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ABSTRACT

A distributive nearlattice S with 0 is disjunctive if 0 < a <b implies the existence
of xe$S suchthat Xx Aa=0 and O0<x<b. A nearlattice S with 0 is Semi-
Boolean if it is distributive and the interval [0, x] is complemented for each x € S .
In this paper , we establish the following fundamental results :

When S is a distributive nearlattice with a central element n, then P (S) is
disjunctive if and only if each dense n-ideal J is both join and meet-dense which is
equivalent to the condition that the n-kernel of each skeletal congruence is an
annihilator n-ideal. P,(S) is semi-Boolean if and only if for each n-ideal J,

(J7)=(J)" when n is a central element of S. When S is a distributive
nearlattice with a central element n, P,(S) is semi-Boolean if and only if the map
® — Ker, O is a lattice isomorphism of SC(S) onto K ,SC(S) whose inverse is
themap J > ©®(J), J isan n-ideal of S.

Keywords: n-Kernels of a congruence, Dense subset, Disjunctive nearlattice,
ssSemi-Boolean nearlattice.

AMS Mathematics Subject classifications (2010): 06A12, 06A99, 06B10.

1. Introduction

Skeletal congruences on distributive lattices have been studied by Cornish[3].
Then Latif in [6] studied the n- Kernels of skeletal congruences on a distributive
lattice. Disjunctive (sectionally semicomplemented) lattices have been studied by
many authors including [3], Then [9] has extended the concept for nearlattices. On
the other hand Latif in [6] has generalized the results of [3] for n-ideals in lattices.
In this paper we have extended and generalized those results for nearlattices.
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A nearlattice S is a meet semilattice with the property that any two elements
possessing a common upper bound, have a supremum. Nearlattice S is distributive
if for all x,y,z2€S, xA(yvz)=(XAYy)v(XAz) provided yvz exists. For
detailed literature on nearlattices and its congruences and ideals we refer the reader
to [7], [8] and [9]. Here C(S) denotes the lattice of congruences of S . For any
® e C(S), O denotes the pseudocomplement of ® . For a nearlattice S, we
define the skeleton

SC(S)={®eC(S):®@ =" forsome ®eC(S)}
={®ecC(S):0=0"}
The pseudocomplement J* of anideal J is the annihilator ideal
J'={xeS:xaj=0 forall jelJ}.
The kernel of congruence ®
Ker® ={x € S : x=06}.
For an ideal J of a distributive nearlattice S, we define ®(J) by x=y®(J) if
and only if (x]v J =(y]v J ,which is the smallest congruence of S containing J
as a class.

Of course Ker®(J) =1J .

For a fixed element ne S, a convex subnearlattice of S containing n is
called an n-ideal. For detailed literature on n-ideals see [ 2 ].

An element s of a nearlattice S is called standard if for all t,X,y €S,
tAIXAY)V(XAS)]=(EAXAY)V(EAXAS).
The element s is called neutral if

(i) s isstandard and

(i) forall X,y,z€S, SA[(XAY)V(XAZ)]=(SAXAY)V(SAXAZ).
An element n of a  nearlattice S is called medial  if
m(x,n,y) = (XAy)v(xan)v(yan) existsin S for all x,yeS. An element
N in a nearlattice S is called sesquimedial if for all X,y,z€ S,

[(xAn) vy AMIAIY ANV ZAN])V(XAY)V(YAZ) exists in S. An
element n of a nearlattice S is called an upper element if X\ n exists for all
X € S. Every upper element is of course a sesquimedial element. An element n is
called a central element of S if it is neutral, upper and complemented in each
interval containing it.

When n is a medial element, then for any n-ideal J of a distributive

nearlattice S,
we define

J'={xeS:m(x,n,j)=n forall jeJ}.
Obviously J* is an n-ideal which we call, the annihilator n-ideal of J. We define
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the n-kernel of a congruence ® by Ker.® ={x € S : x=n®}, which is clearly

an n-ideal.
Skeletal congruences in lattices have been studied by [3]. Then [9] have extended
those results for nearlattices. Recently [1] have generalized some of their results for
N -ideals.

® e C(S) is called dense if ®" = @, while an n-ideal J is called dense if

J"={n}. A non-empty subset T of a nearlattice S is called join-dense if each

Z €S is the join of its predecessors in T, while T is called meet-dense if each z € S
is the meet of its successors in T.

A distributive nearlattice S with 0 is called disjunctive if 0<a <b implies
the existence of X e S suchthat xAa =0 and 0 < x<b. A nearlattice S with 0 is
semi-Boolean if it is distributive and the interval [0, x] is complemented for each

XeS.
An n-ideal generated by a single element a is called a principal n-ideal, denoted

by <a>,. The set of principal n-ideals is denoted by P,(S). When neS is
standard and medial then for any a € S
<a> ={yeS:aannsy=(yana)v(yan)}
={yeS:y=(yra)v(yan)a(aan)}
When n is an upper element, then <a >_ is the closed interval [a An,av n]. By
[7], for a medial and standard element n, P,(S) is a meet semilattice. Also, when

n is neutral and sesquimedial, P,(S) is a nearlattice. Moreover, when n is central,
then P (S) = (n]° x[n).

In this paper, we generalize several results of [9] on disjunctive and semi-
Boolean nearlattices in terms of P,(S). By [2] we know that for any n-ideal J
of a distributive medial nearlattice S, R(J) denotes the largest congruence having J
as its kernel, where x = yR(J) if and only if for each re S, m(x,n,r) e J ifand
only if m(y,n,r)eJ.

The following result is due to [9] which gives a description of disjunctive
nerlattices.

Theorem 1.1. For a distributive nearlattice S with 0, the following conditions are
equivalent:

(i) S isdisjunctive.

(i) Forall ae$S, (a]=(a]”.

(iii) R((Q) = w.
Following result is due to [7] which will be needed for the development of this
paper.
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Theorem 1.2. For a neutral element n of a nearlattice S, the following conditions
are equivalent :
(i) niscentralin S

(ii) n is upper and the map @ : P, (S) — (n]® x[n) defined by
O(<a >n): (aAn,avn) isanisomorphism, where (n]* represents the

dual of the lattice (n].
Now we extend the above Theorem 1.1.

Theorem 1.3.  Suppose S is a distributive medial nearlattice with a central element
n. Then the following conditions are equivalent :

(i) P,(S) isdisjunctive

(i) Foreach ae$, <a> =<a>".

(i) RN} = o
Proof. (i) = (i1). Here n is central, and so it is upper.
Suppose P,(S) is disjunctive and suppose that <a >,#<a>" for some aeS.
Since <a>,c<a>,",sothereexists te<a>" buttg<a> =[aAnavn]

which implies either aAn £t or t£awvn.
Suppose aAnn>t,thentAraAan<aan.

Thus, [aAan,nN]ctraann]andso {nN}c<aan> c<taaan>_ .

Since P,(S) is disjunctive, so there exists <b>  such that
{nN}c<b> c<taraan> and <aan> n<b> ={n}.

This implies [(@An)v (b An),n]={n},andso (aAn)v(bAan)=n.

Now,
<a> n<b>=[(@An)v(ban),(avn)a(bvn)]
=[n,(avn)A(bvn)] = {n} as b<n.
Hence <b> c<a>;.

Now <b> =<b> n<taasan>,
=[(bAn)v(tAaan)n]
=[((tAn)v(bAN))v((@arn)v(ban)),n]
=[((t An)v (bAn))An,n]
=[tAn)v(bAn),n]
=<tAan> N<b>,
={n}astane<a>,"and <b> c<a>,.

Thus <b>_={n}, which is a contradiction.
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Therefore, <a > =<a>" forall ae S, which is (ii).
Again, suppose t > (av n).

Then (tvn)>(avn)andhence t = (tAna)v(tAn).
Thatis, (tAna)v(tAan)<tandso (tAra)vn<twvn.
Thus, {n}c<(tra)vn> c<tvn>,

Since P, (S) is disjunctive so there exists < ¢ > such that
{nN}c<c>,c<tvn> and <c> Nn<(tara)vn> ={n}.
This implies [c An,cv n]N[n,(t Aa)vn]={n} and so
[n,((tAra)vn)A(cvn)]={n}.

Thus ((t Aa)vn)(cvn)=n.

Thatis, (tAaAcC)vn=nandsotAraanc<n.

Also, (t Aaac)vn=n implies [(t AC)vn]a[avn]=n.
Hence, <(tAC)vn> c<a>,.

Now, <c> =<c> N<tAn>,

[c An,cvn] A [n, tv n]
[n, (tA c) v n]
<tvin> N <({tAac)vn>,

={n} as <(tac) v n> c<a>;
and tvne<a>,".
Thus <c¢ >, ={n}, which is a contradiction.

Therefore <a> =<a>," forall aeS$.

Thus (ii) holds.

(i) = (i) . Suppose <a>,=<a>," forall aeS.

Now let n<a<b. Then {n}c<a> c<b>and <a> =<a>",
<b> =<b>" implies <a>,><b>. So there exists re<a>, such that
re<b>'.

This implies m(r,n,a) =n and m(r,n, x) #n for some xe<b>, .

Then n=m(r,n,a) =(rvn)aaandas x>n, m(r,n,x) =(rvn)Ax.

Then {n} c<m(r,n,x) > c<b> and n<(rvn)Aax<b.

Moreover, @ A (F v N) AX=nAX=n.This implies [n) is disjunctive.

Similarly we can show that (n] is dual disjunctive.

Hence (n]® x[n) is disjunctive.

Since by Theorem 1.2, P,(S) = (n]’ x[n), so P,(S) is disjunctive which is (i).
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(i) = (iii). Suppose P, (S) is disjunctive.
Let x=yR({n}). If x=y, theneither XAy <X or XAYy<Y.
Suppose X Ay < X. Since S is distributive, so either
XAYAN<SXAN O (XAY)VvN<XVvN

If XAyAn<xan,then <X> c<X> v<y> andso
<X> N<y> c<y> .
If (XAy)vn<xvn,then <X> N<y> c<X> .
Thus X # y implies either < X> N<y> c<X>_ or
<X> N<y> c<y> .
Without loss of generality suppose that < X > N<y> c<X> .
Since P,(S) is disjunctive, there exists <t >_ suchthat {n}c<t> c<x>_ and
<t> N<x> Nn<y>={n} andso<t> Nn<y> ={n}.
That is m(y,n,t)=n. Since x=yR{n}), so m(x,n,t)=n and so
<x> n<t> ={n}.
This implies <t > ={n}, which is a contradiction. Therefore, X =y.
Thus R({n}) = @, which is (iii).
Finally, we show that (iii) = (i). Let R{n}) = w.
Consider the interval [n,b]. If [n,b] is not disjunctive, then there exists x € S
with n<x <b suchthat x At >n forall t with n<t<b.
Chooseany reS. Then m(x,n,r) = m(x,n,(rA b)v n)= (XA 1) v n.
Also m(b,n,r) = m(b,n,(rA b) v n)= (bAa r) v n
If m(b,n,r)=n,then n<(XAr)vn<(bAar)vn=n implies m(x,n,r)=n.
Again m(x,n,r)=n implies n = m(x,n,(rA b) v n)= nv (XA [(rA b) v n]).
This implies X A[(r Ab)vn]=n as x>n.
Since n<(r Ab) v n<b, so by above condition (r Ab)vn=n.
Thus m(b,n,r) = m(b,n,(rA b) v n)

= m(b,n,n)

=n.
Therefore , m(x,n,r) =n ifand only if m(b,n,r)=n forany reS.
This implies x=bR({n}), and so x=b, which is a contradiction to our
assumption. Hence [n,b] must be disjunctive.

A dual proof of above shows that each interval [a,n], ae S is a dual disjunctive.

Therefore, by Theorem 1.2, P,(S) is disjunctive. O

The following result is an extension of [ 9, Theorem 2.7], which is also a
generalization of a result in [6].
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Recall that an n-ideal J is dense if J* ={n}. Recently [1] have shown that an n -
ideal J is both meet and join dense if and only if ®(J) is dense in C(S), that is

00J) = w.

Theorem 1.4. Let S be a distributive nearlatticeand ne S be a central element,
then the following conditions are equivalent :

(i) P,(S) isdisjunctive.

(i) Each dense n- ideal J is both join and meet-dense.

(iii) For each dense n-ideal J, ®(J") =O(J)".

(iv) For each dense n- ideal J, ©(J™) =0(J)™.
Proof. (i) = (ii). Suppose P,(S) is disjunctive.
Suppose J is a dense n-ideal. Then J* ={n}.
Let XAJ=YyAa]forall jed, (x,yeS).
If X=Yy,theneither XAy<Xor XAYy<Y.
Without loss of generality, suppose X Ay < X.
Then either XAy ANn<Xanor (XAy)vn<xvn,
Since NeJ,s0 XAN=YAN.S0O XAYAN=XAN.Thus (XAYy)vn<xwvn.
Since P,(S) is disjunctive, so by Theorem 1.2, [n) is disjunctive.
Hence there exists b with n <b < xwvn suchthat (XA y)vn)Ab=n.
Thenforall jeJ,

n=nAa(vn)

[(xAy) vn AbA (v n)
bA [(XAY) v n] A (Vv n)
bA [(XA YA ) Vv N
bA [(XA j) v n]
bA (Xv n) A (v n)
ba (v n)
= m(b,n,j) which shows that b e J* ={n} implies b =n which

is a contradiction.
Thus, X =y, and so J is join-dense.

Similarly, we can show that J is also meet-dense. Hence (ii) holds.
(ii)=(i). Forany ae S, <a>,v<a>, isalways a dense n-ideal.

Since (i) holds, so <a>_, v <a>_ is both meet and join-dense.
Thenby [1, Theorem1.9], ®(<a>, v <a>,) is dense.
Thatis, o=0(<a>, v<a>)
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=(Ba>,)vO(<a>)))"
=0(<a>,)" NnB(<a>))"

Thus ®(<a>;)" cBO(<a>)" =0(<a>).

Taking the n-kernels on both sides we have <a >"c<a>, due to

[ 1, Theorem 1.4 (ii) ]. It follows that <a >'"=<a > .

Then by Theorem 1.3, P,(S) is disjunctive. Hence (i) holds.

Since J* ={n} ifand only if J™" =S and by [ 1, Theorem 1.9 ], J is both meet
and join-dense if and only if ®(J)" = w, so obviously, (ii), (iii) and (iv) are

equivalent. O
The following theorem is a generalization of [ 9, Theorem 2.8 ].

Theorem 1.5. Let S be a distributive nearlattice with a central element n. Then
the following conditions are equivalent :

(i) P,(S) isdisjunctive

(i) For each congruence @, @ = O(Ker, @)".

(iii) Foreachn-idealJ, R(J)" = ©®(J)".

(iv) For each congruence @, Ker, (®") = (Ker,®)".
(v) For each congruence @, Ker, (@) = (Ker,®)"".

(vi) The n- kernel of each skeletal congruence is an annihilator n- ideal.
Proof. (i) = (ii). Suppose (i) holds.

Since ®(Ker,®) c @, so we have @ < O(Ker,®)".

So it is sufficient to prove that ® N O(Ker, ®)* = w.

Suppose X<y and x = y(® N O(Ker,®)") implies X = yd

and x = yO(Ker, @)".

If X<y, theneither XAN<yAnor xvn<ywvn.

Suppose Xxvn<ywvn. Since P,(S) is disjunctive, so by Theorem 1.2, [n) is also
disjunctive. So there exists n<a<ywvn suchthat aA(Xvn)=n.

Now, n=aa(xvn)=ana(yvn)=a(®) andso, ac Ker,®.

Since X = yO(Ker, @), so xv n=yv nO(Ker,®)"

and since a € Ker,®, soby [ 1, Theorem 1.4], m(xvn,n,a) =m(yvn,n,a),
I(.?;(vn)/\n)v(a/\(Xvn))v(n/\a) =(yvm) An)v(@n(yvn)v(naa)
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andso nv(aan(xvn)=nva.

This implies, n=a, which is a contradiction.

Therefore x =y and so ® N O(Ker,®)" = w.

Thus ®@(Ker,®)" < ®@". Hence @ = O(Ker,®)".

(i) = (i1i) holds since J is the n-kernel of R(J) and ®(J).

(itf) = (i) . Suppose (iii) holds. Since ®({n}) = @ and since (iii) holds,
so R{n})" = O©({n})" = implies that R{n})™ = w.

Then by Theorem 1.3, we have P, (S) is disjunctive.

Since by [ 1, Theorem 1.4 (ii) ], ©(J)" and ®(J ) have J as their n-kernels,
so (i) = (iv) is obvious.

(iv) = (v) and (v) = (vi) are obvious.

Finally we need to prove that (vi) = (i) .

Suppose (vi) holds. Let n<a<c.
Then by [ 1,Theorem 1.4 (iii) ], <c,a > is the n-kernel of a

skeletal congruence. Since (vi) holds, so there is an annihilator n-ideal K

suchthat <c,a>=K =K™".

As anc<a implies ae<c,a>=K=K™,

Also since a<c implies cg<c,a>= K = K™,

So there exists € € K™ such that m(c,n,e) = n.

But m(a,n,e) =n implies (aAe)vn=n.

Thatis, an(evn)=nandso aAn((evn)ac)=n.

Also m(c,n,e) = n implies (ev Nn) Ac>n and so
n<(evn)ac<cwithana((evn)ac)=n

Therefore [n) is disjunctive.

A dual proof of this gives that (n] is dual disjunctive and so by Theorem 1.2, P, (S)
is disjunctive. O

Recall that a nearlattice S with 0 is semi-Boolean if it is distributive and the interval

[0, X] is complemented for each x € S .
The following result is an extention of [ 9, Theorem 2.9 ].

Theorem 1.6. LetS be a distributive nearlattice with a central element n.
Then the following conditions are equivalent :

(i) P,(S) issemi-Boolean.
(i) For each congruence @, @ = O(Ker,®").
(iii) Foreachn-ideal J, ®(J7) =0(J)".
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(iv) For each n-ideal J, ©(J ") =0(J)".
Proof. (i) = (i1). Suppose (i) holds.
Let W be any congruence on S. Then by [ 2, Theorem 2.6 ], ¥ = ®(Ker, V).

Thus with ¥ = @, we see that (i) implies (ii).
(i) = (iii) follows from [ 1, Theorem 1.4 ] and (iii) = (iv) is obvious.

(iv) = (i) . Suppose (iv) holds. Put J =<a >, v<a>,.
Since J™" =S, (iv) implies @(<a>, v<a> )" =1
It follows that ®@(<a>,)" NBO(<a>;) =w

andso O(<a>.) <cO(<a>,)" =0(<a>)).

Now by [ 1, Theorem 1.4], <a >'=Ker,®(<a>,)".
Then, ©(<a>/)c®(<a>,)" andso
O(<a>)=0(<a>)" cO<a>)"

Therefore, ®(<a>,)=0(<a>;)".

But <a> =<a> ", so by (iv)
O(<a>,) =0(<a>;)" =0(<a>")=0(<a>}).

Now, let n<a<h. Thenforall je<a>_ =[n,a], m(a,n, j)=m(b,n, j)=j.
Thusby [ 1, Theorem1.4], a=bO(<a>.)" =0O(<a>).

Then (a]v(<a>,]=(b]v(<a>,] implies that
b=(@ab)v(bar)v---v(bar,) forsome r,---,r, e<a>.

Thatis, b=av((Aar)v---v(bAar).

Again, r, e<a>, implies m(a,n,r;) =(@aAn)v(@ar)v(rAn)=n,
andso aAr, <n.Thus aAr=aArAn=ran.

Now, put p, =(bAr)vnand p=p,v---vp,.Then n< p<h.

Again, pra=(@abarn)v---v(@abar)v(aan)=n.

and pva=(ar)v---v(bar)vavn=bvn=b.

Hence [n,b] is complemented for each b e S .

Similarly a dual proof of above shows that [e, n] is also complemented
for each e <n.

Hence by [ 2, Corollary 1.10 ], P, (S) is semi-Boolean. ©

For a nearlattice S, the skeleton
SC(S)={®eC(S):®@=®" forsome ®<C(S)}
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={® e C(S):®=0"} isacomplete Boolean lattice.

The meet of a set {©,} = SC(S) is N O, ; as in C(S), while the join is given by

v, =(vO,)” =(nO;)" and the complement of ® € SC(S) is O".
The fact that SC(S) is complete follows from the fact that SC(S) is precisely the set
of closed elements associated with the closure operation® — ©@™ on the
complete lattice C(S) and SC(S) is Boolean because of Glivenko's theorem, c.f.
Gréatzer [ 4, Theorem 4, p.58].
The set KSC(S) ={Ker®:® e SC(S)} is closed under arbitrary set-theoretic
intersections and hence is a complete lattice.
Also, forany ne S, K, SC(S) ={ker,®:® e SC(S)} is a complete lattice.

We also denote A(S)={J:J €1(S);J =J""}, which is a complete Boolean

lattice.

The following theorems are due to [ 9 ]. In fact Cornish proved these results for
lattices in [ 3, Theorem 2.4 and Theorem 2.5], which are extensions of the classical
theorem of Hashimoto [ 4, Theorem 8, p.91].

Theorem 1.7. Let S be a distributive nearlattice with 0. Then the following
conditions are equivalent :

(i) S isdisjunctive

(i) Themap ® — Ker® of SC(S) onto KSC(S) is one-to-one.

(iii) The map ® — Ker® of SC(S) onto KSC(S) preserves finite joins.

(iv) Themap ® — Ker® is a lattice isomorphism of SC(S) onto
KSC(S) whose inverse is the map J — ©(J)™

Theorem 1.8. Let S be a distributive nearlattice with 0. Then the nearlattice S is
semi-Boolean if and only if the map ® — Ker® is a lattice isomorphism of
SC(S) onto KSC(S) whose inverse is the map J — ©(J).

We conclude this paper with the following generalizations of the above theorems.

Theorem 1.9. Let S be a distributive nearlattice with a central element n. Then
the following conditions are equivalent :

(i) P,(S) isdisjunctive
(ii) Themap ® — Ker,® of SC(S) onto K ,SC(S) is one-to-one
and so is a one-to-one correspondence.
(ili)  The map ® — Ker,® of SC(S) onto K ,SC(S) preserves finite
joins.
(iv) The map ® — Ker,® is a lattice isomorphism of SC(S) onto
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K,SC(S) whose inverse is the map J — ©(J)"" for any n-ideal J inS.
Proof. Firstly, we show that (i) = (iv) . Suppose (i) holds.
Thatis, P,(S) is disjunctive.
Then by Theorem 1.5 (vi), we have
K,SC(S)={J:J=J"",J isn—ideal}.
Also, by Theorem 1.5 (ii), for any ® € SC(S), @ = @™ = @(Ker, ®)™.
Thus the map ® — Ker, ® of SC(S) onto K,SC(S) is one-to-one.
Clearly this map preserves meets and it is also preserves joins since for any
®,0eSC(S), OvDd=(O" N®")" and
Ker, (®v ®) = Ker, (@ n®")"
= [Ker, (@ n®")]"
= [(Ker,®)" n(Ker,®)"]"
= (Ker,®)"" v (Ker, @)™
= (Ker,®™) v (Ker,®™)
= Ker,® v Ker,®
Thus, ® — Ker, O is a lattice isomorphism.
Also, note that, Ker, (@(J)™) = (Ker,®(J))" =J"" =J for any
n-ideal J € K,SC(S), while ®(Ker, @)™ = ®"™ = ® for any ® € SC(S).
Thus J — ®(J)™ is the inverse of ® — Ker, ®. Hence (iv) holds.
(iv) = (i1) is obvious.
(it) = (iti). Suppose (ii) holds, i.e., ® — Ker. © is one-to-one.
Then it is a meet isomorphism of the lattice SC(S) onto the lattice K SC(S). It

follows that ® — Ker,© is a lattice isomorphism and so (iii) holds.
Finally, we shall show that (iii) implies (i). Suppose (iii) holds.
Then ® — Ker,® is a lattice isomorphism of SC(S) onto K, SC(S). Hence

K,SC(S) must be Boolean. It is not hard to see that P, (S) is a join-dense
subnearlattice of K SC(S). Since K,SC(S) is Boolean, so P,(S) is disjunctive.

Hence (i) holds. ©

Theorem 1.10. Let S bea distributive nearlattice with a central element n.
Then P,(S) is semi-Boolean if and only if the map ® — Ker,® is a lattice

isomorphism of SC(S) onto K ,SC(S) whose inverse is the map J — ©(J), J
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is an n- ideal of S.
Proof. Suppose P,(S) is semi-Boolean. Then of course P,(S) is disjunctive and

so by Theorem 1.9, the inverse of ® — Ker,® is J - ©@(J)™.
Now, by Theorem 1.6, ®(J)™ = ©®(J ™) forany J € K ,SC(S).

So due to Theorem 1.5, J =J"".
Hence J — ©(J) is the inverse of ® — Ker, ©.

Conversely, let J — ©®(J) is the inverse of ® — Ker, ©.

Then by Theorem 1.9, P, (S) is disjunctive and so by Theorem 1.5,
Ker, (©®(J)™) = [Ker,(®(J3))]"" =J™ for any n-ideal J of S.
Then by [ 1, Theorem 1.4 ], we have J™* € K SC(S).

Also we must have, ®(J ") = O(Ker,(©(J))") =6(J)™.

Then by Theorem 1.6, P,(S) is semi-Boolean. o
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