Journal of Physical Sciences, Vol. 16, 2012, 23-30 ISSN: 0972-8791, www.vidyasagar.ac.in/journal Published on 31 December 2012

n-Distributive Lattice

M. Ayub Ali¹, Sompa Rani Podder¹ and A.S. A. Noor²

¹Department of Mathematics, Jagannath University Dhaka, Bangladesh Email: ayub_ju@yahoo.com ²Department of ECE, East West University Dhaka, Bangladesh Email: noor @ ewubd.edu

Received May 05, 2012; accepted October 30, 2012

ABSTRACT

J. C. Varlet has given the concept of 0-distributive and 1-distributive lattices. In this paper the authors have generalized the whole concept and introduced the notion of n-distributive lattices. They show that for a neutral element of a lattice L, the n-annihilator of any subset of L is an n-ideal if and only if L is n-distributive. Then the authors study different properties of these lattices. Finally, using the n-annihilators they generalize the well known prime Separation theorem of distributive lattices with respect to annihilator n-ideal in a general lattice and produce an interesting characterization of n-distributive lattice.

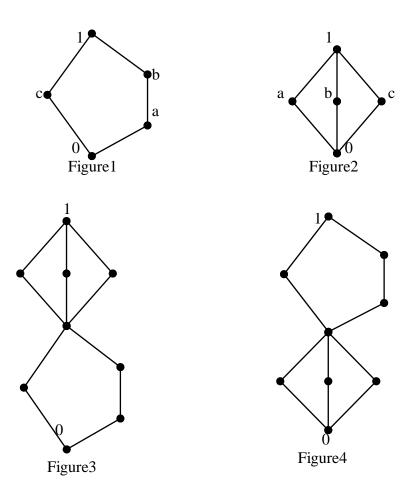
Keywords: Neutral element, 0-distributive lattice, n- annihilator, annihilator n- ideal, prime n-ideal, n-distributive lattice.

AMS Mathematics Subject Classifications (2010): 06A12, 06A99, 06B10

1. Introduction

In generalizing the notion of pseudocomplemented lattices, J. C. Varlet [6] introduced the notion of 0-distributive lattices. A lattice L with 0 is called 0-distributive if for all $a, b, c \in L$, with $a \wedge b = 0 = a \wedge c$ imply $a \wedge (b \vee c) = 0$. Similarly, lattice L with 1 is called 1-distributive if $a \vee b = 1 = a \vee c$ imply $a \vee (b \wedge c) = 1$ Of course every distributive lattice with 0 and 1 is both 0-distributive. Pentagonal lattice of Figure1 is a non-distributive lattice of Figure2 is neither 0-distributive nor 1-distributive. But the modular lattice of a lattice which is 0-distributive but not 1-distributive, while Figure-4 is an example which is not 0-distributive but 1-distributive.

M. Ayub Ali, Sompa Rani Podder and A.S. A. Noor



A pseudocomplemented lattice L can be characterized by the fact that for each $a \in L$, the set of all elements which are disjoint with element a forms a principal ideal. But a 0-distributive lattice L says that for each $a \in L$ the set of all elements disjoint with a is simply an ideal but not necessarily a principal ideal. Hence every pseudocomplemented lattice is 0-distributive. For detailed literature on 0-distributive lattice we refer the readers to consult [6], [1], and [5]. In this paper we generalize the concept of 0-distributive and 1-distributive and give the notion of n-distributive lattice L where n is a neutral element of L.

Let *L* be a lattice and $n \in L$. Any convex sublattice of *L* containing n is called an n-ideal of *L*. An element $n \in L$ is called a standard element if for $a, b \in L, a \land (b \lor n) = (a \land b) \lor (a \land n)$, while n is called a neutral element if (i) it is standard and (ii) $n \land (a \lor b) = (n \land a) \lor (n \land b)$ for all $a, b \in L$. Set of all n-ideals of a lattice *L* is denoted by $I_n(L)$ which is an algebraic lattice; where

n-Distributive Lattice

 $\{n\}$ and L are the smallest and largest elements. For two n-ideals I and J, $I \cap J$ is the infimum and

 $I \lor J = \{x \in L/i_1 \land j_1 \le x \le i_2 \lor j_2, \text{ for some } i_1, i_2 \in I \text{ and } j_1, j_2 \in J\}$. The n-ideal generated by a finite numbers of elements $a_1, a_2, ..., a_m$ is called a finitely generated n-ideal denoted by $\langle a_1, a_2, ..., a_m \rangle_n$. Moreover,

$$\langle a_1, a_2, \dots, a_m \rangle_n = \{ x \in L / a_1 \land a_2 \land \dots \land a_m \land n \le x \le a_1 \lor a_2 \lor \dots \lor a_m \lor n \}$$
$$= [a_1 \land a_2 \land \dots \land a_m \land n, a_1 \lor a_2 \lor \dots \lor a_m \lor n]$$

Thus, every finitely generated n-ideal is an interval containing n. n-ideal generated by a single element $a \in L$ is called a principal n-ideal denoted by $\langle a \rangle_n$ and $\langle a \rangle_n = [a \land n, a \lor n]$. Moreover $[a, b] \cap [c, d] = [a \lor c, b \land d]$ and $[a,b] \lor [c,d] = [a \land c, b \lor d]$. If n is a neutral element, then by [3], $\langle a \rangle_n \cap \langle b \rangle_n = \langle m(a,n,b) \rangle_n$, where $m(x,y,z) = (x \wedge y) \vee (x \wedge z) \vee (y \wedge z)$. A proper convex sublattice M of a lattice L is called a maximal convex sublattice if for any convex sublattice Q with $Q \supseteq M$ implies either Q = M or Q = L. A proper convex sublattice M is called a prime convex sublattice if for any $t \in M$, $m(a,t,b) \in M$ implies either $a \in M$ or $b \in M$. Similarly, an n-ideal P of L is $m(a,n,b) \in P$ implies either $a \in P$ or $b \in P$. called a prime n-ideal if Equivalently, P is prime if and only if $\langle a \rangle_n \cap \langle b \rangle_n \subseteq P$ implies either $\langle a \rangle_n \subseteq P$ or $\langle b \rangle_n \subseteq P$. Moreover, by [4], we know that every prime convex sublattice P of L is either an ideal or a filter. Let n be a neutral element of L. For $a \in L$, we define $\{a\}^{\perp_n} = \{x \in L/m(x, n, a) = n\}$, known as an n-annihilator of $\{a\}$. For $A \subset L$, $A^{\perp_n} = \{x \in L/m(x, n, a) = n, \text{ for all } a \in A\}$. If L is a distributive lattice, then it is easy to check that $\{a\}^{\perp_n}$ and A^{\perp_n} are n-ideals. Moreover, $A^{\perp_n} = \bigcap \{\{a\}^{\perp_n}\}$. If A is an n-ideal, then A^{\perp_n} is called an annihilator n-ideal, which is obviously the pseudocomplement of A in $I_n(L)$ Therefore, for a distributive lattice L with n, $I_n(L)$ is pseudocomplemented. Let n be a neutral element of a lattice L.

Theorem 1. If the intersection of all prime n-ideals of a lattice L is $\{n\}$, then L is ndistributive.

Proof. Let $\langle a \rangle_n \cap \langle b \rangle_n = \{n\}$ and $\langle a \rangle_n \cap \langle c \rangle_n = \{n\}$. Let P be any prime n-ideal. If $a \in P$, then $\langle a \rangle_n \subseteq P$ and so $\langle a \rangle_n \cap (\langle b \rangle_n \vee \langle c \rangle_n) \subseteq P$. If $a \notin P$, then M. Ayub Ali, Sompa Rani Podder and A.S. A. Noor

 $\langle b \rangle_n, \langle c \rangle_n \subseteq P$ as P is prime, and so $\langle b \rangle_n \lor \langle c \rangle_n \subseteq P$. Thus $\langle a \rangle_n \cap (\langle b \rangle_n \lor \langle c \rangle_n) \subseteq P$. That is in either case, $\langle a \rangle_n \cap (\langle b \rangle_n \lor \langle c \rangle_n) \subseteq P$ for all prime n-ideals P. Therefore, $\langle a \rangle_n \cap (\langle b \rangle_n \lor \langle c \rangle_n) = \{n\}$, and so L is n-distributive.

Lemma 2. Every convex sublattice not containing n is contained in a maximal convex sublattice not containing n.

Proof: Let F be a convex sublattice such that $n \notin F$. Let F be the set of all convex sublattice containing F but not containing n . F is non-empty as $F \in F$. Let C be a chain in F and $M = \bigcup (X / X \in C)$. Let $x, y \in M$. Then $x \in X$ and $y \in Y$ for some $X, Y \in C$. Since C is a chain, so either $X \subseteq Y$ or $Y \subseteq X$. Suppose $X \subseteq Y$. Then $x, y \in Y$. Hence $x \land y, x \lor y \in X$, and so $x \land y, x \lor y \in M$. Thus M is a sublattice of L containing F. Also it is convex as each $X \in C$ is convex. Clearly $n \notin M$. Hence M is a maximum element of C. Therefore, by Zorn's Lemma, F has a maximal element.

Lemma 3. Let $n \in L$ be neutral. A convex sublattice M not containing n is maximal if and only if for all $a \notin M$ there exists $b \in M$ such that m(a,n,b) = n.

Proof. Suppose M is maximal and $n \notin M$. Let $a \notin M$. Suppose for all $b \in M$, $m(a,n,b) \neq n$.

Set $M_1 = \{y \in L/y \land n \le (a \lor b) \land n \le (a \land b) \lor n \le y \lor n\}$. It is easy to check that M_1 is a convex sublattice as n is neutral. Moreover, $n \notin M_1$. For otherwise $n \land n \le (a \lor b) \land n \le (a \land b) \lor n \le n \lor n$ implies m(a, n, b) = n, which gives a contradiction to the assumption. Now for $b \in M$,

 $b \wedge n \leq (a \vee b) \wedge n \leq (a \wedge b) \vee n \leq b \vee n$ implies $b \in M_1$, and so $M \subseteq M_1$. Also, $a \wedge n \leq (a \vee b) \wedge n \leq (a \wedge b) \vee n \leq a \vee n$ implies $a \in M_1$ but $a \notin M$. Hence $M \subset M_1$. Thus we have a contradiction to the maximality of M. Hence there exists some $b \in M$ such that m(a,n,b) = n. Conversely, if M is not maximal and $n \notin M$, then by Lemma-2, M is properly contained in a maximal convex sublattice N not containing n. For any element $a \in N - M$, there is an element $b \in M$ such that m(a,n,b) = n. Hence $a,b \in N$ and $a \wedge b \leq n \leq a \vee b$ imply $n \in N$, by convexity, and which is a contradiction. Thus M must be maximal.

Following Lemmas give some information on $\{x\}^{\perp_n}$.

Lemma 4. $p \in \{x\}^{\perp_n}$ if and only if $p \land x \le n \le p \lor x$. **Proof.** $p \in \{x\}^{\perp_n}$ if and only if m(p, n, x) = n if and only if

n-Distributive Lattice

 $(p \land x) \lor (p \land n) \lor (x \land n) = (p \lor x) \land (p \lor n) \land (x \lor n) = n$, as n is neutral. This implies $p \land x \le n \le p \lor x$.

Lemma 5. $p \in \{x\}^{\perp_n}$ if and only if $p \lor n \in \{x \lor n\}^{\perp}$ in [n] and $p \land n \in \{x \land n\}^{\perp^d}$ in (n]. **Proof.** Let $p \in \{x\}^{\perp_n}$. Then $p \land x \le n \le p \lor x$ and so $(p \lor n) \land (x \lor n) = (p \land x) \lor n = n$ and $(p \land n) \lor (x \land n) = (p \lor x) \land n = n$ as n is neutral. Hence $p \lor n \in \{x \lor n\}^{\perp}$ in [n] and $p \land n \in \{x \land n\}^{\perp^d}$ in (n].

Conversely, let $p \lor n \in \{x \lor n\}^{\perp}$ in [n) and $p \land n \in \{x \land n\}^{\perp^d}$ in (n]. Then using neutrality of n, $(p \lor n) \land (x \lor n) = n$ implies $(p \land x) \lor n = n$, and so $p \land x \le n$. Also $(p \land n) \lor (x \land n) = n$ implies $(p \lor x) \land n = n$, and so $n \le p \lor x$. Thus $p \land x \le n \le p \lor x$ and so $p \in \{x\}^{\perp_n}$ by Lemma 4.

Now we include some characterizations n-distributive lattices.

Theorem 6. For a lattice L with a neutral element n, the following conditions are equivalent.

- (i) *L* is *n*-distributive.
- (ii) For every $a \in L$, $\{a\}^{\perp_n}$ is an n-ideal.
- (iii) For any $A \subseteq L$, A^{\perp_n} is an n-ideal.
- (iv) $I_n(L)$ is pseudocomplemented.
- (v) $I_n(L)$ is 0-distributive.

(vi) Every maximal convex sublattice not containing n is prime.

Proof. (i) \Rightarrow (ii). Let $x, y \in \{a\}^{\perp_n}$. Then $a \wedge x \leq n \leq a \vee x$ and $a \wedge y \leq n \leq a \vee y$. Since L is n-distributive, so we have $a \wedge (x \vee y) \leq n \leq a \vee (x \wedge y)$. Then $a \wedge (x \vee y) \leq n \leq a \vee x \vee y$ and $a \wedge x \wedge y \leq n \leq a \vee (x \wedge y)$ imply $x \wedge y, x \vee y \in \{a\}^{\perp_n}$ by Lemma 4. Since m(n,n,a) = n, so $n \in \{a\}^{\perp_n}$. Finally let $x \leq t \leq y$ and $x, y \in \{a\}^{\perp_n}$. Then $a \wedge x \leq n \leq a \vee x$ and $a \wedge y \leq n \leq a \vee y$ and so, $a \wedge t \leq n \leq a \vee t$, which implies $t \in \{a\}^{\perp_n}$. Therefore, $\{a\}^{\perp_n}$ is an n-ideal. (ii) \Rightarrow (iii). Since $A^{\perp_n} = \bigcap_{a \in A} \{\{a\}^{\perp_n}\}$, so A^{\perp_n} is an n-ideal. (iii) \Rightarrow (iv) is trivial as for any n-ideal $A \in I_n(L)$, A^{\perp_n} is the pseudocomplement

of A in $I_n(L)$.

M. Ayub Ali, Sompa Rani Podder and A.S. A. Noor

(iv) \Rightarrow (v) is trivial as every pseudocomplemented lattice is 0-distributive. (v) \Rightarrow (vi). Suppose F is a maximal convex sublattice not containing n. Since $F = (F] \cap [F)$ and $n \notin F$, so either $n \notin (F]$ or $n \notin [F)$. Hence by the maximality of F, either F is an ideal or a filter. Let $x \notin F$ and $y \notin F$. Then by Lemma 3, there exists $a, b \in F$ such that m(x, n, a) = n = m(y, n, b). This implies $x \wedge a \leq n \leq x \vee a$ and $y \wedge b \leq n \leq y \vee b$. Thus, $x \wedge a \wedge b \leq n$, $y \wedge a \wedge b \leq n$ and $x \vee a \vee b \geq n$, $y \vee a \vee b \geq n$ and $a \wedge b, a \vee b \in F$. Then $\langle x \vee n \rangle_n \cap \langle a \wedge b \rangle_n = [n, x \vee n] \cap [a \wedge b \wedge n, (a \wedge b) \vee n] = [n, (x \wedge a \wedge b) \vee n] = [n, n] = \{n\}$ as n is neutral. Similarly, $\langle y \vee n \rangle_n \cap \langle a \wedge b \rangle_n = \{n\}$. Since $I_n(L)$ is 0-distributive, so $\langle a \wedge b \rangle_n \cap (\langle x \vee n \rangle_n \vee \langle y \vee n \rangle_n) = \{n\}$.

This implies $[n, (a \land b \land (x \lor y)) \lor n] = \{n\}$, and so $a \land b \land (x \lor y) \le n$. Dually, $\langle x \land n \rangle_n \cap \langle a \lor b \rangle_n = \langle x \land n \rangle_n \cap \langle a \lor b \rangle_n =$

 $\{n\}$. Without loss of generality suppose F is a filter. If $x \lor y \in F$, then $a \land b \land (x \lor y) \le n$ imply $n \in F$, which is a contradiction. Hence $x \lor y \notin F$. Therefore, F is a prime filter. Similarly, if F is an ideal, then it is a prime ideal. (vi) \Rightarrow (i). Let $a \land b \le n \le a \lor b$ and $a \land c \le n \le a \lor c$. We need to prove that $a \land (b \lor c) \le n \le a \lor (b \land c)$. If not, without loss of generality, let $a \land (b \lor c) \le n$.

Consider $F = [a \land (b \lor c)]$. Here $n \notin F$. Then by Lemma-2, there exists a maximal convex sublattice $M \supseteq F$ but $n \notin M$. But a convex sublattice containing a filter is itself a filter. Then by (vi), M is a prime filter. Now $a \in M$ and $b \lor c \in M$ imply $a \land b \in M$ or $a \land c \in M$ as M is prime. This implies $n \in M$ which is a contradiction. Hence $a \land (b \lor c) \le n \le a \lor (b \land c)$, and so L is n-distributive.

Corollary 7. In an n-distributive lattice every filter not containing n is contained in a prime filter.

Proof. This is trivial by lemma-2 and Theorem 6.

Theorem 8. Let *L* be an *n*-distributive lattice. If $\{n\} \neq A = \bigcap \{I; I \text{ is an } n - ideal \neq \{n\}\}, then A^{\perp_n} = \{x \in L/\{x\}^{\perp_n} \neq \{n\}\}.$ **Proof.** Let $x \in A^{\perp_n}$. Then m(x,n,a) = n for all $a \in A$. Since $A \neq \{n\}$, so $\{x\}^{\perp_n} \neq \{n\}$. Thus, $x \in R.H.S$, and so $A^{\perp_n} \subseteq R.H.S$. Conversely, let $x \in R.H.S$. Since L is n-distributive, $\{x\}^{\perp_n}$ is an n-ideal and $\{x\}^{\perp_n} \neq \{n\}$. Then $A \subseteq \{x\}^{\perp_n}$ and so $A^{\perp_n} \supseteq \{x\}^{\perp_n \perp_n}$. This implies $x \in A^{\perp_n}$, which completes the proof.

n-Distributive Lattice

We conclude the paper by giving another characterization of n-distributive lattices in terms of annihilator n-ideals which is related to the prime Separation Theorem for n-ideals in a distributive lattice given in [2].

Theorem 9. Let *L* be a lattice and *n* be a neutral element of *L*. *L* is *n*-distributive if and only if for a convex sublattice *F* disjoint with $\{x\}^{\perp_n}$ ($x \in L$). There exists a prime convex sublattice $Q \supseteq F$ and disjoint with $\{x\}^{\perp_n}$.

Proof. Let *L* be n-distributive and F be a convex sublattice disjoint from $\{x\}^{\perp_n}$. Then applying Zorn's Lemma there exists a maximal convex sublattice Q disjoint from $\{x\}^{\perp_n}$. Since $Q = (Q] \cap [Q)$, so either $(Q] \cap \{x\}^{\perp_n} = \varphi$ or $[Q) \cap \{x\}^{\perp_n} = \varphi$. Hence by the maximality of Q, it is either an ideal or a filter. Without loss of generality, let Q be a filter. We claim that $x \in Q$. If not $Q \lor [x) \supset Q$. Then by the maximality of Q, $(Q \lor [x)) \cap \{x\}^{\perp_n} \neq \varphi$. Let $t \in (Q \lor [x)) \cap \{x\}^{\perp_n}$. Then $t \ge q \land x$ for some $q \in Q$ and $t \land x \le n \le t \lor x$. Thus $q \land x \le t \land x \le n$. Then $m(q \lor n, n, x) = n$, which implies $q \lor n \in \{x\}^{\perp_n}$. But $q \lor n \in Q$ as Q is a filter. This gives a contradiction to the fact that $Q \cap \{x\}^{\perp_n} = \varphi$. Therefore $x \in Q$. Now let $z \notin Q$. Then $(Q \lor [z]) \cap \{x\}^{\perp_n} \neq \varphi$. Let $y \in (Q \lor [z]) \cap \{x\}^{\perp_n}$. Then $y \land x \le n \le y \lor x$ and $y \ge q_1 \land z$ for some $q_1 \in Q$. Thus $q_1 \land x \land z \le y \land x \le n$. Then $m(z, n, (q_1 \land x) \lor n) = n$, where $(q_1 \land x) \lor n \in Q$ as it is a filter. Therefore, by Lemma 3, Q is a maximal filter not containing n. Hence by

Theorem 6, Q is prime.

Conversely, let $\langle x \rangle_n \cap \langle y \rangle_n = \{n\}$ and $\langle x \rangle_n \cap \langle z \rangle_n = \{n\}$. We need to prove that $\langle x \rangle_n \cap (\langle y \rangle_n \vee \langle z \rangle_n) = \{n\}$. That is $x \wedge (y \vee z) \leq n \leq x \vee (y \wedge z)$. If not, let $x \wedge (y \vee z) \leq n$. Then $[y \vee z) \cap \{x\}^{\perp_n} = \varphi$. For otherwise $t \in [y \vee z) \cap \{x\}^{\perp_n}$, implies $t \wedge x \leq n \leq t \vee x$ and $t \geq y \vee z$. Which implies $x \wedge (y \vee z) \leq t \wedge x \leq n$, a contradiction. So, there exists a prime filter Q containing $[y \vee z)$ disjoint with $\{x\}^{\perp_n}$. As $y, z \in \{x\}^{\perp_n}$, so $y, z \notin Q$. Thus $y \vee z \notin Q$, as Q is prime. This implies $[y \vee z) \not\subset Q$, a contradiction. Dually by taking $x \vee (y \wedge z) \geq n$, we would have another contradiction. Therefore, $x \wedge (y \vee z) \leq n \leq x \vee (y \wedge z)$, and so L is n-distributive.

REFERENCES

M. Ayub Ali, Sompa Rani Podder and A.S.A. Noor

- 1. P. Balasubramani and P. V. Venkatanarasimhan, Characterizations of the 0-Distributive Lattices, Indian J. Pure Appl. Math., 32(3) (2001) 315-324.
- 2. M. A. Latif and A. S. A. Noor, A generalization of Stone's representation theorem . The Rajshahi University studies, (Part B), 31 (2003) 83-87.
- 3. A. S. A. Noor and M. A. Latif, Finitely generated n-ideals of a lattice, SEA Bull. Math., 22 (1998) 72-79.
- 4. A. S. A. Noor and M. Hafizur Rahman, On largest congruence containing a convex sublattice as a class, The Rajshahi University studies, (Part B), 26 (1998) 89-93.
- 5. Y. S. Powar and N. K. Thakare, 0-Distributive semilattices, Canad. Math. Bull., 21 (4) (1978) 469-475.
- 6. J. C. Varlet, A generalization of the notion of pseudo-complementedness, Bull. Soc. Sci. Liege, 37 (1968) 149-158.