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ABSTRACT 
 
In this study, assume that the stock price obey the stochastic differential equation 
driven by mixed fractional Brownian motion, and the short rate follows the Vaseck 
model. Then, the Black-Scholes partial differential equation is obtained under the 
assumptions by using fractional Ito formula. Finally, the pricing formulae of the 
European call and put option are obtained by partial differential equation theory. The 
results of Black-Scholes model is generalized. 
 
Keywords: Option pricing; Vaseck model; Black-Scholes model; mixed fractiona 
Brownian motion 
 
1. Introduction 
 

The break-through in option valuation theory started with the publication of 
two seminal papers by Black and Scholes[1]. In the papers the authors introduced a 
continuous time model of a complete friction-free market where the price of a stock 
follows a geometric Brownian motion. They presented a self-financing, dynamic 
trading strategy consisting of a riskless security and a risky stock, which replicates 
the payoff of an option. Then they argued that the absence of arbitrage dictates that 
the option price be equal to the cost of setting up the replicating portfolio.  

Recently, fractional Brownian motion has been considered to replace Brownian 
motion in the usual financial models as it has better behaved tails and exhibits long-
term dependence while remaining Gaussian. For details about the stochastic analysis 
theory of fractional Brownian motion, see Ref. [2,3]. The fractional Brownian 
motion is applied in finance, such as Ref. [4,5,6]. 
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However, all the above option pricing studies assume that the risk-free rate or 
the short rate is constant during the life of the option. Kung and Lee assume that the 
short rate follows the Merton model and the stock price is driven by standard 
Brownian motion. Using their option model, the European call and put option are 
obtained, see Ref.[7]. 

 Hence, in this study, we incorporate its stochastic nature into fractional B-S 
model. Specifically, we use the following stochastic process, first proposed by 
Vaseck, to depict its dynamics and derive explicit pricing formulas for European call 
and put on a stock. 

The paper is organized as follows: In Section 2, we treat the Black-Scholes 
model that the short rate obey the vaseck model. In Section 3, we derive the formula 
for the price of a riskless zero-coupon bond paying $1 at maturity based on Eq. (2). 
In Section 4, the pricing formulas for European call and put on a stock are obtained. 
Section 5 contains conclusions.  

 
2. The model 
 

Firstly, we assume that the short rate of the market satisfied the Vasicek model 
1 21 2( ) ( ) ( )t r t r H r Hdr r dt dW t dW tθ µ σ σ= − + + ,                              (1) 

where tr is the short-term interest rates. θ  is the mean-reversion speed. rµ is the 
long-term interest rate. 1rσ and 2rσ are the instantaneous volatility. 

1
( )HW t  and 

2
{ ( ), 0}HW t t ≥  are the fractional Brownian motion with Hurst parameter 1H , 2H . 

Secondly, there are zero-coupon bond and stock in this market. Let tB  be the price 
of a riskless zero-coupon bond paying 1 $ at timeT .  

1 21 2 0( , ) ( , ) ( , ) , ( , ) 1,t t t b t H b t H TdB t r r B dt B t r dW B t r dW B T r t t Tσ σ= + + = ≤ ≤ ,       (2) 

And, the dynamics of the stock price process takes the following form 
          

1 21 2( ) ( )t t t H t HdS S dt S dW t S dW tµ σ σ= + + ,                                (3) 

where µ is expectation return rate which is time-dependent. Constant 1σ and 2σ are 
volatility of the stock.  
 
3. Explicit pricing formulas of zero-coupon bond 
 

To solve the value of ( , )tB t r , by Eq. (1) and fractional Ito formula[3-5], we have 

1 2

1 2

2 2
2 1 2 12 2

1 1 2 22 2
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1
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( , )

( , ) ( , ) ( , ) ( , )
            ( ) ( ) ( )

              

H Ht t t t
t t r r
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t t t

B t r B t r B t r B t r
dB t r dt dr H t dt H t dt
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Compared to Eq. (2), such that 
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1 2

2 2
2 1 2 12 2

1 1 2 22 2

( , ) ( , ) ( , ) ( , )
( ) ( , )H Ht t t t

r t r r t t
t t t

B t r B t r B t r B t r
r H t H t r B t r

t r r r
θ µ σ σ− −∂ ∂ ∂ ∂

+ − + + =
∂ ∂ ∂ ∂

. 

Then the value of zero-coupon bond at time t satisfied 
1 2

2 2
2 1 2 12 2

1 1 2 22 2

( , ) ( , ) ( , ) ( , )( ) ( , ),

( , ) 1.

H H
r r r

B t x B t x B t x B t xx H t H t xB t x
t x x x

B T x

θ µ σ σ− −∂ ∂ ∂ ∂
+ − + + =

∂ ∂ ∂ ∂
 =

    (4) 

Make sure that ( , ) 1B T x = , let 1 2( , ) exp{ ( ) ( )}B t x A t xA t= + , 1 2( ) 0, ( ) 0A T A T= = , so that 

1 2
( , )

( ) ( , ) ( ) ( , )tB t r
A t B t x xA t B t x

t
∂ ′ ′= +

∂
, 2

( , ) ( ) ( , )B t x A t B t x
x

∂
=

∂
, 

2
2

22

( , ) ( ) ( , )B t x A t B t x
x

∂
=

∂
.  (5) 

 Compare Eq. (4) and Eq. (5), then 

1 2

2 2
2 1 2 12 2 2

1 2 1 1 2 2 2

1 2

( ) ( ) 1 0

( ) ( ) ( ) ( ) 0
( ) 0, ( ) 0.

H H
r r r

A t A t

A t A t H t H t A t
A T A T

θ

θµ σ σ− −

′− + =
 ′ + + + =
 = =

 

Then we conclude that  
1 22 1 2 1( ) 2 2 2

1 1 1 2 2 2( ) ( ) (1 ) ( ) ( )
T

H HT t
r r r r

t

A t T t e H s H s A s dsθµ µ σ σ− −−= − − − − − +∫ ,

2
1 exp{ ( )}( ) T tA t θ θ

θ
− − −

= . 

So that, the explicit solution of Eq. (4) is given by 
1 2( , ) exp{ ( ) ( )}t tB t r A t r A t= + , ( , ) 1TB T r = .                                 (6) 

When 0θ = 1 0rσ = 2 0rσ = , we have 0tdr = ,then tr r= . And, the Eq. (6) can be 
changed as following  

( , ) exp{ ( )}tB t r r T t= − . 
 
4. Explicit pricing formulas for European options 
 

In what follows we introduce some relevant derivatives of two stocks, and 
show how to obtain the formulae for the value of these derivatives. Let 

2 2 2 2
1 1 1 1 1( ) ( , ) ( , )b t b tD t H B t r H B t rσ σ= + , 1 22 1 2 12 2

2 1 1 2 2( ) H HD t H t H tσ σ− −= + , 
1 22 1 2 1

3 1 1 2 2 1 2( ) H H
b bD t H t H tσ σ σ σ− −= + ,   1 2 3( ) ( ) ( ) 2 ( )D t D t D t D t= + − . 

In this study, we assume that there are no transaction costs, margin 
requirements, and taxes; all securities are divisible; security trading is continuous 
and borrowing and short-selling are permitted without restriction; there are no 
dividend payouts over the life of the option; and all investors can borrow or lend at 
the same short rate. Further, we consider the European call option with 
payoff ( ( , ) )T TS B T r K +− . Because of ( , ) 1TB T r = , since ( ( , ) )T TS B T r K +− can be written 
as 
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( ( , ) ) ( )T T TS B T r K S K+ +− = − ,                                       (7) 

where T is maturity date, K is exercise price. 
Let ( , ( , ), , )t tC C S B t r t K= be the call price, which is a function of the stock price 

tS  the riskless zero-coupon bond price ( , )tB t r , and the time t . By Ito’s lemma, the 
change in the call price over an infinitesimal time dt satisfies the following stochastic 
differential equation: 

2

1 2

2 2
2

2 32

2 2 2
2

1 2 32 2

( , ) ( )
( , ) ( , )

         ( ) 2 ( )
( , )

     [ ( ) ( ) 2 ( ) ]
( , )( , )

t t
t tt

t
t tt

t
t tt t

C C C CdC dt dB t r D t dt dS
t B t r SB t r

C CD t S dt D t dt
S B t rS

C C C CD t D t S D t dt
t S B t rB t r S

∂ ∂ ∂ ∂
= + + +
∂ ∂ ∂∂

∂ ∂
+ +

∂ ∂∂

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂∂ ∂

             

          ( , ) .
( , ) t t

t t

C CdB t r dS
B t r S
∂ ∂

+ +
∂ ∂

                                                         (8) 

Now we form a hedge portfolio consisting of the stock, the riskless bond, and the 
call. Let 0

tθ be the number of shares of the bond, 1
tθ be the number of the stock, 

and 2
tθ be the number of the call. The self-finance hedge is formed such that the value 

(say, H) of the hedge portfolio is zero. That is  
0 1 2( , ) 0t t t t tH B t r S Cθ θ θ= + + = . 

Hence, we have 
0 1 2( , ) 0t t t t tdH dB t r dS dcθ θ θ= + + = .                                         (9) 

Substituting Eq. (8) into Eq. (9) and grouping, Eq. (9) becomes 
2 2 2

2 2
1 2 32 2[ ( ) ( ) 2 ( ) ]

( , )( , )t t
t tt t

C C C CdH D t D t S D t dt
t S B t rB t r S

θ ∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂∂ ∂
 

2 1 0[ ] [ ] ( , )
( , )t t t t t

t t

C CdS dB t r
S B t r

θ θ θ∂ ∂
+ + + +

∂ ∂
.                                            (10) 

Eq(10) implies that 2 1 0t t
t

C
S

θ θ∂
+ =

∂
, 0 0

( , ) t
t

C
B t r

θ∂
+ =

∂
, and 

2 2 2
2 2

1 2 32 2( ) ( , ) ( ) 2 ( ) ( , ) 0
( , )( , )t t t t

t tt t

C C C CD t B t r D t S D t S B t r
t S B t rB t r S

∂ ∂ ∂ ∂
+ + + =

∂ ∂ ∂∂ ∂
. 

Hence, the price of European call option with payoff ( ( , ) )T TS B T r K +− must satisfied 
2 2 2

2 2
1 2 32 2( ) ( ) 2 ( ) 0,

( , , ) ( ) .

C C C CD t y D t x D t xy
t x yy x

C T x y x Ky +

∂ ∂ ∂ ∂
+ + + = ∂ ∂ ∂∂ ∂

 = −

                  (11) 

Letting 
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x
y

ξ = ， ( , ) CF t
y

ξ = ,                                                 (12) 

we get 

x
FC
ξ
∂

=
∂

, y
FC F ξ
ξ
∂

= −
∂

,
2

2

1
xx

FC
y ξ
∂

=
∂

,
2

2xy
FC

y
ξ

ξ
∂

= −
∂

,
2 2

2 2yy
FC

y
ξ

ξ
∂

=
∂

.           (13) 

Substituting Eqs. (13) into Eq. (11), we obtain 
2

2
2( ) 0, ( , ) ( )F FD t F T K

t
ξ ξ ξ

ξ
+∂ ∂

+ = = −
∂ ∂

.                          (14) 

Letting 

ln ( )
T

t
z D d

K
ξ τ τ= − ∫ , ( )

T

t
s D dτ τ= ∫ , ( , ) ( , )F t KU s zξ = ,                (15) 

We have 

[ ( ) ( ) ]F U UK D t D t
t s z

∂ ∂ ∂
= − +

∂ ∂ ∂
, F K U

zξ ξ
∂ ∂

=
∂ ∂

, 
2 2

2 2 2[ ]F K U U
zzξ ξ

∂ ∂ ∂
= −

∂∂ ∂
.         (16) 

Substituting Eqs. (16) into Eq. (14), the Eq. (14) can be changed as following 
2

2 , (0, ) ( 1) .zU U U z e
s z

+∂ ∂
= = −

∂ ∂
                                        (17) 

Eq. (17) is a standard one-dimensional heat equation with the explicit solution 
2( )

41( , ) (0, )
2

z
sU s z U e d

s

τ

τ τ
π

∞ −

−∞

= ∫ .                                     (18) 

Substituting (0, ) ( 1)zU z e += −  into Eq. (14), we have 
2( , ) ( ) ( )

2 2
z s z s zC s z e

s s
+ +

= Φ −Φ .   

By the inverse transformation of Eq. (12) and Eq. (15), the price of European call is  
1 2( , ( , ), , ) ( ) ( , ) ( )t t t tC S B t r t K S d KB t r d= Φ − Φ ,                        (19) 

where, 

1

ln ln ( , ) ln ( )

2 ( )

T

t t t

T

t

S B t r K D d
d

D d

τ τ

τ τ

− − +
= ∫

∫
, 2

ln ln ( , ) ln ( )

2 ( )

T

t t t

T

t

S B t r K D d
d

D d

τ τ

τ τ

− − −
= ∫

∫
. 

By the same way, the European put is  
2 1( , ( , ), , ) ( , ) ( ) ( )t t t tP S B t r t K KB t r d S d= Φ − − Φ − .                              (20) 

If the short rate is constant (i.e.,θ , 1rσ and 2rσ in Eq(1) are both 0), then the bond 
price in Eq. (6) is 

( , ) exp{ ( )}tB t r r T t= − .                                               (21) 
Eq. (19) mean than ( , )tB t r is time-function. Then we have 

1 2 0r rσ σ= = , 1( ) 0D t = , 3 ( ) 0D t = , 1 22 1 2 12 2
1 1 2 2( ) H HD t H t H tσ σ− −= + . 

Substituting them into Eqs. (30) and Eq. (31), we obtain the fractional B-S formulas 
for European call and put options(see Ref.[3-5]) 

1 2( , ( , ), , ) ( ) exp{ ( )} ( )t t tC S B t r t K S d K r T t d= Φ − − Φ , 
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2 1( , ( , ), , ) exp{ ( )} ( ) ( )t t tP S B t r t K K r T t d S d= − Φ − − Φ −  
1 2

1 2

2 22 2
1 2

1 2 22 2
1 2

ln ln ( ) 0.5 0.5H H
t

H H

S K r T t t t
d

t t

σ σ

σ σ

− + − + +
=

+
1 22 22 2

2 1 1 2
H Hd d t tσ σ= − + . 

Let 1 2 0.5H H= = , the European call and put in B–S model can be hold(see Ref.[1]). 
 
5. Conclusion 
 

In this paper, we derived a closed-form pricing formula for European call and 
put. Previous option pricing studies typically assume that the short rate is constant or 
time-function over the life of the option. In reality, the short rate is evolving 
randomly through time. Our findings suggest that European call and put on a stock 
can be calculated when the short rate follows the Vasicek model. It is clear that The 
Eq. (19) and Eq. (20) are the generalization of the classical Black-Scholes model. 
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