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ABSTRACT

A technique is developed for obtaining the transient response of fourth order
more critically damped nonlinear systems. The results obtained by the
presented technique agree with the numerical results obtained by the fourth
order Runge-Kutta method nicely. An example is solved to illustrate the
method.
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1. Introduction

The control of micro vibration has become a growing research field due to the
demand of high-performance systems and the advent of micro and nanotechnology in
various scientific and industrial fields, such as semiconductor manufacturing,
biomedical engineering, aerospace-equipments, and high-precision measurements. In
micro and nanotechnology a small vibration is an important factor, as, due to a small
vibration the produced equipment may be defective. So, in micro and nano-
technological industries, vibration is not desirable. But vibration is unavoidable. It
may arise in different way, such as, earth quake, direct disturbance etc. So, vibration
control in micro and nano-technological industries is very essential. In micro and
nano-technological industries we keep watch that vibrations come to its equilibrium
position in minimum time. The more critically damped systems come to equilibrium
position in minimum time. So, more critically damped systems play an important role
in micro and nano-technological industries.

To investigate the transient behavior of vibrating systems the Krylov-
Bogoliubov-Mitropolskii (KBM) [4, 5] method is an extensively used method.
Originally, the method was developed for obtaining the periodic solutions of second
order nonlinear differential systems with small nonlinearities. Later, the method
extended by Popov [9] to investigate the solutions of nonlinear systems in presence of
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strong linear damping effects. Owing to physical importance Popov’s results were
rediscovered by Mendelson [6]. Murty et al. [7] developed a technique based on the
method of Bogoliubov’s to obtain the transient response of second and fourth order
over-damped nonlinear systems. Later, Murty [8] presented a unified KBM method
for second order nonlinear systems which covers the undamped, damped and over-
damped cases. Sattar [12] has found an asymptotic solution of a second order
critically damped nonlinear system. Shamsul [14] has developed a new asymptotic
solution for both over-damped and critically damped nonlinear systems.

First, Shamsul and Sattar [13] developed a perturbation technique based on the
work of KBM for obtaining the solution of third order critically damped nonlinear
systems. Later, Shamsul [15] has investigated solutions of third order critically
nonlinear systems whose unequal eigenvalues are in integral multiple. In article [15]
Shamsul has also investigated solutions of third order more critically damped
nonlinear systems. Shamsul [17] has also presented a perturbation technique for
solving a third order over-damped system based on the KBM method when two
roots of the linear equation are almost equal (rather than equal) and one root is
small. Rokibul et al. [10] found a new technique for obtaining the solutions of third
order critically damped nonlinear systems.

In article [7], Murty et al. also extended the KBM method for solving fourth
order over-damped nonlinear systems. But their method is too much complex and
laborious. Akbar et al. [1] presented an asymptotic method for fourth order over-
damped nonlinear systems which is simple, systematic and easier than the method
presented in [7], but the results obtained by [1] is same as the results obtained by [7].
Later, Akbar et al. [2] extended the method presented in [1] for fourth order damped
oscillatory nonlinear systems. First, Rokibul et al. [11] extended the KBM method
for obtaining the response of fourth order critically damped nonlinear systems. But
none one of the above author’s investigated solutions of fourth order more critically
damped nonlinear systems.

In the present article we have developed a technique for obtaining the
solutions of fourth order more critically damped nonlinear systems.

2.The method

Consider a fourth order weakly nonlinear ordinary differential system
x@ + DX+ pyX+ pyX+ pux =—¢ f(X,X,X,X) (1)
(4)

derivative of x with respect to t; p,, p,, p;, p, are constants, & is the small

where x' denote the fourth derivative and over dots denote first, second and third

parameter and f(x,Xx,X,X) is the given nonlinear function. As the equation is

fourth order so there are four real negative eigenvalues, and three of the
eigenvalues are equal (for more critically damped). Suppose the eigenvalues
are—A,—A,—A,—u. Wheng =0, the equation (1) becomes linear and the

solution of the corresponding linear equation is
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x(t,0)=(a, +b, t+cyt’)e ™ +d, e (2)
where a,, b,, c,, d, are constants of integration.

When ¢ # 0, following [16] an asymptotic solution of the equation (1) is sought
in the form

x(t,e)=(a+bt+ct’)e™

"+de +éeu (a,b,c, d,t)+- (3)

where a, b, ¢, d the functions of ¢ and satisfy the first order differential equations
a(t)=¢ A(a,b,c,d,t)+---
b(t) = & B,(a,b,c,d, 1)+
c(t)y=¢C(a,b,c,d,t)+--
d(t)=¢& D,(a,b,c,d,t)+-

We only consider first few terms in the series expansion of (3) and (4), we
evaluate the functions u, and 4., B,,C,, D,, i =1,2,---,n such that a, b, ¢ and

(4)

d appearing in (3) and (4) satisfy the given differential equation (1) with an
accuracy of ordere”'. In order to determine these unknown functions it is
customary in the KBM method that the correction terms, u;, i =1,2,---,n must

exclude terms (known as secular terms) which make them large. Theoretically, the
solution can be obtained up to the accuracy of any order of approximation.
However, owing to the rapidly growing algebraic complexity for the derivation of
the formulae, the solution is in general confined to a lower order, usually the
first [8].

Now differentiating the equation (3) four times with respect to ¢, substituting

(4)

the value of x and the derivatives X, X,X,x "~ in the original equation (1),

utilizing the relations presented in (4) and finally equating the coefficients of &, we

obtain
2 2 2
e“(ﬁ+y—ﬂj(ﬂ+3%+6q +z‘[a ¢ +66C‘J+t2 ﬂ}

ot ot* ot’ o ot*
(5)

0 Co(e. (e )
te 5+ﬁ,—,u D, + 5+/1 o HH u, =—f"(a,b,c,d,t)

where £ (a,b,c,d, 1) = f(x,,%,,%,,%,)and x, =(a+bt+ct)e ™ +de™ .

Now, we expand the functional f @ in the Taylor’s series of the form (see also
[12-15] for details)
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[ =t+cr®)’ Y Fy(a,d)e” 0 (bt +ct?)' Y F(a,d)e "
i, j=0 i,j=0
(0)
+(bt+ct®) Y Fy(a,d)e 0 + (bt +ct®) D Fy(a,d)e T 4
i, j=0 i, j=0
Thus, using (6), the equation (5) becomes

[0 0*4, 0B, o’B, _oc,\ ., 0°C,
— -A 3—+6 t 6 t
e (6t+’u j{ Py + a +6C, + Py + P + e

“ut 0 ’ 0 } 0 < —(i A+ )t
Ty 5+/1—,u D, + §+/1 AR Y Fy(a,d)e”™"
£.7=0 (7

+Bt+et’) Y F(ad)e 0 4 (bt +et’) Y Fy(a d)e !

i, j=0 i,j=0

i, j=0

+(bt+ct’) ZF3 (a,d)e Hm! +}

KBM [4, 5], Murty et al. [7], Sattar [12], Shamsul and Sattar [13], Shamsul [15,
17] imposed the condition that #, can not contain the fundamental terms (the
solution (2) is called generating solution of (1) and its terms are called fundamental
terms) of f ) Therefore, equation (7) can be separated for unknown functions

u,and A4,,B,,C, D, in the following way:

2 2 2
e‘“(g+y—/ij{a 4 +3%+6C1 +t[a B, +68CIJ+t2 0 C‘}

or ot orr o or or

3 " .
+e"”[§+/1—,u) D, =—{Z:FO(a,cl)e"("“'”’)#(bt+ct2)1 ZFl(a,d)e"("“"””}
i,j=0 i,j=0
3
And
o .Y(o =
(54_1] (E+ﬂjul = —{(bt+ct2)2 ZFZ(a,d)e_(’““‘”

i,j=0

+(bt+ct?)’ ZF3 (a,d)e 711 +}

i, j=0

)
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Now equating the coefficients of ¢°, ¢' and ¢*; from equation (8), we obtain

2
e (a +ﬂ—ﬂ,j aatc =—C ZF (Cl d)e—(”lﬂ/l)t

i, j=0
(10)
0 0°B oC X .
e‘“(—+ —/1) Ly6—L|==b > F(a,d)e /!
a o a ,;0 i(@d)
(11)
And
a0 0’4, 0B,
A +3—L+6C
¢ (az o\ " T
a 3
A— F d (i A+j )t
+e (8t+ ,uj l;{) (a,d)e
(12)
Solving the equation (10), we obtain
w F (=) a+j )t
C = ; - .l(a’d)e : Y
G2+ G =D ) =D A+ ) p)
(13)

Substituting the value of C, from (13) into equation (11) and solving, we
obtain

®© cFl(a,d)e—((i—l)ﬂH#)t 0 bE(CI,d) e—((i—l)/Hj,u)t
B =-6 . . N3 (s . - . . N2 (. .
i,j=0 ((l_l)ﬂ"‘]/u) (lﬂv‘*(J—l),U) i,jzo((l—l)/1+],l1) (1/1+(J—1)Iu)
(14)

Now substituting the value of C, from (13) and B, from (14) into equation
(12), we obtain

@ FA a0 Y
e(at,u/iaz atJr/i,LtD

© (i A+ )t o —(iA+j p)t ©
ZCF(a d)e ZbF(a d) e ZFO(aﬂd) e—(iMj/t)z
ih7=0 (l—l)ft-i— ,u ij=0 (l—l)/1+],Ll) i,j=0

(15)

Now, we have only one equation (15) for obtaining the unknown functions
A, and D,. Therefore, to separate the equation (15) for obtaining the unknown

functions 4, and D, , we need to impose some restrictions and thus the value of 4,
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and D, can be found subject to the condition that the coefficients in the
solution of 4, and D, do not become large (see also [3, 15] for details). This
completes the determination of 4,, B, C, and D,.

Since a, 5, ¢, d are proportional to small parameter¢&, so they are slowly

varying functions of time ¢ and as a first approximation, we may consider them as
constants in the right hand side. This assumption was first made by Murty et al. [7].
Thus the solutions of the equation (4) become

a=a,+ [ 4(ay,by,¢y,dy1) dt
0
t

b=b,+&[ B /(ay,by,c,,dy,t) dt
0

¢=c,+&[ C(ay,by,coody, 1) dt
0

d =d, + & D\(ay,b,,c,,d,,t) dt
0

(16)
Equation (9) is an inhomogeneous linear ordinary differential equation;
therefore it can be solved by the well-known operator method.
Substituting the value of a, b, ¢, d and u, in the equation (3), we shall get the
complete solution of (1).
Therefore, the determination of the first order improved solution is
completed.

2.1 Example
The figure of the isolation (vibration free) table which is extensively used in the

semiconductor manufacturing, biomedical engineering, aerospace-equipments, and
high-precision measurements is given below.
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Isolation Tahle

L D

c,

g
kz; "

Middle Tahle ¢ x

i
k

1

Base o 777777777

Here m, and m, are the mass of the isolation and middle table respectively,

k, and k, are spring constants, ¢, and ¢, are damping coefficients and x,, x, are

the displacement of the isolation and middle table respectively due to disturbances.
The governing equation of the isolation table is

my X, +c¢ Xtk x +c,(x —X,)+k,(x, —x,)=—F,

m, X, +c,(X, —Xx)+k,(x,—x)=F,+F,

17
Simplifying the equation (17), we obtain (7
x@ +p X+ p,X+p;x+p,x= —&x’
(18)
where P, = {02 m, +(c, +c,)m, }/(mlm2 ),

Py = {kz m, +(k, +k,)m, +¢ c, }/(mlmz),
p; = {kl e +hy o }/(mlmz)a Py = (kl k2)/(mlm2) and €=
When p, = p, p,, the three eigenvalues of the corresponding linear equation

of (18) become equal. i. e. the system (18) becomes more critically damped.
Here f = x. Therefore,

f(o) — e 1302d e L34 42 e | g3 p3ut
+(bt+c t2)1 (3612673/“ L 6a d e Pt +3dze—(z+2u)z)

+(bt+c t2)2(3ae_”t +3d e_(”““‘)’)+ (bt+ct?) e
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For equation (18), the equations (10)-(12) and equation (9) respectively become
2
e“(g—k = ﬂj 0¢C _ —{3a2 ce”' +6acd e 1 3cd? e ! }

Ot ot’
(19)
’B

e‘“(%+ e Aj aaﬁl +6 8;1 J = —{3a2be-3“ +6abd e +3bd? e-“”ﬂ)’}

(20)
e 9°4, 0B e ’

e M(E-F/J—ij ?21+3a—t1+6clj+€ £ (54_&_#) D1

:_{a3e—3m 4 302d e P {347 e A2t +d3ef3’1"’}
(21)

And

3
(%4-1) (%+,ujul = —{b3t3e’“’ +6abct’ e +3b%ctt e

+3ac’t* e +3bt et v e v 6bedt} e !

+3crdtt e 1 3ab e +3d bt e’(““’)’}

(22)
The solution of the equation (19) is
C =l a*ce’" +l,acd e +1,cd’ e
(23)
where [, =3PL*)/4, [,=30°L)/2, I,=30M?*)/4 and
1 1 1 1
P_3ﬂ—,u’ Q_/”t+,u’ L‘Z’ M_;'

Putting the value of C, from the equation (22) in the equation (19), we obtain

2t

2 —(4 2 2
Bi=m,a’ce”" +m, acde "™ +mycd’ e

+m, a’be”*" +mabd e " + mbd* !

(23)
where m =9PL /4, m,=18Q0°L, m,=90M’/4,
m,=3PL" /4,
m,=30°L , m,=30M"/4.
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Substituting the values of B, and C, into equation (21), we shall get an
equation for unknown functions 4, and D,. To separate the equation (21) for
determining the unknown functions 4, and D,, in this article we considered the
relation A =~ 3 i exists among the eigenvalues (see also [13, 15] for details). i. e.
the unequal eigenvalue A is the multiple of 2. This type of relation (A ~3 u)
appears intuitively in the symmetric problems. Since our problem is symmetric,
therefore consideration of such type of relation is logical. Therefore, under this
relation, we obtain

2
e“(%Jr,u—ﬂj aaAl =6m, A(u—31)a’c e

t2

~12A(A+pymyacd e —6 u(A+ p)mycd? e !
+6A(u—-3)m, a*be”*' —61(A+ u)m,abd e !
—6u(A+u)mbd® e —6 (u—-3)a*c e "

+24 Al acde M 4 6(A+ u)l,cd? e —ate !

3424 e PP 3447 o2
(25)
5 3
e =—+A-u| D, =-de!
(& g ) ‘
(26)
The particular solutions of (25) and (26) respectively become

22 —(4 2 -2 2 24
‘+n,acde" " +n,cd’ e +n,a’be” !

2
A =n,a ce

+nsabd e ' +nbd> e +n, a’ce’ +ngacde !

+n,cd’ e +nya’e” +na’d e v nyad? e
(27)
D, = p, d’e?!!
(28)
Where n, =27PL"/8, n,=180*L, n,=270M"*/8,
n,=9PL /8 n,=90°L, ng=90M>/8, n,=-9PL"/8,
ng=-90"L,

ny=-90M*/8, n,=-PL /4, n,=30°L/2,
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_ P3Q3
2P-0)

The solution of the equation (22) for u, is

n,=30M"/4, 12

u, z(rl £ +rt+r t+r4)(b3 +6abc)e’“’ +(r5 t t+r9)
x(b*c+ac’)e ! +(r10 £ttt g t? +1f14t+r15)bc2 et
+(r16 041, gt r Dyt —i—1f21t+r22)c3 e
+(r23 P Ar, tt g t+ 1y )bca’e_(”+2 A
+(r27 t g+, t +r30t+r31)02 de P!
+(r32 1 +rat+ry, )ab2 e +(r35 1 +r t+ry, )bzde_(”+2 A

(29)
where r, =—PL*/8, 1, =r,(3P+9L/2),
r=rn (6P +9PL+9L),
r,=r (6P +9P> L+9P[> +151}/2), r,=-3PL*/8,
r(4P+6L),  r =r(12P> +18PL+I18L),

r, (24P +36 P> L+36PL* +30L),

r, =1 (24P +36 P° L+36 P> I* +30 P L’ +451%)/2),

r,=-3PL /8,

rno=r, (SP+15L/2), ry =1, (20 P> +30PL+30L%),

ry =1, (60P° +90 P> L+90P L +75L°)

Ts

T3

ry =1 (120 P* +180 P° L+180 P [* +150 P L’ + 225" /2),
1 =1, (120P° +180 P* L+180 P* I’ +150 P> L’ +150 P L* + 315D /4)
re=—PL /8, 1, =r(6P+9L/2),

rs = 1o 30P? +45PL+4517),
rio =11 (120 P* +180 P> L+180PL* +150L*),
Py = 1ig (360 P* +540 P° L+ 540 P> L? + 450 P L’ + 675 L* /2),
ry =T (720P5 +1080P* L+1080P° L +900 P> L’ +675P L +945L° /2)

Fyy =T (720106 +1080 P> L+1080P* L* +900 P’ I

2

+675 P> [' +945P [*/2+315 )
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ry==30°L/2, 1, =r,(3L/2+90),

rs =1y 312 /24+90L+90%),

re =1y (3L /4+90L/12+90° L+600°), 1y =-30°L/2,
Fy =1y QL+120), 1y =1, (3L +18QL+720%),

ry =1 3L +18017 +720% L+2400°%),

ry =1y 3L 12490 +360° I* +1200° L+3600"),

r,=—3PL/8,

ry =1y BL+2P),  ry =r, ([ +3PL+2P?),
rs=-30°L/2,

re =1y (60+1L), ry =1y, (120° +30L+17/2).

Substituting the values of 4,, B,, C,, D, from the equations (27), (24), (23) and
(28) into equation (16), we obtain
na’c (1— e‘“’) n,acd (1 - e_(’””)’) n,c dz(l— e‘z’”)

a=a,+¢& % + Gt + 2
2 ( —2,11) Q) t 21 -2ut
L ngabll-e +n5abde +n6bd l-e
N 21 (A + 1) 2u
n,a’c (1— e’“’) L nsa cd (1— e’(“”)’) L cdz(l— 672/”)
22 A+ 2u
o a3(1— e’“t)Jr n, a’d (1— e"“‘“‘)’)Jr n,ad’ (1— e’z’”)
24 A+ w0 2u

mazc(l—e’“t) macd(l—e’(“”)’) mcdz(l—e_z’”)
b:b0+g{ : 27 +—2 e + 2 2

m azb(l_e—Mt) mabd(l_e—(m,u)t) Mbdz(l—e‘z%”)
44 ¥ + 2 (l+’u) 4+ 6 2’u

(30)

C=CO+g{llaZC(1_e211)+12a0d(1_e(l+#)1)+l3cd23_2#t}

24 (A+n) 2u
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i)
p4d§e “

d=d,+¢
2pu

Therefore, we obtain the first approximate solution of the equation (17) as
x(t,e)=(a+bt+ct’)ye ' +d e +eu,(a,b,c, d,t)

(31)
where a b,c,d are given by the equation (30) and u, given by (29).

3. Result and Discussion
It is usual to compare the perturbation solution to the numerical solution
to test the accuracy of the approximate solution. Let us consider

k, =15.5, k, =75.75, ky, =118.625, k, = 42.25 .Thus we
have A =3.1, £ =1.0. We have computed x(¢,&) by(31) inwhich a, b, ¢, d are
computed by equation (30) and u, is computed by equation (29) when & =0.1
together with two sets of initial conditions a, =0.5, b, =0.0, ¢, =0.3,
d,=0.1 [or x(0) =0.599982, x(0) =-1.749542, X =5.902058
xX(0)=-21.860722] and a,=04, b,=00, ¢,=04, d,=0.1 T[or
x(0) =0.499969, x(0)=-1.439448, X =5.140599, x(0)=-20.739441] for

various values of ¢ and the results are presented in the Table I and II respectively.
The corresponding numerical solution (designated by x*) have been computed by
a fourth order Runge-Kutta method. As we have truncated the series (3) from g® in
the solution (31), so errors should occur 1% when & = (.1. But from table I and II,
we see that errors are smaller than 1%.

Table I
t X x Errors%
0.0 0.599982 0.599982 0.00000
0.5 0.163559 0.163550 0.00550
1.0 0.056936 0.056904 0.05623
1.5 0.022951 0.022912 0.17021
2.0 0.010342 0.010310 0.31037
2.5 0.005155 0.005133 0.43711
3.0 0.002788 0.002774 0.50468
3.5 0.001592 0.001583 0.56854
4.0 0.000938 0.000932 0.64377
4.5 0.000561 0.000558 0.53763
5.0 0.000338 0.000336 0.59523

Initial values are @, =0.5, by, =0.0, ¢, =03, dy=0.1ande=0.1
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x Computed by (31) x"is computed by Runge-Kutta method.

Table I1

t X x Errors%
0.0 0.499969 0.499969 0.00000
0.5 0.147644 0.147639 0.00338
1.0 0.056938 0.056921 0.02986
1.5 0.024147 0.024127 0.08289
2.0 0.010951 0.010935 0.14631
2.5 0.005381 0.005370 0.20484
3.0 0.002861 0.002854 0.24526
3.5 0.001614 0.001609 0.31075
4.0 0.000944 0.000941 0.31880
4.5 0.000563 0.000561 0.35650
5.0 0.000339 0.000338 0.29585

Initial values are a; =04, by =0.0, ¢, =04, dy=0.1 and £=0.1
x Computed by (31)
x'is computed by Runge-Kutta method

Again for 4 =4.6, x=1.5, we have computed x(¢,&)by (31) in which
a, b,c,d are computed by equation (30) and u, is computed by equation (29) when

& =0.1 together with another two sets of initial conditions a,=0.5,

b, =0.0, ¢, =023, d,=0.1 [or x(0) = 0.599999,
£(0) = —2.549924, ¥ =12.004210, ¥(0)=—-60.204288] and a, = 0.4,
b, =0.0, ¢, = 0.4, d,=0.1 [or x(0) = 0.499999,

x(0) =-2.089921, ¥ =10.088197, x(0) =—53.230522 ] for various values of ¢
and the results are presented in the Table III and IV respectively.

Table II1

t X x Errors%
0.0 0.599999 0.599999 0.00000
0.5 0.092656 0.092655 0.00107
1.0 0.023288 0.023280 0.03436
1.5 0.008250 0.008244 0.07278
2.0 0.003495 0.003492 0.08591
2.5 0.001592 0.001591 0.06285
3.0 0.000744 0.000743 0.13485
3.5 0.000350 0.000350 0.00000
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4.0 0.000165 0.000165 0.00000
4.5 0.000078 0.000078 0.00000
5.0 0.000037 0.000037 0.00000

Initial values are

ag =05, by =00, cy=03, dy=0.1ande=0.1

x Computed by (31) x'is computed by Runge-Kutta method.

Table IV

t X x Errors%
0.0 0.499999 0.499999 0.00000
0.5 0.085137 0.085138 0.00117
1.0 0.023288 0.023284 0.01717
1.5 0.008376 0.008373 0.03582
2.0 0.003525 0.003524 0.02837
2.5 0.001598 0.001597 0.06261
3.0 0.000745 0.000744 0.13440
3.5 0.000350 0.000350 0.00000
4.0 0.000165 0.000165 0.00000
4.5 0.000078 0.000078 0.00000
5.0 0.000037 0.000037 0.00000

Initial values are

ag =04, by =00, cy=04, dy=0.1and £=0.1

x Computed by (31) x'is computed by Runge-Kutta method.

If we do not change the ratio (the ratio isA: u# ~3:1 and by considering
A =3.1, £ =1) but increase the difference (by considering A =4.6,1=1.5) we
see that the results become more near to the numerical results than the previous

results.

4. Conclusion

In presence of strong linear damping forces, approximate solutions of a fourth
order more critically-damped nonlinear system have been found base on the KBM
method. The solutions obtained by this method show good coincidence with

corresponding numerical values.

23, pp. 72-80, 2003.
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