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ABSTRACT

In this paper we establish a tripled coincidence point theorem in probabilistic metric
spaces. Tripled fixed points are extensions of coupled fixed points, a concept which
has been in focus in recent times. The result is supported with an example.
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1. Introduction
Coupled fixed point problems have a large share in the recent development of metric
fixed point theory [1, 3, 11, 13, 15, 19]. These problems have often, but not always,
been considered in metric spaces with a partial order. In fact a large number of fixed
point results of different types have been treated in partially order metric spaces in
recent times. The importance of these problems lie in the fact that combinations of
analytic and order theoretic approaches are applied in the proofs of the theorems.
There is a parallel development of fixed point theory in probabilistic metric spaces.
These spaces are probabilistic generalizations of metric spaces where the metric
values are distribution functions. This development was initiated in the work of
Sehgal and Bharucha-Reid in [21] where they established a probabilistic version of
the Banach’s contraction mapping principle. Today, this line of research is a
developed branch of analysis in its own right. Hadzic and Pap have given a good
account of this study in their book [9]. Some more recent results are in [8, 12, 14, 16,
17, 18]. Particularly, couple fixed point in probabilistic metric spaces have been
established in [5] and [10].

In a recent work [2] Berinde et al. has successfully extended the idea of the
coupled fixed point to tripled fixed point and has established a tripled fixed point

9



Binayak S. Choudhury, K.P. Das, S.K. Bhandari, Pradyut Das

theorem in metric spaces with a partial ordering. The purpose of this paper is to
establish a tripled fixed point result in a partially ordered probabilistic metric space.
Our problem is different from that addressed by Berinde et al. in [2], not a
probabilistic extension of it. The method of the proof is also different. The main
result is supported with an example. In this context we note that fixed point problems
in partially ordered probabilistic metric spaces have begun to be addressed in recent
time in [5, 6] of which [5] is a coupled fixed point result.

2. Mathematical Preliminaries
In this section we discuss certain definitions and results which are necessary for
establishing the results in the next section.

Throughout this paper (X,<) stands for a partially ordered set with partial order <.
By x>y, we mean that y<x and by X <Yy, we mean that X<y and x =Y.

Definition 2.1 [9, 20] A mapping F : R — R" is called a distribution function if it is

non-decreasing and left continuous with itnl F(t)=0 and supF(t) =1, where R is
€ teR

the set of real numbers and R* denotes the set of non-negative real numbers.

Definition 2.2 [9, 20] A binary operation A :[1,0]° —[0,1] is called a t-norm if the
following properties are satisfied:

(i) A is associative and commutative,

(i) A(a,1) =aforallae[0,1],

(iii) A(a,b) <A(c,d)whenever a<c and b<d, forall a,b,c,d €[0,1].
Typical examples of t-norm are A,, (a,b) = min{a,b}, A, (a,b) =ab.

Definition 2.3 [9, 20] A Menger space is a triplet (X, F, A), where X is a hon empty

set, F is a function defined on X x X to the set of distribution functions and A is a

t-norm, such that the following are satisfied:

(i) F,,(0)=0forall x,ye X,

(ii) F,,(s)=1forall s>0 and X,y € X ifand only if x=Y,

(ii) K, ,(s)=F,,(s) forall X,y e X,s>0,

(iv) F,(u+v)>A(F,,(u),F,,(v)) forall u,v>0and X,y,ze X .

Definition 2.4 [9, 20] Let (X, F, A) be a Menger space.

(i) A sequence {x,} in X is said to be convergent to a point x € X if
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Lt F (t)=1forall t>0.

(ii) A sequence {x,} in X is called a Cauchy sequence if for each 0 < & <1 and
t >0, there exists n, € N'suchthat F_, (t)>1-¢& foreach n,m=n,.

(iif) A Menger space in which every Cauchy sequence is convergent is said to be
complete.

Lemma 2.5 [4] If (X, F, A) is a Menger space where A is continuous t-norm, then for
every fixed t >0, if X, > X,y, =Y, then
limF, , ) =F, .
In the following lemma we note a property of a continuous function which
we use in

the proof of our main result. The proof is a consequence of the definition of
continuity.

Lemma 2.6 If f:R"— R iscontinuous and {a; ;}%;, j =1,2,.....,n are such that

liminf a, =a, forall k=1 for some | and {a;}, is bounded. Then
liminf f(a,,a,,....a;,) = f(a,,a,,....liminf g, ,...,a,) .

1—00

Definition 2.7 [7] The family of functions @ is such that, for each
pe®,¢:R" — R" and satisfies the following conditions:

(i) ¢ is strict increasing,

(i) ¢ is upper semi-continuous from the right

(i) D" 4"(t) <+oo forall t>0,

where ¢" (t) is the n-th iteration of ¢(t).
It is immediate that if ¢ € @, then ¢(t) <tforall t >0.

Lemma 2.8 [10] Let {X,} be a sequence in a Menger space (X, F, A), where A is a
minimum t-norm. If there exists a function ¢ € @ such that

F ., @0))zmin{F,_  (t),F ., O}
forall t>0,n>1. Then {X.} isa Cauchy sequence in X.

Lemma 2.9 [7] Let (X, F, A) is a Menger space. If there exists ¢ € @ such that
F,(@t)+0)=F (t)forall t>0and X,y e X, then Xx=Yy.
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Let (X,<) be a partially ordered set and G : X — X be a mapping. The mapping
G s said to be non-decreasing if, for all x,, X, € X , X,<X, implies G(x,)<G(X,)
and non-increasing if, for all x;,x, € X , X,<X, implies G(x,)>G(x,)[1].

Definition 2.10 [2] Let (X,<) be a partially ordered setand G: X x X x X — X

be a mapping. The mapping G is said to have the mixed monotone property if G is
non-decreasing in its first and third arguments and is non-increasing in its second

argument, that is, if, for all X, X,,¥;,Y,,2,,Z, € X,

(i) x,=x, implies G(x,Y,z)=<G(X,,Y,z) forfixed y,ze X,
(i) y, =y, implies G(X, y,,2)>G(X,Y,,z) for fixed x,z € X
and

(iii)) z,=<z, implies G(X,Y,z,)<G(X,Y,z,) for fixed X,y e X .

Definition 2.11 [2] Let (X,<) be a partially ordered set. G: X x X x X — X and
g: X — X be two mappings. The mapping G is said to have the mixed
g-monotone property if G is hon-decreasing in its first and third arguments and is
non-increasing in its second argument, that is, if, for all X, X,,Y,,Y,,2,,Z, € X,
(i) gx,<gx, implies G(x,, Y,z)<G(X,,Y,z) for fixed y,ze X,

(ii) gy,=qy, implies G(X, Y,,2)>G(X, Y,, z) for fixed X,z € X

and

(i) gz,=gz, implies G(X, Y, z,)<G(X,Y,z,) for fixed X,y € X .

Remark. If g =1, the identity mapping, then Definition 2.11 reduces to Definition
2.10.

Definition 2.12 [2] Let X be a nonempty set. An element (X,Y,z) € X x X x X is
called a tripled fixed point of the mapping G: X x X x X — X if

G(x,y,2)=x,G(y,X,¥y)=Yy and G(z,y,x)=z.

Definition 2.13 [2] Let X be a nonempty set. An element (X,Y,z) € X x X x X is
called a tripled coincidence point of the mappings G: X x X x X — X and

g: X o X if
G(x,y,2)=0x,G(y,x,y)=gy and G(z,y,x)=0z.

Remark. If g =1, the identity mapping, then Definition 2.13 reduces to Definition
2.12.
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Definition 2.14 [2] Let X be a nonempty set and the mappings
G: XxXxX —> Xand g: X — X are commuting if for all X,y,ze X

9G(x,y,2) =G(9x, gy, 92) .

Definition 2.15 Let (X, F,A) be a Menger space. The mappings g and G where
g:X > X and G: X x X xX — X, are said to be compatible if for all t >0
!'_TO Fa6 030,260 070,00 (0 =1
!'_TO Fa6 009 (050 9600900 (0 =1
and

,I]I_TO Fa6 2y 60 (0 =1,

whenever {x_}.{y,} and {z,} are sequences in X such that
IimG(x,,Y,,z,)=limgx, =x,1imG(y,,X,,y,)=limgy, =y and

imG(z,,y,,%x,)=limgz, =z.
n—o n—o

3. Main Results
Theorem 3.1 Let (X,F,A) be a complete Menger space where A is a minimum t-

norm on which a partial ordering < is defined. Let G: X x X x X — X and
g: X — X be two mappings such that G has the mixed g-monotone property. Let
there exist ¢ € @ and g >0 such that

I:G(x,y,z),G(u,v,w) (¢(t)) + q(l_ maX{ng,G(u,v,w) (¢(t))7 I:gu,G(x,y,z) (¢(t))}
>min{F,, .. (1), Fy o0y s Foucww (O3 (3.1)
forall t>0, X,y,z,u,v,we X with gx>gu, gy<gv and gz>gw. Also g is

continuous, monotonic increasing, compatible with G and such that
G(X x X xX) < g(X). Also suppose either

(@) G is continuous or
(b) X has the following properties:
(i) if a non-decreasing sequence {X,} — X, then x,<x forall n>0, (3.2

(i) if a non-increasing sequence {y.} — Y, then y >y forall n>0. (3.3)
If there are X,, Y,,Z, € X such that gx,<G(X,, Yo, Z), Yo >=G(Yy: %o Y, ) and
02,<G(z,, Yy, %,) , then g and G have a tripled coincidence point in X, that is, there
exist X,Y,z e X suchthat gx=G(X,Y,2),9y =G(y,X,y) and gz=G(z,Y,X).
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Proof. By the condition of the theorem, there exist X,, Y,,Z, € X such that
9% =G (X, Yo, Z5): Yo =G (Yo, Xo, Yo) and 92,<G (2, Yy, X,) - Since
G(X x X xX) < g(X), itis possible to define the sequences {x,},{y,} and
{z,}in X as follows:
9% =G (X, Y01 Z0): 9Y; = G (Yo %5 Yo) and 9z, = G(2,, Y, %;)
9%, =G (X, ¥1,2),9Y, =G(y;, X, Y1) and 9z, =G(z,, ¥;, %)
and, in general, forall n>0,
gxn+l = G(Xn! yn ’ Zn) ' gyn+1 = G(yn ’ Xn ' yn) and gzn+1 = G(Zn’ yn!Xn)' (34)
Next, for all n>0, we prove that

an jgxml (3 5)
gyn >__gyn+l (3 6)
gzn jgzml' (37)

Since 9%, =G(Xy, Yo, Z0): Yo =G (Yo, %o, Vo) and 92,<G(Zy, Yy, X,) , in view of the
facts that gx, =G(Xy, Yo, Zo), 9Y: =G (Yo %o, Vo) and 9z, = G(z,, Yy, %) We have
0%, =0X,, 9Y, >0y, and gz,=<0dz,. Therefore (3.5), (3.6) and (3.7) hold for n=0.

Let (3.5), (3.6) and (3.7) hold for some n=m, thatis, gX,=<0X,.;, 9y, >=09Y,.,and
0z,,=<0z As G has the mixed g-monotone property, from (3.4), we get

m+1°

g m+1 G(Xm’ ym’ Zm )<G (Xm+1’ ym’ Zm )<G(Xm+l' ym+l’ m+1) gxm+2 '
gym+l - G(ym’ Xm’ ym)>G(ym+l’ Xm’ ym+1)>G(ym+1’ m+1? ym+l) - gym+2 ’

g m-+1 G(Zm’ ym’ Xm )<G(Zm+l' ym’ Xm)<G(Zm+l' ym+l’ m+l) gzm+2
Thus (3.5), (3.6) and (3.7) hold for n=m+1. So, by induction, we conclude that
(3.5), (3.6) and (3.7) hold for n >1.

Now, forall t >0, n>1, we have

ngnvgxml (¢(t)) - FG(Xn 1 Yn-1: 201G (%, Y 2 )(¢(t)) (by(34))
2 mln{ X1, 0%, (t)’ O%1,G (Xn-1+ Yn-1:Zn1) (t)’ FQX G(Xnvynvzn)(t)}
_q(l max{ 9%1,.G(Xq,Yn,2 )(¢(t))’ 9%.G (%11:Yn-1:Zn1) (¢(t))})

(by(3.1))
_mln{ X1, 0% (t)’ OXn1, 0% (t)’ [0 QXn+1(t)}

_q(l maX{ OXy-1: %041 (¢(t))' 9%, , 0%, (¢(t))})
:min{ 1,0%, (t)! 91 9%n41 (t)}_q(l_l)
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=min{F Pt %, (t). F 9%, gxnl(t)}'
Then, by Lemma 2.8, we conclude that {gx,} is a Cauchy sequence.
Again, forall t >0, n>1, we have

Fovn. (V) = R (1501900600 30 () (by(3.4)

= mm{ 1:9n (t)' Wn-1:G(Yn1:%-1:Yn 1)( )' 9Yn G (Yn X% yn)(t)}

—q (1 max{F, @Wn-1,G(Yn % Vn) (¢(t))’ Wn G (Yn1:%1-1:Yn1) (¢(t))})
(by(3.1))
- mm{ @Yn1.9¥n (t)’ @Yn1,9Yn (t)' @Y+ Wi (t)}

—q@l-max{F, . (1) F, 4 (@1)})
=min{F,, ., (),F 4. ©O}-ad-1
= mln{ 9Yn-1,9Yn (t)’ 9YnsYna (t)}
Then, by Lemma 2.8, we conclude that {gy,} is a Cauchy sequence.
Forall t >0, n>1, we have

P00 (P0) = Foe Ly, 603,00 (A0) (by(3.4)
= mln{ 1,92, (t)’ 927-1,.G(Zn1,Yn1% —1)( )' ng G (Zn,Yn %) (t)}
—q(l MaX{Fy, o0 O P o,y (PO

(by(3.1))
:min{ 1,02, (t), 92,4.,92, (t)! 921,971 (t)}

—q(l max{F, .  (#1).F, o (1)}
=min{F, o O.F; g ©O}-al-1)
=min{F, . t).F, , ©}
Then, by Lemma 2.8, we conclude that {9z} is a Cauchy sequence.
Since X is complete, there exist X, Y,z € X such that
Iim OX, = x,Iim gy,=Y and Iim 09z,=12,

n—

that is, IlmG(xn,yn,zn)_Ilm 0X,.; = X, IlmG(yn,xn,yn)_Ilm gy,., =Y and
IlmG(zn,yn,xn)_Ilm 0z, = (3.8)

By continuity of g we get

lim g(gx,) = 9x,limg(gy,) = gy and lim g(gz,) = gz

Since (g,G) is a compatible pair and using continuity of g, we have

9x = lim 9(g%,.1) = M (G (X, Yy, 2,)) = iM G(g,, 0¥, 92,) (39)
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gy =limg(ay,,.) = lim g(G(y,, X, ¥,)) = limG(gy,, g, 9y,) (3.10)
and
g9z =1img(gz,,) = limg(G(z,,y,, x,)) = limG(gz,, 9y, 9%,) . (3.11)

Next we show that gx =G(X, Y, 2),gy =G(y,X,y)and gz=G(z,Y,X).
Let the assumption (a) holds. From (3.9), (3.10) and (3.11), by (3.8) and continuity
of G, we get

gx = lim g(gx,.,) = lim G(gx,, 9y, 92,) = G(lim gx,, lim gy, lim gz,) = G(x,y,2)
gy =1lim g(gy,..) = lim G(gy,, 9x,, 9y,) = G(lim gy, lim gx,,lim gy,) =Gy, y)

and

gz =lim g(9z,.,,) = lim G(gz,, 9y, 9x,) =G(lim gz, lim gy, lim gx,) = G(z,y, ).

Next we assume that (b) holds. By (3.5), (3.6), (3.7) and (3.8), we have {gx.} is
non-decreasing sequence with gx, — X, {gy,} is non-increasing sequence with
gy, =y as n—oo and {9z} is non-decreasing sequence with gz, — z. Then,
by (3.2) and (3.3) we have forall n>0,

0x,=<X,0y,>y and gz,<z.
Since, g is monotonic increasing, so
9(9x,)=0x, 9(gy,)>=gy and g(9z,)=9z. (3.12)

Then, forall t >0, n>0, wehavefor 0 <k <1

ng,G(x,y,Z) (¢(t)) = A{ngvg(@lxm) (¢(t) o ¢(kt))’ Fg(gxm),G(x,y,Z) (¢(kt))}

Again, (3.9) implies that for all t >0,
!,'IL‘O Foxa(gn.n (0 =1. (3.13)

Taking limit on both sides of above inequality, for all t >0, we have
ng,G(x,y,z) (¢(t)) 2 Ilrp_)lgf A{ng,g(gan) (¢(t) - ¢(kt))1 Fg(gxnﬂ),G(x,y,z) (¢(kt))}

= A{!I_rll ng,g(gxﬂﬂ) (¢(t) - ¢(kt))’ Ilrrp_)lgf Fg(gxm),G(x,y,z) (¢(kt))}
(by the continuity A, (3.13) and Lemma 2.6)
= min{l1 Ilm Inf FG(gxn,gyn,gzn),G(x,y,z) (¢(kt))}

n—oo

16



Tripled Coincidence Point Results In Partially Ordered Probabilistic Metric Spaces

= iminf Fg g o0 o) agoyn (B(KD)

n—o

z |il;1n_)i£]f [min{Fg(gxn),gx (kt), Fg(gxn),G(gxn +0¥n,92,) (kt), ng,G(x,y,Z) (kt)}

—q (1_ maX{Fg(gxn),G(x,y,z) (¢(kt))! ng,G(gxn \9Yn,02,) (¢(kt))}]
(by (3.1) and (3.12))
- mi”{yﬂ]@ Fg(gxn),gx (kt), “r,p_jgf Fg(gxn),G(an,gymgzn) (kt), ng,G(x,yYZ) (kt)}

—q (1_ max{!m Fg(gxn),e(x,y,z) (¢(kt))’ ,I,I_T) ng,G(gxn,gyn,gzn) (¢(kt))})

(by lemma 2.5 and (3.13))
min{F,, ., (kt), F,, o (Kt), F o xy.n (KD}

—qL—max{F,, ¢y (@), By o (A1)}
min{Fy, o (Kt), Fy 6y, (KO}

—qL—max{F,, ¢y (@), Fy o (A(KE)T)
>minfL, Fy, oy (KO}—a-1)

2 gx,G(x,y,z)(kt)'
The value of k being arbitrarily in (0,1), taking k — 1, and using the left

continuity of F , we have
Focateyn () 2 Fogpy s ()
Since ¢ is increasing, ¢(t)+0 > ¢(t). Again F is monotone increasing.

Therefore F oy (B0 +0) = Fy gy (B1) 2 Fy sy () -
Then, by an application of lemma 2.9, we get gx =G(X, Y, ).
Similarly, we can show that gy =G(y, X, y) and gz =G(z, Y, X), thatis, g and

G have a tripled coincidence point in X .
This completes the proof of the Theorem 3.1.

Corollary 3.2 Let (X, F,A) be a complete Menger space where A =A,, , the
minimum t-norm, on which a partial ordering < is defined.

Let G: XxXxX —> Xand g: X — X be two mappings such that G has the
mixed g-monotone property. Let there exists ¢ € @ such that

I:G(x,y,z),G(u,v,w) (¢(t)) 2 min{ng,gu (t)’ ng,G(x,y,z) (t), I:gu,G(u,v,w) (t)}v (314)
forall t >0, X,y,z,u,v,we X with gx>gu, gy<gv and gz>gw. Also g is
continuous, monotonic increasing, commutating with G and such that
G(X x X xX) < g(X). Also suppose either

(@) G s continuous or
(b) X has the following properties:
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(i) if a non-decreasing sequence {Xx,} — X, then x,<x forall n>0,

(i) if a non-increasing sequence {y,} — Y, then y >y forall n>0.
If there are X,, Y,,Z, € X such that gx,<G(X,, Yo, Z5), Yo >=G(Yy: %o Y, ) and
02,<G(z,, Yy, %,) , then g and G have a tripled coincidence point in X, that is, there
exist X,Y,z e X suchthat gx=G(X,Y,2),9y =G(Y,X,y) and gz=G(z,Y,X).

Proof. Since commutativity implies compatibility, the proof is completed by an
application of theorem 3.1 in case where q=0.

We have the following corollary if we take ¢(t) =kt in Theorem 3.1.

Corollary 3.3 Let (X, F,A) be a complete Menger space where A =A,, , the
minimum t-norm, on which a partial ordering < is defined.

Let G: XxXxX — Xand g: X — X be two mappings such that G has the
mixed g-monotone property. Let there exist ¢ € ® and g > 0 such that

I:G(x,y,z),G(u,v,w) (kt) + q(l_ maX{ng,G(u,v,w) (kt)' I:gu,G(x,y,z) (kt)}

= min{ng,gu (t)’ ng,G(x,y,z) (t)’ I:gu,G(u,v,w) (t)}'

forall t >0, x,y,z,u,v,we X, 0<k <1 with gx>gu, gy<gv and gz>-gw.
Also g is continuous, monotonic increasing, compatible with G and such that
G(X x X xX) < g(X). Also suppose either

(@) G s continuous or
(b) X has the following properties:

(i) if a non-decreasing sequence {X,} — X, then x,<x forall n>0,

(i) if a non-increasing sequence {y,}— Y, then y, >y forall n>0.
If there are X,, Y,,Z, € X such that gx,<G(X,, Yo, Zy), Yo >=G(Yy: %o Y, ) and
02,<G(z,, Yy, %,) , then g and G have a tripled coincidence point in X, that is, there
exist X,Yy,z e X suchthat gx=G(X,Y,2),9y =G(Y,X,y) and gz=G(z,y,X).

Example 3.4 Let (X,<) is the partially ordered set with X =[0,1] and the natural
-yl

Ordering < of the real numbers as the partially ordering <. Let nyy(t) =e ' for

all X,ye X and A=A,,, the minimum t-norm, then (X, F,A) is a complete
Menger space.
Let the mapping g : X — X be defined as

gx=X forall xe X
and the mapping G: X x X x X — X be defined as

18



Tripled Coincidence Point Results In Partially Ordered Probabilistic Metric Spaces

X—y+z .
—2 — if x,y,2€[0,1],x>y >z,
G ] ] = -
(xy.2) g otherwise.

Here G satisfies the mixed g-monotone property. G(X x X x X) < g(X), g is
continuous, monotonic increasing and commutating with G and ¢ isa @ -function

with ¢(t) = %t fort €[0, ).

Letx,=0,z,=0 and y,=c>0.
Then gx, =90=G(0,c,0) =G(x,, ¥, Z,) ,
gy, =9c=c>0=G(c,0,c) =G(Yy,, X, Y,) and
9z, = g0=G(0,c,0) = G(Zov Yo Xo) .
Thus X,, Y, and z, satisfy their requirements in corollary 3.2.
Let X,y,z,u,v,we X aresuchthat gx=>gu, gy <gv and gz = gw, that is,
X=>U,y<Vvand z=w.
We show that the inequality (3.14) is satisfied for all t >0 and X, Yy, z,u,v,w

chosen to satisfy the above requirements.
-ul  x=G(xy.2) -G (uv.w)

Let M =min{e ' ,e tooe vt

We consider the following possible cases.

Casel. x=y=>zandu=v=>w,
_I6(x,y,2)-G(uv,w)|

Foy.neuvw (@) =€ #(0)
!

X—Y+Z U-V+W

__ 6 6
—e 70

10 ~(y-v)+(z-w)|
—e 64 ()

10 -(y=)+(z-w)] 2
=e a (since ¢(t) = §t)

[(x=u)|+ (y-v)|+|(z-w)|
>e 4t

[(x=V) [+ (x=v)|+] (z-w)]

>e 4t

(since X=y=zand U=v=Ww)
v 1) [(z-w))
=g 4t e 4t e 4t
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ol Jev)l
e M e # (by taking w=12)
7\(x—v)\
=e 2t
~(X-X X X—Yy+4+Z X-V
>e U & (since (—— yre_ )>0)
t 6t 2t
=M
Casell. x>y>zand v>u=>w (X=y=>zand v=>w=>U),
or
uxv>wand Xx=z=2y(uxv>wand z=x2>Yy).
_[6(x,y,2)-G (uv,w)
— ¢(t)
FG(x,y,z),G(u,v,w) (¢(t)) =€
|><—y+z_OI
__ 6
—e ‘0
-y
—g 60O
-yl 2
=e # (since ¢(t) =§t)
X X-y+z
() . X X—-Y+Z X-y+1Z
>e t 6 (since (—— yrz X7y )>0)
t 6t 4t
=M

Case lll. x<y<zand U<V<W(X<y<zand Uu<w<yV)
or
u<v<wand y<z<x(u<v<wand y<x<z).

In this case the inequality (3.14) is trivially satisfied.

Taking into account all the three cases mentioned above, we conclude that the
inequality (3.14) is satisfied by X,Y,z,u,v,w chosen according to the conditions
given in corollary 3.2 and for all t > 0. Thus all the conditions of corollary 3.2 are
satisfied. Then, by an application of the corollary 3.2, we conclude that g and G have
a tripled coincidence point. Here (0,0,0) is a tripled coincidence point of g and G

in X.

Remark

Since by omitting the third variable, coupled coincidence point results are obtained
from tripled coincidence point results, so our result is a genuine extension of the
result proved by Hu and Ma[10].
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