺܯ ݃ሺݕሻ,  ሻሻݏ
               ൌ ,ݔሺܯሺߛ ݃ሺݔሻ, ሻݏ כ ,ݔሺܯ ݃ሺݔሻ,  ሻሻݏ

ൌ ,ݔሺܯሺߛ ݃ሺݔሻ,  ሻ2ሻݏ
                                                 ,ݔሺܯ ݃ሺݔሻ,  ,ݏ
which is contraction. Hence we have established that ݔ ൌ ݃ሺݔሻ ൌ ,ݔሺܨ  ܨ ሻ, that is, ݃ andݔ
have a strongly coupled common fixed point. Next we prove the uniqueness of the fixed 
point. 
 
If ݔ and ݑ are such that,  ݔ ൌ ݃ሺݔሻ ൌ ,ݔሺܨ ݑ ሻ andݔ ൌ ݃ሺݑሻ ൌ ,ݑሺܨ  ,ሻݑ
then, by (2.1) and a property of ߛ, for all ݐ  0, we have 
M(g(x), g(u), t)   =   γ (M(F (x, x), F (u, u), t) 
                            ≥ γ (M(g(x), g(u), t) * M(g(x), g(u), t))   (by (2.1)) 
                            > M(g(x), g(u), t), 
which is a contradiction. 
Hence the strongly coupled x common fixed point is unique. 
This completes the proof of the theorem. 
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Corollary 2.2.  Let (X, M, * ) be a complete GV-fuzzy metric space such that a * b  .ࢇ  ࢈
for all a, b א ሾ0,1ሿ. Let there be a function ܨ: ܺ ൈ ܺ ՜ ܺ such that 
M(F (x, y), F (u, v), t) ,ݔሺܯሺߛ ,ݑ ሻݐ כ ,ݕሺܯ ,ݒ  ሻሻ                                                         (2.22)ݐ
for all x, y, u, v א ܺ, where ߛ: ሾ0,1ሿ ՜ ሾ0,1ሿ is a continuous function such that ߛሺܽሻ  √ܽ for 
each ܽ א ሺ0,1ሻ.  Then there exists a unique strongly coupled fixed point of F, that is, a 
unique ݔ א ܺ such that x = F (x, x). 
Proof. If we take g = I, the identity map, in theorem 2.1, then there exists a unique ࢞ א
 .such that x = F (x, x) ࢄ
 
Example 2.3.  Let (X, M, *) be a fuzzy metric space, where X = [-2,2],  a*b = a.b for all a, 
b א ሾ, ሿ and, for x, yא ܺ, t > 0, 

 M(x, y, t)= ߮ሺݐሻ|௫ି௬|   
where ߮ is an increasing and continuous function of R+  into (0, 1) given by 
 ߮ሺݐሻ ൌ ௧

௧ାଵ
  for each ݐ א ሺ0, ∞ሻ. We define the map ܨ: ܺ ൈ ܺ ՜ ܺ  as: 

                 
2

2424
),(

22

−+=
yxyxF

, for all  ݔ, ݕ א ܺ. 
Let  ݃: ܺ ՜ ܺ   be given by ݃ሺݔሻ ൌ െ|ݔ|  for all  ݔ א ܺ.  

Then 
]0,2[)(]

3
5,2[)( −=⊂

−
−=× XgXXF

. 

Let ߛ: ሾ0,1ሿ ՜ ሾ0,1ሿ be defined as ߛሺܽሻ ൌ ܽ
భ
ల  for each ܽ א ሺ0,1ሻ, ሺ0ሻߛ ൌ ሺ1ሻߛ ݀݊ܽ 0 ൌ 1. 

Then, for all x, y, u, v א ܺ , t > 0, we have 
 

M(F(x,y),F(u,v),t) = ቀ ௧
௧ାଵ

ቁ
|2ݒ2షݕ2శݑ2షݔ|

మర          ≥ ቀ ௧
௧ାଵ

ቁ
|ೣషೠ|శ|షೡ|

ల   

                              = ቀ ௧
௧ାଵ

ቁ
|ೣషೠ|

ల ቀ ௧
௧ାଵ

ቁ
|షೡ|

ల      = M(g(x),g(y),t)6
1

. M(g(y),g(v),t) 6
1

 

                              = ))),(),(()),(),((( tvgygMtugxgM ∗γ . 

Thus all the conditions of theorem 2.1 hold. Here (6-2 15 , 6-2 15 ) is the unique strong 
common coupled fixed point of F. 
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