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ABSTRACT 
 

 In this paper, a mathematical model for the flow of micropolar fluid through a 
channel covered by a porous media has been derived. In the channel space we have 
assumed the creeping flow. In the porous space the flow is governed by Brinkman’s 
model. Fourier series expansions have been employed to derive the solution of the 
partial differential equations. The presented analytical results of velocities, pressures 
and wall shear stress are computed with the desired experimental data, obtained from 
various important studies and presented graphically with the view of importance in 
the present context. Investigation shows that the fluid parameters (rotational) are 
highly significant for the flow in the interstitial space. Apart from this, the effects of 
some constants (first derived by Tang and Fung [6]) on the interstitial flow are 
incorporated into the discussion.   
 
Keywords: Micropolar Fluid, porous media, Fourier series, Pulmon-ary circulation,  
Blood flow, Brinkman’s Model. 
 
1. Introduction 
Nearly three decades back a number of authors (Eringen and Suhubi, 1964) extended 
the classical continuum theories by the introduction of higher order kinematics 
variables. Among these the simplest model allows the material particle to rotate 
independently of the classical rotation. Tozeren and Skalak(1977) considered the 
case of suspensions of rigid particles in an incompressible Newtonian fluids with the 
assumption that there is no systemic translational motion of particle through the 
ambient fluid. The most frequently cited model that has been adopted in this work is 
Eringen (1966). One of the suggested useses of micropolar theory (Grzegorz, 1999) 
is the analysis of blood flow through small arteries. To determine the shear stress at 
the wall Lee and Fung (1970) numerically analyzed the flow through a locally 
constricted tube. Tang and Fung (1975) investigated the fluid movement in a channel 
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with permeable wall covered by a porous media. The motivation was to study the 
mass transfer in the lung. In subsequent studies (1975, 1975) they presented the 
solute distribution in the channel space as well as porous space.  
        All these studies are confined to the problems treating blood as a homogeneous, 
Newtonian, viscous fluid. Inadequacy of interpretation of blood flow phenomena, 
several constitutive relations come in to the picture to study the blood flow properly. 
Owing to a handful experimental observations a model developed mathematically 
can be verified easily. However, Ariman et. al.(1974) studied the steady and 
pulsatile blood flow through small rigid circular tube. They served that the 
microcontinuum theory can interpret blood flow in more appropriate form because it 
includes the microrotation in the governing equation. This investigation was 
supported and confirmed by Ariman et al. (1974). About the suitability of 
micropolar theory Hogan et al. (1989) have presented a wide range of discussions. 
They quantify the potential differences between classical and micropolar theory for 
various vessels sizes. The result shows that the wall shear stress differs substantially 
in the micropolar theory from those obtained with a classical Newtonian fluid. Misra 
and Ghosh (1997) put forward a mathematical model of the channel flow where the 
suspended particles have a micro-rotation.  Results show that the rotation enhances 
the fluid transfer into the porous space. In  another paper, they also found a 
significant result when micro-polar fluid passes through a constriction of an artery 
(2001).  It is common to assume that blood vessels are nearly circular cylindrical 
tube but in the lung, structure differs significantly. The pulmonary circulation in the 
microvessel is confined between two walls. This may be represented as a sheet like 
flow. The upper and lower sheets are porous and inner walls are permeable and outer 
walls are impermeable. The two sidewalls are non-porous and inner wall imper-
meable. In this case, both the flows in through porous space as well as in the channel 
space are two-dimensional.  
         We propose to present here the analysis of a mathematical model for the flow 
of micropolar fluid through a lung alveolar sheet. Each sheet made of porous 
material conducts a fluid movement, which is governed by Brinkman’s equations. 
The convective and diffusive terms are neglected in comparison to the resistance 
term. Thus the local acceleration and resistance to the flow due to the fibrous 
material in the porous medium balances the pressure gradient. In the channel space, 
we solved the couple equation with the assumption that the convective terms are 
negligibly small. Matching boundary conditions are used to couple both the flows. 
Mass transfer between two regions is performed by the Starling hypothesis. An 
extensively used Fourier series expansion has been employed to solve the governing 
equation in both the regions.  

 
2. Mathematical Model: 
Figure 1 is the geometry of the system with a two-dimensional coordinates system. 
Blood is flowing through a channel with variable cross-section. It is considered that 
the channel diverges exponentially according to the relation 
   )sin1()( 0 thxh ω+= ∗∗                                                                                            (1)                        
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 where ε is the diverging parameter, h , the characteristic thickness,  )( ∗∗ th the 
height of the channel. Blood is treated here as a non-Newtonian micro-polar fluid 
and fluid flowing in the interstitial space is Newtonian. Our aim is to evaluate flow 
velocity in these two regions along with the pressure distribution. Moreover, a brief 
study of various parameters will also be performed with due care to validate this 
model. This work is mainly an extension of Misra and Ghosh (1997). 

 
2.1    Flow in the porous Space: The governing equation for the flow of interstitial 
space can be represented as 
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The boundary conditions are 

011 =
∗u ,              at        ∗x =0,  L,                                                                          (5)                               

012 =
∗u ,              at;       )( ∗∗∗ +±= δhz                                                              (6)                           

[ ])()( 1211212 ππσ
ρ

−−−= ∗∗∗ ppKu ,  at )( ∗∗∗ ±= thz ;                                       (7)                  

Here * refers to the dimensional variable and ∗
11u  and ∗

12u are axial and vertical 
velocity in the interstitial space. L is the length of the arterial segment of the 
pulmonary circulatory system, ∗

1p  and ∗
2p ,  the pressure in the channel space and 

porous space respectively; 1σ the reflection coefficient of the wall; δ the thickness of 
the porous space, 21 ,ππ atmospheric pressures in the porous space and channel 
space respectively.  Density of interstitial fluid is ρ; µ the viscosity, K the 
permeability constant. 
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The following non-dimensional variables are introduced in the given governing 
equations. 

),,(/),( 12111211 uuUuu =∗∗   ),(/),( zxzx =∗∗ ,   hLth =∗∗ /)( ,  0
*
0 / hLh = , 

),,(/),( iiii pLUp πµπ =    δδ =∗ L/ ,  tt =∗ ω/ ,   2,1=i ,   where U is the 
characteristic velocity of blood. We seek a solution of the following form 

itezxtzx ),(),,( 11 ψψ =  Where 1ψ ,  the stream function and defined as 
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011 =u ,  at        x=0,  L,                                                                                           (9)                                    
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The condition (9) leads to the solution of the form   )sin()(),(1 xzfzx nλψ = ,  
where   πλ nn = ,   ......,.........4,3,2,1,0 ±±±±=n                                                   
(12) 
Hence the solution can be written as 
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2.2    Flow in the Channel Space: 
As the pulmonary alveoli prevails the low Reynolds number flow, the governing 
equation for the flow of blood can be written in the following form by neglecting the 
convective terms. 
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, where Rµ , the rotational 

viscosity, ∗∗
2221 ,uu  are axial and vertical velocities respectively. γ the microrotational 

gradient coefficient, j the gyrational parameter, ∗σ  the rotational velocity along y  
direction of the particle. 
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      With the earlier non-dimensional scheme we introduce L
U

∗σ
 for ∗σ  and seek a 

solution
∗∗∗∗∗∗∗∗ = tiezxtzx ωψψ ),(),,( 22 and        

∗∗∗∗∗∗∗∗ = tiezxtzx ωσσ ),(),,( where ω is the perturbation frequency and ∗
2ψ is 

the stream function in the channel space. 
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The boundary and initial conditions in dimensional form are 
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The (21) predicts that the solution can be obtained by eigenfunction expansion 
method. 
 
We assume that    )sin()(),(2 xzgzx nλψ =  where ,πλ nn =   
n= ..,.........4,3,2,1,0 ±±±±  
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2.3   The Wall Shear Stress: 
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All the constants appeared in (13), (27) and (29) are to be determined from the 
following set of equations. 

014131211 =+++ nnnn DaCaBaAa                                                                     (33)              
024232221 =+++ nnnn DaCaBaAa                                                                    (34)          
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03103938373635 =+++++ nnnnnn QaPaHaGaFaEa                                      (35)                   
04104948474645 =+++++ nnnnnn QaPaHaGaFaEa                                     (36)   
05105958575655 =+++++ nnnnnn QaPaHaGaFaEa                                      (37)   
06106968676665 =+++++ nnnnnn QaPaHaGaFaEa                                     (38) 

071079

7877767574737271

=++
+++++++

nn

nnnnnnnn

QaPa
HaGaFaEaDaCaBaAa

                 (39) 

081089

8887868584838281

=++
+++++++

nn

nnnnnnnn

QaPa
HaGaFaEaDaCaBaAa

                 (40) 

0291219119109998979695 =+++++++ nnnnnnnn SaSaQaPaHaGaFaEa      (41) 
                 

021012110111010109108107106105 =+++++++ nnnnnnnn SaSaQaPaHaGaFaEa   
                                                                                                                                (42)   

  
11212,11111,1110,119,11

8,117,116,115,114,113,112,111,11

bSaSaQaPa
HaGaFaEaDaCaBaAa

nnnn

nnnnnnnn

=+++

++++++++
                                                     

                                                                                                                               (43)   

12212,12111,1210,129,12

8,127,126,125,124,123,122,121,12

bSaSaQaPa
HaGaFaEaDaCaBaAa

nnnn

nnnnnnnn

=+++

++++++++
   

                                                                (44) 
These equations are derived from the boundary and initial conditions (10), (22), 
(24), (25), (23), (26) and (11) respectively. All  saij '  are given in appendix.  All the 
conditions and above equations are straightforward except equation (11) and 
corresponding to that (43) and (44). From (11) we see 

)( 12112
'
2

'
112 ππσ −−−=−+ PPppu . 

For even n , L.H.S. is zero and to make R.H.S. zero we are making some 
manipulation. 
We are making 2859.45678)()( 12112 =−−− ππσPP  and as L.H.S.  has 

xnλcos , so by the Fourier series expansion we are arriving at the expression of 11b  

and 12b  as follows 2859.45678})1(1{1211
nbb −−== ; where 1

'
11 Ppp += ,      

2
'
22 Ppp +=  

Using Gauss-Elimination method in which all the elements of the co-efficient 
matrix are complex has solved equations (33)--(44). In this computational tool we 
have introduced the complex arithmetic operations whenever it is required in the 
execution of the program.   
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3. Results and Discussion          
 In the above section we have generated the mathematical expression for various un-
known variables. For the illustration of the above results a set of constants adopted 
here are as follows. 00123.0=sµ  kg/m sec., Rµ =0.00098 kg/m sec. (40% 

hematocrit) j =0.00000001121 2m ,  γ =0.00000000000012 kg m/sec,  

 
.  =h 0.0001 m, L=0.02m. δ =0.00009m., S=0.1, =α 1.0. Fig.2 is the 
representation of vertical velocity at the wall at different axial stations. Figure 
shows that fluid in the half of the considering length fluid is entering and in the left, 
it is departing from the tissue space. It is to be noted that the fluid movement from 
the channel space to the porous space is time dependent 
 
From a careful investigation it is found that the vertical velocity can be made 
increase or decrease by changing various channel fluid parameters. As the primary 
objective of this investigation was how to control the fluid movement from channel 
to porous or vice-versa, one may use this model for several other studies. Here we 

have derived two non-dimensional constants  
µ

ρ

pK
L2

 and 
κµ
ρL

 as Tang and Fung 

[6]; but comparison with this said result has not been made because the construction 
of solution of the model differential equations in the present and foresaid studies are 
considerably different. Roughly, we observe that the configuration of graphs is as 
substantially similar to Tang and Fung [6] as expected. 
To investigate the influential effect of rotational viscosity on the pressure 
distribution at the interface ( hz = ), we incorporate the Fig. 3.  Here also, the 
appearance of each graph is resembled with the previous studies ([6], [11]). It can 
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be predicted that the decreasing values of Rµ increase the pressure at the interface. 
This may be for the rotation of blood cells enhances the fluid entrainment velocity 
into the tissue space.  In the channel space the fluid particle get resistance for the 
presence of blood cells. Now, rotation of blood cell increase Rµ  and consequently 
decrease the fluid pressure at the interface which fairly enrich the amount of fluid  
in the interstitial space.  Therefore, the blood cell rotation has a significant impact 
on the interstitial fluid flow. The simple behavior of the axial velocity in the channel 
space appears in Fig.4.  Profiles appear in this figures are quiet natural and obvious 
for the non-Newtonian fluid flow. As the wall is porous the axial velocity decreases 
along the vicinity of the wall. And along with that the no-slip condition of the axial 
velocity in the channel space at the wall is satisfied. The figure demonstrates the 
sharp time-dependency of the velocity and in some time-cycle it becomes negative.  
Apart from this, figure is also comparable with Misra and Ghosh [11] in which the 
solution representation and boundary conditions differ from the present situation.  
Again, near the wall the magnitude of the axial velocity is maximum which may be 
apprehended as the effect of micro-rotation.  

 
In the coupling flow, the study of wall shear stress is highly significant and that 
presented in the Figure 5 for various γ , the micro-rotational gradient coefficient. 
Here, Fig. 5 provides the idea of magnitude of wall shear stress at different axial 
stations. From fig. 5, it is observed that the increasing values of γ  enhance the 
magnitude of wall shear stress.  
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It follows that for the vertical velocity through the wall along with the parameter 
associated with rotational change with respect to vertical distance put forward an 
appreciable resistance on the flow in the channel along the axial direction. A brief 
numerical result on the interface vertical velocity and pressure distribution for 
different parameters first represented by Tang and Fung [6] are enclosed in the 
table. This shows that this parameter could be made responsible for various changes 
for the interstitial fluid movement. 

From fig. 5, it is observed that the increasing values of γ  enhance the 
magnitude of wall shear stress. It follows that for the vertical velocity through the 
wall along with the parameter associated with rotational change with respect to 
vertical distance put forward an appreciable resistance on the flow in the channel 
along the axial direction. A brief numerical result on the interface vertical velocity 
and pressure distribution for different parameters first represented by Tang and 
Fung [6] are enclosed in the table. This shows that this parameter could be made 
responsible for various changes for the interstitial fluid movement.  

Vertical velocity and hydrostatic pressure in the porous matrix at the 
interface )(thz = for  00123.0=sµ  kg/m sec., Rµ =0.00098 kg/m sec.(40% 
hematocrit) j =0.00000001121 2m ,  γ =0.00000000000012 kg m/sec, 

=h 0.0001 m, L=0.02m. δ =0.00009m.,  S=0.1, =α 1.0,  
µ

ρ

pK
L2

= Y105×  and  

κµ
ρL = 6105×  
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_____________________________________________ 
     x                      Y                           12u                                    12p  
__________________________________________________________________ 
                            6                  410765.2 −×                            310911.9 ×−  
                             7                   410673.2 −×                          310582.9 ×−  
  0.40                    8                   410007.2 −×                          310195.7 ×−  
                             9                   510798.5 −×                          310061.2 ×−  
                             10                 610068.7 −×                         210533.2 ×−  
------------------------------------------------------------------------------------------------- 
                              6                  410974.7 −×−                         410858.2 ×   
                              7                   410710.7 −×−                        410762.2 ×  
 0.85                      8                   410789.5 −×−                        410074.2 ×    
                              9                   410658.1 −×−                         310942.5 ×                                
                              10                 510382.0 −×−                        210304.7 ×     
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