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ABSTRACT

;Fhe present paper deals with Para Sasakian manifolds with m-projective curvature
ensor.
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1. Introduction

Sat0 [6, 7] introduced the notion of an almost para contactstructure, either P-
Sasakian or SP-Sasakian, and gave a lot of very interesting results about such
manifolds. In [3] Bhagwat Prasad define and studied a tensor field on Riemannian
manifold of dimension n, called the pseudo projective curvature tensor which in a
particular case becomes a projective curvature tensor.

In this paper, we investigate the properties of the P-Sasakian manifold equipped with
m-projective curvature tensor. An n-dimensional P-Sasakian manifold is a said to
be m-projectively flat if P =0, where P is the m-projective curvature tensor.

We show that m-projectively flat Para-Sasakian manifold is an Einstein manifold.
Also we prove that an n-dimensional m-projectively flat P-Sasakian manifold is
locally isometric with the Hyperbolic H" (1) .

Next, we investigate ¢ -m-projectively flat P-Sasakian manifold. A. Yildiz and M.
Turan [2] studied the same condition on « -Sasakian manifold.We prove that ¢ -m-
projectively flat P-Sasalian manifold is an 77-Einstein manifold. Then we study P-

Sasakian manifold in with 6(5, X).P =0, were C is a concircular curvature tensor.
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In this case, we show that either manifold has scaler curvature r =n(n—21) or
manifold is locally isometric with the Hyperbolic H" (-1)..

Finally, we study an n-dimensional P-Sasakian manifold satisfying R(X,Y).P =0
and we prove that such manifold is locally isometric with the HyperbolicH " (1) .

2. Preliminaries

Let M be an n-dimensional contact manifold with contact form 7, i.e,

n A(dA)" #0. Itis well known that a contact manifold admits a vector field &,
called the characteristic vector field, such that 7(£) =1 and77(&) = 1for every

X € y(M). Moreover, M admits a Riemannian metric g and a tensor field ¢ of
type (1,1) such that [6, 9]

9’ =1-n®¢, 2.1)
g(X,$) =n(X), (2.2)
g(X,9Y)=dn(X,Y). (2.3)

We then say that (¢,77,&, @) is a contact metric structure. A contact metric
manifold is said to be a Sasakian if

(VXCD)Y = Q(X,Y)f—U(Y)X, (2.4)
In which case
Vy&=-¢X, R(X,Y)S=n(Y)X-n(X)Y, (2.5)

for all vector fields X, Y on M.Now, we give a structure similar to Sasakian but not
having contact.

An n-dimensional differentiable manifold M is said to admit an almost para
contact Riemannian structure (¢,7,&, g)such that [5, 6, 9]

p&=0, n(p)=0, n(&)=1 (2.6)
g(& X)=n(X), @’X =X=X-n(X)¢E, (2.7)
g(eX,9Y) =g(X,Y) —n(X)n(Y), (2.8)

for all vector fields X, Y on M. The equation 77(£) =1equivalent to|77| =1,then¢is
just the metric dual of 7. If (@,77,&, g) satisfy the equations
d7=0, V,&=¢X, (2.9)

(Vx@)Y ==9(X,Y)& =n(Y)X +2n(X)n(Y)S, (2.10)

then M is called Para-Sasakian manifold or briefly, P-Sasakian manifold.
Especially a P-Sasakian manifold is called a special para-Sasakian manifold or
briefly, a SP-Sasakian manifold if

(Vi)Y ==g(X,Y) +n(X)n(Y). (2.11)
Also, a P-Sasakian manifold M is said to be 77 —Einstein manifold if its Ricci tensor
is of the form
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S(X,Y)=ag(X,Y)+bn(X)n(Y), (2.12)
For any vector fields X, Y, where aand b are function on M.
Ifb = 0, then 77 —Einstein manifold to becomes an Einstein manifold.

Further, on such an n-dimensional P-Sasakian manifold the following relations hold
[1,4,6, 9]

g(R(X,Y)Z,8) =n(R(X,Y)Z) =g(X,Z)n(Y) - g(Y,Z)n(X), (2.13)
Q¢ =-(n-1)¢, (2.14)
R(X,Y)E=n(X)Y =n(Y)X , (2.15)
R(&, X)Y =n(Y)X —g(X,Y)&, (2.16)
R(&, X)é =X -n(X)¢&, (2.17)
S(X, &) =—(n-n(X), (2.18)
S(pX,9Y) =S(X,Y)+(n=Dn(X)n(Y) (2.19)

for any vector fields X, Y, Z, where R(X,Y)Z is the curvature tensor and S is the
Ricci tensor.

Definition 2.1. The M-projective curvature tensor P is defined as

P(X,Y)Z =R(X,Y)Z - ! [S(Y,Z)X =S(X,Z2)Y
2(n-1)
+9(Y,Z2)QX —g(X,Z)QY], (2.20)

for all vector fields X, Y, Z on M [3]. Where Q is the Ricci operator defined by

S(X,Y) =g(QX,Y). The manifold is said to be m-projectively flat if P vanishes
identically on M.

Definition 2.2. The concircular curvature tensor 6 on P-Sasakian manifold M of
dimensional nis defined by

C(X,Y)Z =R(X,Y)Z - —"

n(n-1)
for all vector fields X, Y, Zon M .

Definition 2.3. An n-dimensional, (n > 3), P-Sasakian manifold satisfying the
condition

P*P (X, Y )pZ =0 2.22)

is called ¢ -m-projectively flat manifold.

[9(Y,Z)X —g(X,Z)Y] (2.21)

3. Main Results
In this section, we prove the following theorems:
Theorem 3.1. An n-dimensional m-projectively flat P-Sasakian manifold is locally

isometric to the HyperbolicH" (1) .
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Proof. IfP =0 thenwe get from (2.20) that
1
R(X,Y)Z = S(Y,Z)X -S(X,2)Y
(XY)Z =580, 2)X =S(X.2)
+9(Y,2)QX -g(X,Z)QY].
Putting Z = &in (2.21) and using (2.7), (2.15) and (2.18) we obtain

nXY =n(V)X = (0 -Dn(V)X +(-Dn(X)Y
(n-1)

+7(Y)QX —n(X)QY].
Taking Y = £ in (3.2) and using (2.6) we have
1
100 =X =5 = -0 =DX + (0= (X)S
+QX +(n-Dn(X)<S].

Therefore with simplify of the above equation we get

QX =—(n-1X.
Now, putting (3.3) in (3.1) we obtain
ROX,Y)Z =—2[S(Y.Z)X —S(X,Z)Y

2(n-1)
—(n-1g(Y,Z2)X +(n-D)g(X,2)Y],
putting X =& and using (2.16) and (2.18) we get

PN ~0(1 25 =5 IS 26+ (1D

- (n _1)g(Y! Z)g + (n _1)77(Z)Y]!
with simplify of the above equation we obtain
S(Y,Z)==(n-Dg(¥,2).
thus the manifold is an Einstein manifold.
Now, putting (3.3) and (3.4) in (3.1) we have

ROXY)Z = —2[—(n=1)g(Y.Z)X +(n-1)g(X,Z)Y.
2(n-1)
—(n=-Dg(Y,2) X +(n=-1g(X,2)Y].

R(X,Y)Z =—{g(Y,Z)X —g(X,Z)Y].

Finally we get

(3.1)

(3.2)

(3.3)

(3.4)

The above equation implies that M is of constant curvature —1and consequently it

is locally isometric with the Hyperbolic H " (-1) .

This the completes the proof of the theorem. ©

Now, we construct an example of m-projectively flat P-Sasakian manifold

which support Theorem (3.1) .
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Example 1. We consider 3-dimensional manifold M :{(x, y,2):(X,y,2) R3},

where (X, Y, z) are standard coordinates in R®. We choose the vector fields
o 0O 0
E1 :ez(____) ) Ez =—e'— | E3 :_2 J
oX oy oy 0z
which are linearly independent at each point of M. Let g be the Riemannian metric
defined by

g(Epez) = g(Ezv Es) = g(Es’ E1) =0
g(E1’ E1) = g(E2’ Ez) = g(Esv Es) =1
Let 77 be a 1-form defined by 77(Z) = g(Z, E;) for any vector field Z on M.
We define the (1,1) tensor field ¢ as
o(E)=E , o(E,)=E, , ¢(E;)=0.
The linearity property of ¢ and g yields that
n(e) =1, p°U =-U +nU)e,
for any vector fields U, W, Z on M.
Thus for E; =&, (¢,17,&, 9) defines an almost para contact structure on M.
Let V be the Levi-Civita connection with respect to g, then for any f € C*(R®)we
have
[El’ Ez] = El(EZ f)_ Ez(E1f)
0 0

=o' (- e D)

o., ,of
x oy VAR

ay
N Cx

Similarly we obtain [E,,E,]=E,, [E,,E;]=E,.
Using the Koszuls formula
Zg(VXY’Z):VX g(Y’Z)"'VYg(Z’X)_Vzg(X’Y)

+9([X,Y1,Z)-9g(IY,Z], X)+9([Z, X1.Y),

2g(VE1 =g Es) = _g(El’ E1) + g(_El’ E1)
= _Zg(El’ El)’
therefore V¢ E, = —E,. Similarly, it follows that

we have

VeE, =0, V.E,=E, , V. E, =0, V_E, =-E,
VeE,=E, ,V.E =0,V_E, =0, V_E,=0.
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From the above, it can be easily seen that (¢, 77, &, g) is a P-Sasakian structure
on M.Hence M is a 3-dimensional P-Sasakian manifold.
Now, using the formula

R(X,Y)Z=V,V,Z-V,V,Z -V}, Z,
we can easily calculate the non-vanishing components of the curvature tensor as
follows

R(Ev E, )Ez = VElsz E, _szvEl E, _V[El,EZ]EZ

=-E

Similarly,
R(E,,.E;)E; =-E, , R(E,,E))E, =E, , R(E,,E;)E; =-E,
R(E;,E,)E, =-E;, R(E;,E,)E,=-E;, R(E;,E,)E; =-E,.
The above relations implies that M is of constant curvature -1.

The definition of Ricci tensor in 3-dimensional manifold implies that
3

S(X,Y) = z g(R(En X)Y, Ei)-
i=1
From the above relation we can calculate the non-vanishing components of Ricci

tensor S as follows
3

S(El’ E1) = Z g(R(Ei' El)Ell Ei)

i=1

= g(R(El’ El)El’ El) + g(R(Ez’ El)El’ Ez)
+9g(R(E3,E))E,,E;)
=-2,
therefore S(E;, E,) = —2.Similarly we get
S(E,,E,)=-2, S(E;,E;)=-2
We know that the scaler curvature of the 3-dimensional manifold is given by

r:i S(E,,E)).

In view of above relations, it follows that for all vector fields X,Y € (M) the
scaler curvature of the manifold is equal to -6 and the Ricci tensor

S(X,Y)=-29(X,Y).
Also, QX =-2X . Now, in view of (2.20) we have
_ 1
P(El’ Es)Es = R(El7 Es)Es _E[S(Esv ES)El - S(El7 Es)Es

+9(E;, E;)QE, — 9(E;, E;)QE;]
=0.
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Similarly, for all i, j,k =1,2,3 we obtain
P(E, E;)E, =0.
Therefore M is a 3-dimensional m-projectively flat P-Sasakian manifold.
Also, M is an 3-dimensional Einstein manifold whit the constant curvature —1. ©

Theorem 3.2. Let M be an n-dimensional, (n > 3), ¢ -m-projectively flat P-
Sasakian manifold. Then M is an 77-Einstein manifold.
Proof. If M is ¢ -m-projectively flat P-Sasakian manifold then we get from
(2.22) that
P°P(pX, @Y )Z =0
this implies that
9(p°P(9X, 9Y)pZ, W) =0
for any vector fields X, Y, Zand W on M . Using (2.20) we obtain
O(R(PX 0V)gZ W) = 5 IS0 29X W)
—S(pX,pZ)g(pY . W)
+9(9Y,0Z)S(pX, W)
—9(eX,Z)S(pY, pW)].
Let {e,,e,,....e,,<} be alocal orthonormal basis of vector fields in M.

Using that {¢e,, ¢e,,...,@e,, £}is also a local orthonormal basis, if we put
X =W =g, in above equation and sum up with respect to i, then

n-1 n-1

Zg(R((ﬂei:(/)Y)(DZa(Dei): 2 Z[S((DY'(/)Z)Q((Pei’(Dei)

i=1 (n-1) =
—S(¢e,, 9Z)g(pY, ¢e;)
+9(oY,¢Z)S(ge;, ¢®)

—0(ee, 0Z)S(0Y , ¢8)]. (3.5)
It can be easily verify that
ZQ(R(@“(DY)(DZ,(P%) =S(oY,0Z)+9(eY . 02), (3.6)
> 8(ge, 8) =1 (0=, @)
> a(eY .ge)S(ge, 0Z) = S(oY ,0Z), (38)

i=1
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n-1
Zg(@ilggei) =n-1. (3.9)
i=1

So by virtue of (3.6)-(3.9) the equation (3.5) can be written as

(Y 92)+ 9 92) = 5 (- D)S(Y 02)~S(eY 42)

+(r—(n-1))S(eY,pZ)—S(pY,pZ)],

this implies that
in view of (2.6) and (2.19) we get
_r-3(n-1
S(Y,2)+ (=1 )n(2) ==——19(Y,2)~n(¥)7(2)}
Finally we obtain

Therefore M is an 7 -Einstein manifold. ©

a(eY,9Z),

+(n+D1n(Y)n(2).

Theorem 3.3. Let M be an n-dimensional P-Sasakian manifold. Then
M satisfies in condition

C(&U).P =0
if and only if either M has scaler curvature r =n(1—n)or M is locally
isometric with the Hyperbolic H"(-1).
Proof. Since C(&,U).P =0 we have
C(&,U).P(X,Y)Z =0,
this implies that
[C(£,U),P(X,Y)]Z-P(C(EU)X,Y)Z-P(X,C(£U)Y)Z =0,
in view of (2.21) we get
0=(1-—"
n(n-1)
+n(X)PU,Y)Z-gU,X)P(&,Y)Z
+n(Y)P(X,U)Z-g(U,Y)P(X,&5Z
+1(Z)P(X,Y)U —g(U,Z)P(X,Y)E).
Therefore M has scalar curvature r =n(1—n) or
0=—n(P(X,Y)Z)U+P(X,Y,Z,U)E+n(X)PU,Y)Z
—g(U, X)P(£Y)Z +n(Y)P(X,U)Z-g(U,Y)P(X,&)Z

N=7(P(X,Y)Z)U +P(X,Y,Z,U)é&
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+1(Z)P(X,Y)U —gU,Z)P(X,Y)E.
Taking the inner product of the last equation with £ we get
0=-n(P(X,Y)Z)nU)+P(X,Y,Z,U)
+n(X)n(PU,Y)Z)-g(U, X)n(P(&,Y)Z)
+n(Y)n(P(X,U)Z)-g(U,Y)n(P(X,&)Z)
+1(Z)n(P(X,Y)U)-gU,Z)n(P(X,Y)S).
Finally, with simplify we get
P(X,Y,Z,U)=0,
which implies that M is m-projectively flat. Thus in view of Theorem(3.1), M is
locally isometric with the Hyperbolic H " (—1). The converseis trivial. This the
completes the proof of the theorem. o

Theorem 3.4. If an n-dimensional P-Sasakian manifold M satisfies
R(X,Y).P=0
then M is locally isometric with the Hyperbolic H " (1) .
Proof. If R(X,Y).P =0 then we have
R(X,Y).PU V)W =0,
for all vector fields X, Y, U, Vand W on M , this implies that
0=R(X,Y)PU,V)W — P(R(X,Y)U,V)W
—P(U,R(X,Y)V)W —P(U,V)R(X,Y)W.
Putting X = & and taking the inner product of the last equation with &, we obtain
0= g[R(&,Y)PUVIW,&1-gIP(R(S, Y)U,VIW, &]
—g[PU, R YW, 1= gPU VIR, YW, &].
In view of (2.7) and (2.16) we have
0=P(U,V,W,Y)+n(Y)n(PU,V)W)
—g(Y,U)n(P(&V W) = (U)n(P(Y,V)W)
+g(Y V)n(PU, W) —n(V)n(PU,Y W)

+9(Y,W)n(PU,V)E) —nW)n(PU,V)Y).
With simplify of the above equation we obtain
PU,V,W,Y)=0
Therefore M is m-projectively flat. In view of Theorem (3.1) manifold
is locally isometric with the HyperbolicH" (1) . ©
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