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ABSTRACT 
 

A new method namely, split and bound method  is proposed for finding an optimal 
solution to fully integer interval transportation problems with additional impurity 
constraints  which has been developed without considering the midpoint and width 
of the intervals and is based on floating point method [14].  The proposed method is 
illustrated by means of the numerical example. Further, this method is extended to 
fully fuzzy transportation problems with additional impurity constraints. The 
proposed method provides an appropriate solution to the decision makers for taking 
best decision when they are handling various types of logistic problems having 
imprecise parameters.  
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1. Introduction 
        The transportation problem (TP) is a special type of linear programming 
problem, which deals with shipping commodities from sources to destinations. 
Transportation models have wide applications in logistics and supply chain for 
reducing the cost.  In many real life situations, the commodity does vary in some 
characteristics according to its source and the final commodity mixture reaching at 
destinations, may then be required to have known specifications. TP with additional 
impurity restrictions was stated by Haley [9]. Chandra et al. [4] developed a method 
for solving time minimizing TP with impurities. Interval transportation problem 
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(ITP) is a generalization of the TP in which input data are expressed as intervals 
instead of fixed values. This problem can arise when uncertainty exists in data 
problem and decision makers are more comfortable expressing it as intervals. Many 
researchers [1,5,10,11,12,17] have proposed fuzzy and interval programming 
techniques for solving them. Chanas et al.  [2] developed an algorithm determining 
the optimal integer solution of a more general fuzzy transportation problem. Das et 
al. [6] introduced a method, called fuzzy technique to solve ITP by considering the 
right bound and the midpoint of the interval. Sengupta and Pal [16] proposed a new 
fuzzy oriented method to solve ITP by considering the midpoint and width of the  
interval in the objective function. Singh and Saxena [15] proposed a method for 
solving multiobjective time TP with additional impurity restrictions. A procedure for 
finding an optimal solution to fully interval integer TP was presented by Pandian 
and Natarajan [13]. Dutta et al. [7] introduced a linear fractional programming 
method for solving a fuzzy TP with additional restrictions in which transportation 
costs are intervals. Pandian and Anuradha [14] have proposed a floating point 
method for solving TP with additional constraints. 
 

In this paper, we propose a new method namely, split and bound method  
based on the floating point method [14] for finding an optimal solution for integer 
transportation problems with additional impurity constraints in which the unit 
transportation costs, supplies, demands and additional impurity constraints are 
intervals. The proposed method is illustrated with the help of numerical example. 
Further, this method is extended to fuzzy transportation problems with additional 
impurity constraints in which all the parameters are trapezoidal fuzzy numbers 
(TFNs). The proposed method provides an appropriate solution to fully integer 
interval / fuzzy transportation problems which helps the decision makers to analyze 
economic activities and to arrive at the best managerial decisions. 
 
2. Preliminaries 

Let D denote the set of all closed bounded intervals on the real line R. That 
is, D = { }Rbababa inareandand],,[ ≤ . 
  
 We need the following definitions of the basic arithmetic operators and 
partial ordering on closed bounded intervals which can be found in  [8,11]. 
  
Definition 1: Let A = [a, b] and B = [c, d] be in D. Then, 
    (i) ];,[ dbcaBA ++=⊕  
    (ii) ];,[ cbdaBA −−=Θ            
    (iii) kA = [ka, kb]  if  k is a positive real number; 
    (iv) kA = [kb, ka]  if  k is a negative real number     and 
    (v) ],[ qpBA =⊗   where p = min {ac, ad, bc, bd}  and  q = max {ac, ad, bc, bd} 
 
Definition 2: Let A = [a, b] and B = [c, d] be in D. Then, 
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         (i) BA ≤  if  a≤ c  and  b≤ d ; 
         (ii) BA <  if  a< c  and   b< d ; 
         (iii) BA ≥  if AB ≤ , that is  a≥ c  and  b≥ d  and 
         (iv) BA =  if BA ≤  and AB ≤ , that is, a = c and b = d. 
 
3. Fully interval transportation problem with additional impurity constraints 

Consider the following fully interval transportation problem with additional 
impurity constraints (P): 

(P)       Minimize ]2,1[ zz  = ],[],[
1j1i

ijijijij
nm

yxdc ⊗∑
=

∑
=
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            0  ≥ijx , 0≥ijy mi ,...,2,1=  and nj ,...,2,1=                                               (4) 

where ijc , ijd , 1
ia , 2

ia , 1
jb , 2

jb  , )1(k
jp and  )2(k

jp are  positive real numbers for all  i 

and j. 
     A set { ],,[ ijij yx for all i = 1,2,…,m and j = 1,2,…,n} is said to be a feasible 

solution of  problem (P) if  they satisfy the equations (1), (2), (3) and (4). 
 
A feasible solution of problem (P) which minimizes the total shipping cost, 

that is, ],[],[
1j1i

ijijijij
nm

yxdc ⊗∑
=

∑
=

 is called an optimal solution to the problem (P).  

 
We consider the following two problems as an upper bound (UB) problem  

and a lower bound (LB) problem of the given problem (P):             
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=

∑
=

m n
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              0≥ijx  for all i and j                                                              (12)                                                

 
Now, we prove the following theorem which finds the relation between 

optimal solutions of the problem (P) and its (UB) and (LB) problems and is used in 
the proposed method namely, split and bound method. 

 
Theorem 1: If the set { o

ijy , for all i and j} is an optimal solution of the (UB) 

problem  of the problem (P) and the set o
ijx{ , for all i and j} is an optimal solution of 

the (LB) problem of the problem  (P) with additional constraints o
ijij yx ≤ , for all i 

and j ,  then the set of intervals ],{[ oo
ijyijx , for all i and j} is an optimal solution of 

problem (P).  

Proof:  Now, since o
ijx{ , for all i and j} and o

ijy{ , for all i and j} satisfy (5) to (12) 

and oo
ijij yx ≤ , for all i and j , we can conclude that the set ],{[ oo

ijij yx , for all i and j} 

is a feasible solution of  (P). 

Assume that the set of intervals ],{[ oo
ijij yx , for all i and j} is not an optimal 

solution to the problem (P). 

Then, there exists a feasible solution ],{[ ijij yx , for all i and j} to the problem (P) 

such that   
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This implies that       
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Now, since ],{[ ijij yx , for all i and j}  is a feasible solution to the problem (P) and 

also, ijij yx ≤ ,  i = 1,2,..,m and j = 1,2,..,n,  we have that ijx{ , for all i and j} 

and ijy{ , for all i and j} are feasible  solutions to  the problems (UB)  and (LB) 

respectively.  

Since o
ijx{ , for all i and j} and o

ijy{ , for all i and j} are optimal solutions to the 

problems (UB) and (LB) respectively, we have  
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which contradicts  the relation (13). 

Therefore, the set of intervals ],{[ oo
ijij yx , for all i and j} is an optimal solution to the 

problem (P). 
Hence the theorem. 
 
Remark: The converse of the above theorem is also true. 
 
3.1  Split and bound method: 
           We now propose a new method namely, split and bound method for finding 
an optimal solution to the problem (P). 
 

The split and bound method proceeds as follows: 
 
Step 1: Construct the  (UB) problem of the given problem (P).              

Step 2: Solve the (UB) problem by  the floating point method [14]. Let { o
ijy , for all 

i and j} be an optimal solution of  the (UB) problem . 
Step 3: Construct the (LB) problem of  the  given problem (P). 

Step 4: Solve the (LB) problem with the upper bound constraints o
ijij yx ≤ , for all i  

and  j  by  the floating point method  [14].  Let o
ijx{ , for all   i and j} be the  optimal  

solution of  the  (LB) problem  with o
ijij yx ≤ . 

Step 5: The set of intervals ],{[ oo
ijij yx , for all i and j} is an optimal solution  to the 

given (P) by the Theorem 1..  
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Now, the split and bound  method  is  illustrated by the following example. 
 
Example 1: A coal manufacturing unit of the State has different types of coal 
pulverization units in each of the three work centers (j) situated in various parts of 
the State. The work centers (j) are receiving a  fixed quantity of coal (i), which has 
three different grades. The basic goal is to determine a feasible interval 
transportation cost, while satisfying the extra requirement that the amount of sulphur 
impurity present in coal is less than a certain critical level. The following table 
displays the transportation cost, availabilities, the impurities, requirements and the 
maximum sulphur contents are in the form of intervals. 
 
 
 
 
 
 
 
 
Now,  the (UB) problem  of the given  problem (P) is given below: 
 
 
 
 
 
 
 
 
 
Now, using floating point method [14], an optimal solution to the (UB)  problem  is 

obtained  as  513 =
oy , 421 =

oy , 223 =
oy , 231 =

oy , 732 =
oy  and  .1882 =Z  

  
Now, the (LB) problem of the given problem with the upper bound constraints is 
given below: 
 
 
 
 
 
 
 
                    

and o
ijij yx ≤ , for all i = 1,2 ,…, m and  j = 1,2 ,…, n. 

 Work centers j Tons 
available 

Sulphur 
contents      1                  2               3 

                1 [4,13] [3,12] [2,6] [4,5] [2,2] 
Coal i,          2 [4,13] [6,14] [7,15] [5,6] [1,2] 

                3 [7,10] [4,8] [6,12] [6,9] [0,0] 
Tons required [5,6] [5,7] [5,7] [15,20]  
Max. Sulphur [4,8] [1,3] [9,14]   

 Work centers j Tons 
available 

Sulphur 
contents      1                 2              3 

                1 13 12 6 5 2 
Coal i,          2 13 14 15 6 2 

                3 10 8 12 9 0 
Tons required 6 7 7 20  
Max. Sulphur 8 3 14   

 Work centers j Tons 
available 

Sulphur 
contents      1                   2              3 

                1 4 X 2 4 2 
Coal i,          2 4 6 7 5 1 

                3 7 4 6 6 0 
Tons required 5 5 5 15  
Max. Sulphur 4 1 9   
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Now, using floating point method [14], an optimal solution to the (LB) problem is 

obtained as   413 =
ox , 421 =

ox , 123 =
ox , 131 =

ox , 532 =
ox   and  .581 =Z  

 
Thus, an optimal solution to the given fully interval transportation problem with 

additional impurity constraints  is ]5,4[],[ 1313 =oo yx , ]4,4[],[ 2121 =oo yx , 

]2,1[],[ 2323 =oo yx , ]2,1[],[ 3131 =oo yx , ]7,5[],[ 3232 =oo yx  and  the minimum total 
interval transportation cost  is  [58, 188]. 
 
4. Fully fuzzy transportation problem with additional impurity constraints 

Consider the following fully fuzzy transportation problem with additional 
impurity constraints (F) 

   (F) Minimize    z~ =  ∑
=

∑
=

n
ijij

m
xc

1j1i
~~  

        subject  to  

            i
1j

a~   ~ =∑
=

n
ijx ,  mi ,...,2,1=                                     

            j
1i

b~  ~ =∑
=

m
ijx ,  nj ,...,2,1=                

             (k)
j

1i

(k)
ij p~  ~f~ ≤∑

=

m
ijx , ;,...,2,1 nj =  lk ,...,2,1=                       

  
             0~  ~ ≥ijkx , for all  i and j  

where all the unit shipping costs ijc~ ; supply quantities ia~ ; demand quantities jb~ ; 

impurities )(~ k
ijf and )(~ k

jp   are assumed to be trapezoidal fuzzy numbers.  

 
A trapezoidal fuzzy number ),,,( dcba can be represented as an interval 

number form as follows: 
          ])(,)([),,,( αα cddabadcba −−−+= ; 10 ≤≤α               (14)           
  

Using the relation (14),  we can convert  the problem (F) into an interval 
type  problem, that is (P)  and by using the split and bound method, we obtain an 
optimal interval solution to the problem (P).  Again, using the relation (14), we can 
obtain an optimal solution to the given problem (F). 

 
The solution procedure of obtaining an optimal solution to problem (F) 

using the split and bound method is illustrated by the following example. 
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Example 2: A company making iron has a different type of furnace in each of three 
works. The works must receive a fixed weight of ore which is available in three 
different grades. The cost of transportation of ore depends on its grade and the works 
to which it is sent. The problem is to find the allocation which minimizes the 
production cost while satisfying the extra requirement that the amount of phosphorus 
is less than a certain critical level. The following table displays the cost of 
transportation, availabilities, the impurities, requirements and the maximum 
phosphorus contents are in the form of fuzzy numbers. 

         
 
Now, the  fully interval transportation problem with additional impurity constraints  
to the above problem is given below: 

 
Now, the (UB) problem  of  the fully interval transportation problem with additional 
impurity constraints is given below: 

 

 Works j Tons 
available 

Phosphorus 
contents         1                              2                     3 

                1 (1,2,4,7) (0,1,3,6) (0,1,2,3) (1,2,4,5) (0,1,2,3) 
Ore i,            2 (1,2,4,7) (2,3,6,7) (3,5,7,10) (2,3,5,6) (0,1,1,2) 

                3 (3,5,7,10) (1,2,4,7) (2,3,6,7) (3,4,6,7) (0,0,0,0) 
Tons required (2,3,5,6) (2,3,5,6) (2,3,5,6)   

Max. 
Phosphorus 

(1,2,9,10) (0,1,1,2) (4,7,14,17)   

 Works j Tons 
available 

Phosphorus  
contents 1                                          2                        3 

              1 ]37,1[ αα −+  ]36,0[ αα −+ ]3,0[ αα −+ ]5,1[ αα −+ ]3,0[ αα −+  
    Ore i,   2 ]37,1[ αα −+  ]7,2[ αα −+ ]310,23[ αα −+ ]6,2[ αα −+ ]2,0[ αα −+  
             3 ]310,23[ αα −+  ]37,1[ αα −+ ]7,2[ αα −+ ]7,3[ αα −+ ]00,00[ αα −+  

Tons 
required 

]6,2[ αα −+  ]6,2[ αα −+  ]6,2[ αα −+    

Max.  
Phosphorus 

]10,1[ αα −+  ]2,0[ αα −+  ]317,34[ αα −+   

 Works j Tons 
available 

Phosphoru
s  contents      1                           2                3 

                1 α37 − α36 − α−3 α−5 α−3  
Ore i,             2 α37 − α−7 α310 − α−6 α−2  

                3 α310 − α37 − α−7 α−7 α00 −  
Tons required α−6 α−6 α−6   

Max.  
Phosphorus 

α−10 α−2 α317 −   
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Now, an optimal solution to  the (UB) problem by the  floating point method [14] is 
obtained as α−= 513

oy , α−= 521
oy , α0123 +=oy , α0131 +=oy , α−= 632

oy   and 

α541122 −=Z . 
Now, the (LB) problem of the fully interval transportation problem with additional 
impurity constraints is given below: 

and o
ijij yx ≤ , for all i = 1,2,…,m and j = 1,2,…,n. 

Now, an the optimal solution to the problem (LB) by  the  floating point method  
[14] is  obtained as α+=113

ox , α+=121
ox , α0123 +=ox , α0131 +=ox , α+= 232

ox  
and ]139[1 α+=Z . 
 
Therefore, an optimal solution to the fully interval transportation problem with 
additional impurity constraints is ]5,1[]13,13[ αα −+=oo yx , ]5,1[]21,21[ αα −+=oo yx , 

]01,01[]23,23[ αα ++=oo yx ,  ]01,01[]31,31[ αα ++=oo yx , ]6,2[]32,32[ αα −+=oo yx  and 
]54112,139[],[ 21 αα −+=ZZ . 

 
Thus, a fuzzy optimal solution for the given fully fuzzy transportation problem with 
additional impurity constraints  is  )5,4,2,1(13

~ =x , )5,4,2,1(21
~ =x , )1,1,1,1(23

~ =x , 
)1,1,1,1(31

~ =x , )6,5,3,2(32
~ =x  with the fuzzy objective value  )112,58,22,9(~ =z . 

 
5. Conclusion 

 
An interval transportation problem with additional impurity constraints is 

discussed in this paper. We propose an appropriate method, namely split and bound 
method which has been developed without considering the midpoint and width of 
the intervals and is based on floating point method [14]. We have described two 
numerical illustrations one referring to the coal shipping problem for interval 
transportation problem  with additional impurity constraints and the other referring 
to the processing of iron ore for fuzzy transportation problem with additional 
impurity constraints in this paper.  The split and bound method provides an 
appropriate solution to transportation problems with additional impurity constraints 
having imprecise parameters which helps the decision makers to  arrive at the 
correct managerial decisions. 

 Works j Tons 
available 

Phosphorus  
contents       1                      2               3 

                 1 α+1 α+0 α+0 α+1 α+0  
Ore i,               2 α+1 α+2 α23+ α+2 α+0  

                 3 α23+ α+1 α+2 α+3 α00 +  
Tons required α+2 α+2 α+2   

Max.  Phosphorus α+1 α+0 α34 +   
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