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ABSTRACT 

 
When the lifetimes data from the parallel system are masked and the masking 
probability is dependent with the failure component, we consider the reliability 
estimations of generalized Rayleigh components in the parallel system. Based on the 
given masking level and masking probability ratio, Maximum Likelihood 
Estimations (MLE) and Bayes estimations of parameters are obtained respectively. 
At last, numerical simulation demonstrates the correctness of theoretical results. We 
study the influence of masking level on the accuracy of the estimations, and then 
compare the effect of MLEs and Bayes estimations under non-informative priors and 
conjugate priors. 
 
Keywords: reliability analysis; dependent masked data; MLE; Bayes estimation; 
generalized Rayleigh distribution. 
 
1. Introduction 

In the field of system reliability analysis, estimations of components 
reliabilities in a system are often obtained through system life test data. These 
estimations are very useful since they reflect the actual operational capacity of 
individual components in system environment. Then we can predict the further 
reliabilities of components in some new systems, see [1]. System life test data 
generally consists of system failure time and information on the exact component 
causing the system failure. In practice, however, the true component responsible for 
the failure of system is sometimes unknown due to various reasons such as the 
constraints of cost and time. Therefore, the cause of system failure is masked. 
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Recently, estimating component reliability based on the masked data has been  

considered by several authors. Usher and Hodgson[1] firstly proposed the concept of 
masked data and obtained likelihood function of the life test sample. Literature [2-4] 
derived the maximum likelihood and Bayes estimates of components’ parameters 
and reliabilities in the series system when the lifetime distributions of components 
are Weibull, Pareto and Geometric separately. Sarhan[5] extended the reliability 
analysis of masked data in the parallel case, while the reliability estimating of verse 
Weibull component was discussed in a parallel system by Zhang[6]. 

In previously developed models, most papers made an equiprobable assumption 
for the masking probabilities where the conditional masking probabilities are equal 
in each cause of failure from the masked set. Under certain circumstances, however, 
the equiprobable assumption may not meet practical requirement. To avoid the 
limitation, Lin & Guess[7] presented a proportional probability model for a 
dependent masked probability in the series system. Based on this model, reliability 
estimations of Geometric and Pareto components from series system are studied by 
Sarhan[8] and Xu[9][10], respectively. But there are not any papers associated with 
dependent masked data in parallel system. 

Except for the above distribution, generalized Rayleigh(GR) distribution 
initially introduced by Surles and Padgett[11], also has wide applications in reliability 
analysis. GR distribution which can be defined as two-parameter Burr Type X 
distribution is a particular member of the exponentiated Weibull distribution. 
Debasis[12] provided the different methods of estimations for GR distribution. 
However, the discussion of GR components in reliability analysis with masked data 
is original. In this paper, we mainly consider the estimations of parameters and 
reliabilities in GR components connected in parallel system using dependent masked 
data. Both MLE and Bayes approaches are utilized and their results are compared in 
the simulation. 
 
2. Basic assumptions and maximum likelihood estimation 

In order to obtain the results, we set the following assumptions throughout the 
paper. 

1. The system is made up of m  independent but non-identical components linked 
in parallel. This system will fail if and only if all of its components fail. 

2. The situation that any two components fail simultaneously is not considered. 
3. n  identical systems join in the life test. The test is terminated when all systems 

have failed. 
4. The random variables ( 1,2, , , 1,2, , )ijT i n j m= =K K  denote the lifetime of the j -

th component in the i -th system. So the lifetime of the i -th system 
is 1 2max( , , ,i i iT T T= L  ),iJT ( 1, 2, , )i n= L . ijT  are independent with 1 2, , ,j j njT T T  
being identically distributed and obeying GR distributions with parameters 

,j jθ α . 
5. After finishing the life test, we can obtain the observed data 

1 1 2 2( , ), ( , ), , ( , ),n nt S t S t SL  where ( 1, , )iS i n= L  express the set of possible failure 
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cause in i -th system. iK  denote the true cause in i -th system. 
6. The masking probability is dependent on the component that leads system to fail 

and independent with the failure time. 
 

According to assumption 4, we get the probability density, distribution function 
and reliability of the components as following: 

2 2( ) ( ) 12( ) 2 e (1 e )j j jt t
j j jf t t λ λ θθ λ − − −= − , 0, 0j jθ λ> > ,                     (1) 

2( )( ) (1 e )j jt
jF t λ θ−= − , 0, 0j jθ λ> > ,                                (2) 

2( )( ) 1 (1 e )j jt
jR t λ θ−= − − , 0, 0j jθ λ> > .                              (3) 

Here jθ  and jλ  are the shape and scale parameters, respectively. The two-
parameter GR distribution will be denoted by ( , )GR θ λ .  

Based on the assumptions 1 to 5, when masking is independent of failure cause, 
Sarhan[5] derived the full likelihood  

'

1 1,

[ ( ) ( )]
i

n m

j i l i
j si l l j

L f t F t
∈= = ≠

= ∑∏ ∏ . 

To relax the independent condition, we consider a conditional probability called 
masking probability ( , )i i i i iP S s T t K j= = = . The observed subset is is  given that 
system i  fails at time it , where the true cause is component j . Then the full 
likelihood is[7] 

1 1,

{ [ ( ) ( )] ( , )}
i

n m

j i l i i i i i i
j si l l j

L f t F t P S s T t K j
∈= = ≠

= = = =∑∏ ∏ .                 (4) 

The model built in this paper is under the assumption that the masking 
probabilities are independent of the failure time, but dependent with the component. 
Therefore, for any ' ij j s≠ ∈ , we have 

( , ) ( , ')i i i i i i i i i iP S s T t K j P S s T t K j= = = ≠ = = = . 
To illustrate the process of having the estimations in this paper and simplify the 

computation, we study the problem on two-component parallel systems ( 2)m = , and 
assume the parameter 1 2λ λ λ= =  be known. Let 

1( {1} , 1)i i i iP S T t K p= = = = , 

2( {2} , 2)i i i iP S T t K p= = = = , 

1 3( {1, 2} , 1) 1i i i iP S T t K p p= = = = − = , 

2 4( {1,2} , 2) 1i i i iP S T t K p p= = = = − = . 
Let 4 3/c p p=  which is called the masking probability ratio. Note that for 1c =  

the model turn to special case of independent masking, while for 1c ≠  that is 
dependent masking case.  Apparently, ( ) 1c > <  when 4 3( )p p> < . Without loss of 
generality, 0 1c< ≤  is assumed. 
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Simultaneously, let 1n  and 2n  be the numbers of system failures for which the 

failure cause is known to be component 1 and 2 respectively, while 12n  denotes the 
number of failed systems that the cause is not directly observed. That is, ( 1, 2)jn j =  
is the number of observations when { }iS j=  and 12n  is the number of observations 
when {1, 2}iS = . Note that 1 2 12n n n n= + + . According to Eq. (1) (2) (4), the full 
likelihood becomes 

1 2 1 2 12

1 2 1 2 1 2 12

1 2 12

12 2 2
1 1 2 2 3 1 4 2

11 1

12 2 2
1 2 1 2 1 2

11 1

1 2 1 2

2 exp{ ( ) } (1 exp{ ( ) }) ( ) ( ) ( )

2 exp{ ( ) } (1 exp{ ( ) }) ( )

( ) exp{(

n nn
n n nn n

i i i
ii i

n nn
n n n n nn n

i i i
ii i

n n n

L t t t p p p p

p p t t t c

A c

θ θ

θ θ

λ λ λ θ θ θ θ

λ λ λ θ θ θ θ

θ θ θ θ

+ −

== =

+ −

== =

= − − − +

= − − − +

= +

∑∏ ∏

∑∏ ∏
2

1 2
1

) In(1 exp{ ( ) })}
n

i
i

tθ θ λ
=

+ − −∑

 

1 2 12
1 2 1 2 1 2( ) exp( ),n n nA c T Tθ θ θ θ θ θ= + +                                                                       (5) 

Where 
1 22 2 2 1

1 2
1 1 1

2 exp{ ( ) } (1 exp{ ( ) })
n nn

n nn n
i i i

i i i

A p p t t tλ λ λ −

= = =

= − − −∑ ∏ ∏ , 2

1

In(1 exp{ ( ) })
n

i
i

T tλ
=

= − −∑ . 

The MLEs of 1 2,θ θ  can be obtained by maximizing the likelihood function 
given by formula (5), with respect to 1 2,θ θ . 
One can derive the log-likelihood function as following 

1 1 2 2 12 1 2 1 2In In In In In( ) ( )L A n n n c T Tθ θ θ θ θ θ= + + + + + + . 
Thus, by setting the derivative zero, the likelihood equations can be obtained as 

1 12

1 1 1 2

In 0
n nL T

cθ θ θ θ
∂

= + + =
∂ +

,                                        (6) 

2 12

2 2 1 2

In 0
n cnL T

cθ θ θ θ
∂

= + + =
∂ +

.                                       (7) 

Solving the equations above with respect to 1 2,θ θ , we can directly get 

2 1
2

1 1 11

ˆ
ˆ

ˆ ˆ
n

cn cT T
θ

θ
θ θ

=
+ −

.                                               (8) 

Substituting (8) into (6), we find that 1θ  satisfies the following equation 
2

1 1 2 1 3
ˆ ˆ 0k k kθ θ+ + = ,                                                   (9) 

where 2
1 2 1 1 12 3 1( 1) , ( ) ,k c T k cn cn n n T k cn n= − = + − − = . 

It is easy to get the MLE of 1θ  by solving the Eq. (9), say 1̂θ . Then we can 
derive the MLE of 2θ  using 1̂θ  and Eq. (8). 

Once the MLEs of the unknown parameters 1θ  and 2θ  are obtained, we can get 
the MLEs of the reliability based on Eq. (3) by replacing the parameters 1θ , 2θ  with 
their MLEs 1̂θ , 2̂θ , thanks to invariance property of maximum likelihood estimation. 
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3. Bayes estimation 

One of the limitations of the MLE method is that, the MLEs of ( 1,2)j jθ =  in 
the section 2 are not obtained for the cases in which we have a completely masked 
level. Therefore, Bayes approach is considered in this section, as Bayes procedure 
enables us to derive the estimations of unknown parameters and reliability functions. 
Further, as we shall see, it provides better estimators in the sense of smaller mean 
squared error. 

To present the Bayes analysis, the prior distributions of the parameters 1θ , 2θ  
should be considered initially. In this paper, we choose the conjugate prior 
distributions of 1θ , 2θ  for their generality and universality. Therefore, the prior 
probability density function (pdf) takes the following form 

1( ) e , ( 0, 0, 0)
( )

j

j j j

a
a bj

j j j j j
j

b
a b

a
θπ θ θ θ− −= > > >

Γ
, 

where , ( 1, 2)j ja b j =  called hyperparameters is given by historical data or experience 
of experts.When 0, 0j ja b= = , we get the standard non-informative priors 

( ) 1/j jπ θ θ= . 
Hence the joint prior pdf of 1θ , 2θ  is 

1 2
1 1 1 2 2 21 11 2

1 2 1 2
1 2

( , ) e e
( ) ( )

a a
a b a bb b

a a
θ θπ θ θ θ θ− − − −=

Γ Γ
.                              (10) 

Then carry out binomial expansion for formula (5), we have 
12

12 1 2 1212
1 2 1 2

0
exp( ),

n
n k n k n n k

k

n
L A c T T

k
θ θ θ θ− + + −

=

 
= + 

 
∑                           (11) 

Once the likelihood function, see (11), and the joint prior pdf, see (10), are 
constructed, we can derive the joint posterior pdf of 1θ , 2θ  as following 

12
12 1 1 1 2 2 212 1 ( ) 1 ( )1

1 2
0

( , ) e e
n

n k A T b A T b

k

n
data I c

k
θ θπ θ θ θ θ− − − − −−

=

 
=  

 
∑ ,                       (12) 

where 1 1 1 2 2 2 12,A n a k A n a n k= + + = + + − ,
12

12

1 2

12 1 2

0 1 2

( ) ( )
( ) ( )

n
n k

A A
k

n A A
I c

k b T b T
−

=

Γ Γ 
=   − − 
∑ . 

Thus the marginal posterior pdf of 1θ , 2θ  can be formulated from (12) as in the 
following respective relations 

12
12 1 1 1 212 1 ( )1

1 2 2
0

( ) e ( ) / ( )
n

n k A T b A

k

n
data I c A b T

k
θπ θ θ− − −−

=

 
= Γ − 

 
∑ , 

12
12 2 2 2 112 1 ( )1

1 1 1
0

( ) e ( ) / ( )
n

n k A T b A

k

n
data I c A b T

k
θπ θ θ− − −−

=

 
= Γ − 

 
∑ . 
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Under the square error loss function 2( , ) ( )L d dθ θ= − , the Bayes estimators of 

1θ , 2θ  are their posterior means, that is ˆ ( )j jE dataθ θ= . Hence the Bayes estimators 
of 1θ , 2θ  are 

12
12 1 212 11

1 1 1 1 1 1 1 2 20
0

ˆ ( ) ( )d ( 1)( ) ( )( )
n

n k A A

k

n
E data data I c A b T A b T

k
θ θ θ π θ θ

+∞ − − − −−

=

 
= = = Γ + − Γ − 

 
∑∫

12
12 2 112 11

2 2 2 2 2 2 2 1 10
0

ˆ ( ) ( )d ( 1)( ) ( )( )
n

n k A A

k

n
E data data I c A b T A b T

k
θ θ θ π θ θ

+∞ − − − −−

=

 
= = = Γ + − Γ − 

 
∑∫

Similarly, we can obtain the Bayes estimators for the reliability 1 2,R R  below 
2

0 1

12
12 1 2

( )
1 0 1

121
1 1 0 2 2

0

ˆ (1 (1 e ) ) 1 (exp( ) )

1 ( )( ) ( )( ) ,

t

n
n k A A

k

R E data E T data

n
I c A b T T A b T

k

λ θ θ−

− − −−

=

= − − = −

 
= − Γ − − Γ − 

 
∑

 

2
0 2

12
12 2 1

( )
2 0 2

121
2 2 0 1 1

0

ˆ (1 (1 e ) ) 1 (exp( ) )

1 ( )( ) ( )( ) .

t

n
n k A A

k

R E data E T data

n
I c A b T T A b T

k

λ θ θ−

− − −−

=

= − − = −

 
= − Γ − − Γ − 

 
∑

 

 
4.  Numerical study and discussion of results 

In this section, we assume that there are 50 identical systems in the life test at 
the same time. Each system is consisted of two components linked in parallel, and 
the lifetimes of the components are GR distributions with parameters 

1 2 1 21, 1, 2λ λ θ θ= = = = . Let 0 1t = , thus the true values of 1 2,R R  are 0.3679 and 
0.6004 respectively. 

Considering the MLE approach, we derive the observed data 
1 1 2 2( , ), ( , ), ( , )r rt s t s t sL , including the lifetime and cause of failure system. These data 

are simulated by using Monte-Carlo methed according to the given masking level 
and masking probability ratio. Then we can get the value of 1 2 12, ,n n n . Substituting 
them into the results of estimation in section 2, MLEs of , ( 1, 2)j jR jθ =  are 
caculated. 

For Bayes analysis, we use the same method to conduct the simulation and 
obtain the Bayes estimations of , ( 1, 2)j jR jθ = . Due to the different prior 
distributions of the parameters 1θ , 2θ , non-informative prior and conjugate prior 
distribution, one can compute different Bayes estimations under square error loss 
function. The given hyperparameters in conjugate prior distribution are 

1 2 1 21, 2, 1.5, 1.5a a b b= = = = . 
Repeat the steps above 1000 times, and then the mean squared errors (MSE) of 

these estimations are computed as following 
21000 ( )

1
ˆ

ˆ( )
MSE

1000j

i
j ji

θ

θ θ
=

−
= ∑ ,

21000 ( )
1

ˆ

ˆ( )
MSE

1000j

i
j ji

R

R R
=

−
= ∑ . 

The results are presented in the table and graphs below. 
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Some acronyms in the table are illustrated as following 
MLE: Maximum Likelihood Estimation; 
BN: Bayes estimations with non-information priors; 
BC: Bayes estimations with conjugate priors. 
 

Table 1. The mean squared errors of estimations 

c  

0.1p =  0.3p =  

1̂θ  2̂θ  1̂θ  2̂θ  

MLE BN BC MLE BN BC MLE BN BC MLE BN BC 

1 0.0594 0.0608 0.0543 0.1044 0.1007 0.0961 0.0607 0.0604 0.0581 0.1101 0.1040 0.1009 

0.9 0.0583 0.0566 0.0490 0.1131 0.1021 0.0951 0.0611 0.0589 0.0557 0.1093 0.1055 0.1029 

0.8 0.0601 0.0545 0.0498 0.0963 0.0977 0.0944 0.0634 0.0613 0.0577 0.1163 0.1097 0.1014 

0.7 0.0577 0.0511 0.0480 0.0995 0.0943 0.0876 0.0622 0.0590 0.0606 0.1154 0.0963 0.0932 

0.6 0.0614 0.0534 0.0387 0.0999 0.0976 0.0898 0.0635 0.0594 0.0546 0.1179 0.1014 0.0954 

0.5 0.0598 0.0513 0.0472 0.1010 0.0896 0.0812 0.0646 0.0618 0.0569 0.1202 0.1080 0.0985 

0.4 0.0583 0.0494 0.0456 0.1054 0.0967 0.0899 0.0644 0.0581 0.0544 0.1258 0.1047 0.0943 

0.3 0.0615 0.0522 0.0487 0.1083 0.0891 0.0778 0.0679 0.0610 0.0568 0.1290 0.1091 0.0955 

0.2 0.0640 0.0538 0.0468 0.1121 0.0988 0.0895 0.0744 0.0633 0.0542 0.1366 0.1122 0.1032 

0.1 0.0703 0.0555 0.0507 0.1232 0.1004 0.0918 0.0867 0.0677 0.0610 0.1444 0.1089 0.1018 

 0.5p =  0.7p =  

1 0.0711 0.0645 0.0630 0.1213 0.1033 0.0955 0.0887 0.0721 0.0654 0.1436 0.1209 0.1115 

0.9 0.0734 0.0674 0.0601 0.1200 0.1075 0.0997 0.0834 0.0704 0.0651 0.1420 0.1177 0.1027 

0.8 0.0733 0.0646 0.0617 0.1207 0.1040 0.0941 0.0856 0.0693 0.0628 0.1434 0.1182 0.1055 

0.7 0.0764 0.0662 0.0655 0.1264 0.1097 0.0981 0.0894 0.0730 0.0693 0.1453 0.1214 0.1021 

0.6 0.0816 0.0681 0.0644 0.1261 0.1053 0.0933 0.0907 0.0804 0.0788 0.1488 0.1253 0.1143 

0.5 0.0882 0.0712 0.0684 0.1239 0.1066 0.0992 0.0983 0.0832 0.0715 0.1505 0.1279 0.1151 

0.4 0.0980 0.0743 0.0747 0.1411 0.1161 0.1178 0.2933 0.1961 0.1873 0.2971 0.1891 0.1847 

0.3 0.1278 0.0951 0.0906 0.1587 0.1297 0.1254 0.4794 0.2808 0.2679 0.4546 0.3630 0.3577 

0.2 0.1943 0.1267 0.1211 0.2679 0.1918 0.1746 0.8201 0.3299 0.3189 0.7962 0.4786 0.4531 

0.1 0.2891 0.2010 0.1988 0.4848 0.2899 0.2543 1.3662 0.5011 0.4875 1.4410 0.5960 0.5584 
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Fig. 1. MLE and Bayes estimations of 1R              Fig. 2. Magnification of Fig. 1 
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Fig. 3. The MSE associated with the MLE and Bayes 

 estimations of 1 2,R R against masking level p when 0.1c = . 
According to the MSEs illustrated in the table and figures for reliability, we can 

conclude that: 
(I) For the given masking probability ratio c , all the MSEs associated with the 
estimations of , ( 1, 2)j jR jθ =  increase with increasing masking level p .  
(II) The MSEs associated with MLEs of , ( 1, 2)j jR jθ =  are always grater than that 
associated with Bayes estimations of , ( 1, 2)j jR jθ = . When the masking level p  goes 
up, MSEs of MLEs rise more rapidly than Bayes estimations. 
(III) When comparing the MSEs of Bayes estimation under different priors from the 
table, we find that Bayes estimations with non-informative priors compared with 
conjugate priors conduct slightly higher MSEs. 

Therefore, the effect of Bayes estimation is better than MLE, and with Bayes 
approach, the effect of choosing conjugate priors is better than non-informative 
priors. 
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5. Conclusion 
In this paper, we discuss estimations of GR components reliability in parallel 

system using dependent masked data. MLE and Bayes methods are exploited for 
estimating. Compared with previous literatures, this paper considers a new 
distribution and model in reliability analysis. Finally, effectiveness and feasibility of 
our modeling and derivation are verified in the numerical simulation. Furthermore, 
the comparison of MLE and Bayes approach has been shown by the table and 
figures. 
 
Acknowledgements 
 

This work has been supported by the National Natural Science Foundation of 
China (No.70471057) and the Natural Science Foundation of Education Department 
of Shaanxi Province (No. 03JK065). 
 

REFERENCES 

1. Usher J.S., Hodgson T.J. Maximum likelihood analysis of component reliability 
using masked system life data [J]. IEEE Trans. on Reliability. 37(5) (1988), 550-
555. 

2. Sarhan A.M. Estimation of system components reliabilities using masked 
data[J]. Applied Mathematics and Computation. 136 (2003), 79-92. 

3. Sarhan A.M., Awad I. EI-Gohary. Estimations of parameters in Pareto reliability 
model in the presence of masked data[J]. Reliability Engineering and System 
Safety. 82 (2003), 75-83. 

4. Sarhan A.M., Debasis Kundu. Bayes estimators for reliability measures in 
geometric distribution model using masked system life test data[J]. 
Computational Statistics & Data Analysis. 52 (2008), 1821-1836. 

5. Sarhan A.M., El-Bassiouny Ahmed H. Estimation of Components Reliability in 
a Parallel System Using Masked System Life Data[J]. Applied Mathematics and 
Computation. 138(1) (2003), 61-75. 

6. Zhang Fan, Shi Yimin. Parameter estimation of aerospace power supply system 
using masked lifetime data[J]. Aerospace Control. 27(4) (2009), 96-100.  

7. Lin D.K.J, Guess F.M. System life data analysis with dependent knowledge on 
the exact cause of system failure[J]. Microelectronics Reliability. 34 (1994), 
535-544.  

8. Sarhan A.M., Guess F.M., Usher J.S. Estimators for reliability measures in 
geometric distribution model using dependent masked system life test data [J]. 
IEEE Trans. on Reliability. 56(2) (2007), 312-320.  

9. Ancha Xu, Yincai Tang. Bayesian analysis of Pareto reliability with dependent 
masked data[J]. IEEE Trans. on Reliability. 58(4) (2009), 583-588. 



Xin Gu and Yi-min Shi 
 

42 
 

10. Ancha Xu, Yincai Tang. Bayesian analysis of masked system lifetime data[C]// 
Proc. Of the 8th International Conference on Reliability‚ Maintainability and 
Safety. Chendu, China: IEEE Press. (2009), 399-402. 

11. Surles J.G., Padgett W.J. Some properties of a scaled Burr type X 
distribution[J]. Statist. Plann. Inference, 2004. 

12. Debasis K., Mohammed Z.R. Generalized Rayleigh distribution: different 
methods of estimations[J]. Computational Statistics & Data Analysis. 49 (2005), 
187-200. 


