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ABSTRACT 

 

Previous option pricing research typically assumes that the stock volatility is 

constant during the life of the option. In this study, we assume the stock volatility in 
our option valuation model is function of time and stock price. The stock price 

Process numerically is simulated by using the Monte Carlo method. Then, the 

numerical option pricing method for European option is hold.  Finally, we compare 

our results with the known results in the linear case, the results show that our 
method is effective. 
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1. Introduction 
The interest in pricing financial derivatives – including pricing options – arises from 

the fact that financial derivatives can be used to minimize losses caused by price 
fluctuations of the underlying assets. This process of protection is called hedging. 

There is a variety of financial products on the market, such as futures, forwards, 

swaps and options. In this paper we will concentrate on European Call and Put 
options. 

We recall that a European Call option is a contract where at a prescribed time in 

the future, known as the expiry date T , the owner of the option, known as the 

holder, may purchase a prescribed asset, known as the underlying asset
tS , for a 

prescribed amount, known as the exercise or strike price K. The opposite party, or 

the writer, has the obligation to sell the asset if the holder chooses to exercise his 

right. Therefore, the value of the option at expiry, known as the pay-off function, is 

( , ) ( )T TC S T S K   . Reciprocally, a European Put option is the right to sell the asset 

with the pay-off function ( , ) ( )T TP S T K S   . While European options can only be 
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exercised in T, American options can be exercised at any time until the expiration, 

which complicates their pricing process significantly. 

Option pricing theory has made a great leap forward since the development of 

the Black–Scholes option pricing model by Fischer Black and Myron Scholes in [2] 
in 1973 and previously by Robert Merton in [3]. The solution of the famous (linear) 

Black–Scholes equation 
2

2 2

2

1
0

2

V V V
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t SS
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  
   

 
, 

provides both the price for a European option and a hedging portfolio that replicates 

the option assuming that (see [4]): 

(a) The price of the asset price or underlying derivative 
tS  follows a Geometric 

Brownian motion W(t), meaning that 
tS  satisfies the following stochastic 

differential equation (SDE):
t t t tdS S dt S dW   . 

(b) The trend or drift  (measures the average rate of growth of the asset price), 

the volatility  (measures the standard deviation of the returns) and the riskless 

interest rater are constant for 0 t T  and no dividends are paid in that time period. 

(c) The market is frictionless, thus there are no transaction costs (fees or taxes), 

the interest rates for borrowing and lending money are equal, all parties have 
immediate access to any information, and all securities and credits are available at 

any time and any size. That is, all variables are perfectly divisible and may take any 

real number. 
Moreover, individual trading will not influence the price. 

(d) There are no arbitrage opportunities, meaning that there are no opportunities 

of instantly making a risk-free profit. 

Under these assumptions the market is complete, which means that any asset 
can be replicated with a portfolio of other assets in the market (see [5]). Then, the 

linear Black–Scholes equation (1) can be transformed into the heat equation and 

analytically solved to price the option [1]. 
One can argue that these restrictive assumptions never occur in reality. Due to 

transaction costs (see [6–8]), large investor preferences (see [9–11]) and incomplete 

markets [12] they are likely to become unrealistic and the classical model results in 

strongly or fully nonlinear, possibly degenerate, parabolic diffusion-convection 
equations, where both the volatility σ and the drift µ can depend on the time t, the 

stock price 
tS  or the derivatives of the option price C or P  itself. 

Recently, some articles have focused on the valuation of European options 
when the underlying value follows a jump diffusion process or Levy processes 

which are a fairly large class of continuous time processes with stationary 

independent increments. For jump diffusion process or Levy processes and their 
application in finance (see[13-17]). 

On the other hand, fractional Brownian motion has been considered to replace 

Brownian motion in the usual financial models as it has better behaved tails and 
exhibits long-term dependence while remaining Gaussian. For details about the 
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stochastic analysis theory of fractional Brownian motion, see (18-19). The fractional 

Brownian motion is applied in finance, such as Ref.[20-22]. 

In this paper we will be concerned with the nonlinear Black-Scholes model for 

European options with a non-constant volatility ( , )tt S   under the fractional 

jump-diffusion Environment. The remaining of the paper is organized as follow. The 

model and some theoretical results are presented in Section 2. In Section 3, we 
perform numerical simulations for the premium. Concluding remarks are given in 

Section 4. 

 

2. The model 

In this paper we study the pricing problem for an underlying asset price with 

jumps which is governed by the following stochastic differential equation: 

( , )[ d d( )]Ht

t t t t t t

t

dS
r dt t S a W b N t

S
      , { }, [0, ]tS t T , 

0 0S  is given     (1.1) 

where, , ,r a b are deterministic functions with respect to t .  is the function of 

t and
tS such that 1 ( , ) 0t tt S b  . Here { }, [0, ]tN t T is a Poisson process with 

deterministic intensity  and { }, [0, ]H

tW t T  is a fractional Brownian motion with 

Hurst parameter H . 
0

d
t

Ha W  is the wick product for the fractional Brownian 

motion. Note that the process M defined by 
t tM N t  for [0, ]t T  is the 

compensated process associated to N. We consider a market with two assets: the 

risky asset 
tS  given by the Eq. (1.1) to which is related a European call option and a 

risk-free asset given by 

t tdA rAdt , [0, ]t T , 
0 1A  . 

We work on a probability space ( , , )P F . 
tM and H

tW  are independent and we 

denote by { }, [0, ]t t TF the filtration generated by { }, [0, ]tN t T  and{ }, [0, ]H

tW t T . 

We assume that (1.1) is the price of the asset under the risk-neutral probability P. 

Recall that a stochastic process is a function of two variables the time [0, ]t T  and 

the event   , but in the literature it is common to write 
tS , while it means 

( )t tS S  . The same interpretation is true for H

tW , 
tN and 

tM  or any other 

stochastic process in this paper. To the authors knowledge, it is impossible to find an 

explicit formula for the solution of the pricing problem. However, the premium can 

be determined and expressed in the following expectation form (see Ref.[23]) 

0
exp{ } [( )]

T

t P TC r dt E S k    ,                               (1.2) 

where 
PE denotes the expected value in a risk-neutral world. Here P is called the 

equivalent martingale measure. Note that, when ( , )t tt S   Eq. (1.1) is reduced to 

the well-known cfractional jump modle  

2 2 2 1

0
0 0 0

1

exp{ ( )d s d d } (1 )
t

k k

k N
t t t

H H

t s s s s s s s s s t t

k

S S r b s H a s a W b    






          . 
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Therefore, the expectation in (1.2) can be calculated by integrating over the 

normal distribution which gives the European-call pricing formula C  by Sun, Xue 

2009 and Xue, Sun 2010, when  , ,a b are constants. 

( ) ( )

2 1

0 0

[(1 ) ( )] [ ( )]
( ) exp{ d } ( )

! !

i ii iT
b T t i T t i

t s
t

i i

b T t T t
C S e e d K r s e d

i i

      
    

 

  
      , 

where ( )  is the cumulative distribution function of the standard normal distribution, 

and 

2 2 2 2

1
2 2

(1 )
ln( ) d ( ) 0.5 ( )

i
T

H Ht
s

ti

H H

S b
r s b T t a T t

Kd
a T t


  




    





, 2 2

2 1

i i H Hd d a T t   . 

Similarly, the pricing formula of the European put option P  can be written as  

( )

1

0

( )

2

0

[ ( )]
exp{ d } ( )

!

[(1 ) ( )]
       ( )
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


   

 
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    However ( , )tt S is the function of t  and 
tS , the expectation function can not be 

calculated to have an explicit formula because the random variable 
TS  does not have 

a known probability density. To surmount this problem, we use Monte Carlo 

techniques to simulate the premium. The Monte Carlo method is a very effective 

tool to simulate the prices of financial derivatives that do not have closed explicit 
formulas. The use of this method in options pricing was initiated by Boyle (1977). 

Since then it has been used by many researchers in finance. In this paper, we 

compute the premium and the price of the option at any time [0, ]t T , using the 

Monte Carlo method. 

 

3. Numerical computing of option prices 

In this section we discuss the simulation of the premium (1.2) using the Monte 
Carlo method. The main steps are summarized below: 

    Step 1. Simulation of 
TS : We select an integer 0L  , then we simulate ( )TS i  for 

(1,2, , )i L  . 

    Step 2. Monte Carlo solution for the premium: The simulation of the premium via 

the Monte Carlo method involves the following steps: 

(1)For each path ( )TS i , compute the payoff max{ ( ) ,0}TS i K . 

(2) Calculate the mean of the resulting payoffs 
1

1
max( ( ) ,0)

L

T

i

S i K
L 

 . 

(3) Estimate the price of the option by discounting the mean payoff at the risk-free 

rate 
0

1

1
max( ( ) ,0)exp( )

L T

T s

i

S i K r ds
L 

  . 

In the proceeding subsections, we give the details of the above steps. 
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3.1. Simulation of
TS  

We seek L  realizations of 
TS : 

1( ), , ( ), ( )T T i T LS S S    , 

where
1, , ,i L     are chosen randomly from  . We follow the following 

algorithm: 

(1) Simulate L  trajectories for { ,0 }tS t T  : 

(1), , ( ), , ( )t t tS S i S L  , 

where ( )tS i  is a simulation of ( )T iS   and 1,23, ,i L  . 

(2)For each i ( 1,23, ,i L  ), take the value of ( )tS i  at the terminal time: ( )TS i . 

First, we select an integer 0M  , then we discretize the time interval [0, ]T  into 

steps jt j t  , 0,1,2, ,j M  of identical duration
T

t
M

  : 

0
( ), , ( ), , ( )

j Mt t tS i S i S i   

and thus we get L approximations of 
TS : 

(1), , (2), , ( )
M M Mt t tS S S L   

Let i  be fixed in {1, , }L . We start by simulating a trajectory ( )tS i  of the Brownian 

motion and a trajectory ( )tN i  and then we use Eq. (2.2) to find the approximation 

( )
Mt

S i  of 
TS . . We implement the following steps: 

(a). Simulation of the Brownian motion and the Brownian integral.  

We simulate{ ( ), 1,2, , 0,1, }
jtW i i L j H    noting the fact that the Brownian motion 

fulfills: 

10 ( ) 0, ( ) ( ) ( ), 1,2, , 0,1,
j j

H H H H

t t jW i W i W i t Z i i L j M


        

where ( )jZ i  follows a normal distribution (0,1)N . We simulate 2L  uniform random 

variable ( )jU i and ( )jV i , and we use the Box–Muller method  

( ) log( ( )) cos(2 ( ))j j jZ i U i V i   . 

(b). Simulation of the Poisson Process and the Poisson part.  

Regarding the Poisson process, we simulate first the jump times { , 0}kT k  of 

{ ,0 }tN t T  with intensity   by{ ( ), 1,2, , 0,1, }
t j

NT i i L j M    . We are using the 

following properties of the Poisson process: 

0 1

( ) 0, ( ) ( ) ( ), 1,2, , 0,1,
t t tj j

N N NT i T i T i ExpLaw t i L j M


        

where ( )ExpLaw   is an exponential random variable which can be written as 

1
( ) log( )ExpLaw t U

t





 


, and U  is a uniform random variable. A trajectory of the 

Poisson process ( ), 1,2, ,
jtN i i L   0,1,j M  is then determined by using: 
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0 { ( ) }

0

1, ( ) , 1,2, , 0,1,
j k j

j

t t T i t

k

N N i I i L j M



      . 

Since, from the last equation, and recalling the properties of the fractional 

Brownian motion, we get 

1 1 1 1 1

1 1 1

1

1

( ) ( ) ( ) ( , ( )) ( )

                        ( , ( )) ( ( ) ( )).

j j j j j j

j j j j

H

t t t t j t t j

j t t t t

S i S i t r S i t S i a t Z i

t S i b N i N i





    

  





     

 
 

 
3.2. Monte Carlo solution for the premium 

We have from the previous subsections L realizations for 
TS , so we can apply 

the Monte Carlo method to compute the premium numerically using 

0
1

1
exp{ } max( ( ) ,0)

i LT

s T

i

r ds S i K
L





    

To reduce the computational time we reduce the variance by using the 

antithetic variable method. This technique consists of computing two values of the 

premium C . The first value 
1C  is calculated as described above and the second 

value 
2C is calculated similarly as 

1C  with changing the sign of all the random 

samples from the standard normal distribution. Then C is obtained by taking the 

average of 
1C  and 

2C . 

The standard error of the estimate premium is then Cs

L
, where 

Cs is the standard 

deviation of the estimate premium and L  is the number of trials. A 95% confidence 

interval for the premium is 

1.96 1.96C C

C C

s s
C

L L
      

where
C is the mean of the estimated premium. 

    
Figure 1. Fractional Brownian motion and Poisson process 

 
Now, we present the numerical results of the premium by the Monte Carlo 

simulation when  
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1T  , 0.01 3t t   ; 0.01(2 8sin( ) cos( ))
2

t

t
r t


   , 

0.1ta  , 0.3tb  , 0.1t t   , 
0 7S   and 7.5K  . Notice that, the parameters T  and 

  are used to simulate trajectories for the Brownian motion and for the Poisson 

process with number of realizations 500H  (see Fig. 1). Then, we simulate 

trajectories for the stock price at  

 
Figure 2. Realizations of the asset price for 0.53, 1, 0.01 3tH T t    , 

0.1 sin( )
2

t

t
r


  , 0.25ta  , 0.3tb  , 0.01t t    and 

0 7S   

 
Figure 3. Realizations of the asset premium for d 7.5K   

 

 

terminal time 1T   with 500H  (see Fig. 2) and for the premium with number of 

realizations 500L  (see Fig. 3). It is found that, the standard error of the estimate 
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premium is 30.237 10 .  A  95%  confidence interval for the premium is therefore 

given by  
2 25.469 10 5.562 10C     . 

We also provide the premium as a function of the stock price at 0t   for two 

different values of the strike K = 7.5 and K = 9 with number of realizations 500L  , 

see Fig. 4. 

        
Figure 4. the premium as a function of the stock price at time 0t   

for 7.5K  (left) and 9K  (right) 

We now obtain the results by using Monte Carlo method to deal with the linear 

model. For all remain calculations we used the following parameters: 

0 100S  100K  , 1T  , 1a  , 0b  , 0.5H  . 

In this linear case, the call option pricing formula can be hold by the following 

closed form. We compare our method with the real value given by the closed form. 

 

 410L   510L   610L   710L   Real value 

0.1r  , 0.1   10.2100 10.2816 10.3165 10.3052 10.3082 

0.1r  , 0.15   11.5588 11.6360 11.6806 11.6657 11.6691 

0.1r  , 0.2   13.1411 13.2332 13.2837 13.2659 13.2697 

0.1r  , 0.25   14.8259 14.9357 14.9921 14.9715 14.9758 

0.1r  , 0.3   16.5691 16.6909 16.7528 16.7293 16.7341 

0.02r  , 0.2   8.8163 8.8872 8.9259 8.9132 8.9160 

0.06r  , 0.2   10.8734 10.9582 11.0014 10.9863 10.9895 

0.1r  , 0.2   13.1411 13.2332 13.2837 13.2659 13.2697 

0.14r  , 0.2   15.5750 15.6777 15.7367 15.7165 15.7211 

0.18r  , 0.2   18.1309 18.2561 18.3200 18.2978 18.3031 

 

Table1. Numerical values by Mont Carlo method  

 

We see that in the linear case the Mont Carlo method yield a very accurate result 
(see Table 1).  

 

4. Conclusion 
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In this paper, a fractional jump diffusion model is considered for option pricing. The 

pricing problem for such a model does not have a closed formula since the market is 
incomplete. However, since it imitates financial crashes, it is a more realistic 

approach. The price of a European option is simulated numerically by using the 

Monte Carlo method. 
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