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ABSTRACT

In this paper, we define the concept of an intuitionistic Q-fuzzy normal HX group
and some related properties are investigated. We also define the level subsets of an
intuitionistic Q-fuzzy normal HX group and discussed some of its properties. A few
equivalent propositions of fuzzy HX group constituting an intuitionistic Q-fuzzy
normal HX group are given.

Keywords: Intuitionistic fuzzy set, intuitionistic Q-fuzzy set, intuitionistic fuzzy
subgroup , intuitionistic Q-fuzzy subgroup, intuitionistic Q-fuzzy HX subgroup and
level sub HX groups, intuitionistic normal Q-fuzzy HX subgroup.

1. Introduction

K.H.Kim [2] introduced the concept of intuitionistic Q-fuzzy semi prime
ideals in semi groups and Osman kazanci, sultan yamark and serife yilmaz [11]
introduced the concept of intuitionistic Q-fuzzy R-subgroups of near rings.
A.Solairaju and R.Nagarajan [14][15] introduced and defined a new algebraic
structure of Q-fuzzy groups. Li Hongxing [6] introduced the concept of HX group
and the authors Luo Chengzhong , Mi Honghai , Li Hongxing [8] introduced the
concept of fuzzy HX group. V. Lakshmana Gomathi Nayagam, R. Muthuraj, K.H.
Manikandan [5] introduced the concept of intuitionistic Q-fuzzy HX groups. In
this paper we define a new concept of intuitionistic Q-fuzzy normal HX group and
its level subsets and study some of their related properties.
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2. Preliminaries

In this section, we site the fundamental definitions that will be used in
the sequel. Throughout this paper, G = (G, *) is a group, e is the identity
element of G, and xy, we mean x * y.

Definition 2.1 [1]

An intuitionistic fuzzy subset ( IFS) A in a set X is defined
as an object of the form A={{(x, X)), vx) ) /xeX}, where . : X
— [0,1] and v, : X — [0,1] define the degree of membership and the degree
of non-membership of the element xeX respectively to be in A and for every
xeX, 0< wmx) +wvix) <1,

Definition 2.2 [7]
Let A and n be two intuitionistic fuzzy subsets of a set X. We define
the following relations and operations:
(1) A cn iff u(x) < pn(x) and vy (x) > vi(x), for all xeX ;
(i1) A =n iff p(x) = py(x) and vy, (x) = vy (x), for all xeX;
(i) A ={{(x,vi(X), m(x)) / xeX };
(iv)  Anm={ {(x, min (LX), un(x) ), max (vi(x), vy (x) ) ) / xeX };
V) Aun={ (x, max (puX), ty(x) ), min (vi(x), vy (x) ) ) / xeX };
(V) Oh=1{ (xo ), Imm)) / xeX
(vii) OA={ (x, I-»i(x), i (x) ) / xeX }.

Definition 2.3 [2]

An intuitionistic Q-fuzzy subset A in a set X is defined as an
object of the form A ={ ( (x,q) , W(X,q) , va(Xx,q) ) xeX and qeQ }, where
Ww: X xQ —[0,1] and v, : X x Q — [0,1] define the degree of membership
and the degree of non-membership of the element (x,q) € X x Q respectively
and for every (x,q) € X*XQ, 0= u(x,q) +vi(x,q) < 1.

Definition 2.4
Let A and n be two intuitionistic Q-fuzzy subsets of a set X. We
define the following relations and operations: For all xe X and qeQ,
1) Acn iff mEg) < pn(x,q) and vix,q) = vy(x,9)
() %= iff ) = py(x,q) and vi (x,9) = vy (x,9),
(i) A°={ ((xq), va (), 1(x,0) ) / xeX and qeQ } ,
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(iv) A nm={ ((x,q), min {p(x,q), un(x,9)}, max {vi(x,q), vy (x,q)}) /
xeX and qeQ},

(v)  run={ {(x9), max {(x,q), k(X @)}, m {va(x,q), Vo (X,9)}) / xeX
and qeQ},

(vi) A= { (x99, mxq), I-um(x,q)) / xeXand qeQ },

(vi)) OA={ ((x,9), I-vi(x,q), vi(X,q) ) / xe X and q€Q }.

Definition 2.5 [6]

In 2°-{¢}, a nonempty set 9 <2°-{¢} is called a HX group on G, if
9 is a group with respect to the algebraic operation defined by AB = {ab/a e
A and b € B}, and its unit element is denoted by E.

3.Properties of an Intuitionistic fuzzy HX group
In this section, we discuss some properties of an Intuitionistic fuzzy HX

group.

Definition 3.1 [5]

Let G be a group and a nonempty set 9 —29-{¢} is a HX group on G. An
intuitionistic fuzzy subset A = ( A, W(A), va(A) ) of a HX group 9 is said to be an
intuitionistic fuzzy HX subgroup of a HX group 9 if the following conditions are
satisfied. For all A and B €9,

)  wmAB) = min{ (A), w(B) },
(i) vi(AB) < max{ vi(A), vi(B)) }.
(i) wmA) = wA) ,

(iv) Vx(A'l) = vi(A).

AN v

Example 3.1 [5]
Let G={1,-1} ,then (G,e)isa groupand 9 = { {1} ,{-1} }, then
(9, ®)isaHx group. Define w,: 3 — [0,1]by w( {1} )=0.8 and w, ( {-1} ) =0.5.
vi: 9 = [0,1]by vy ({1} )=0.1 and v, ( {-1} )=0.3.
Clearly A is an intuitionistic fuzzy HX group of a HX group 9

Definition 3.2 [5]

An intuitionistic Q-fuzzy subset A={{ (A,q) , W(A,q) , Vi(A,q) ) / A€ 9 and
qeQ } of a HX group 9 is said to be an intuitionistic Q-fuzzy HX subgroup of a HX
group 9 if the following conditions are satisfied. For all A and B €3 and qeQ,

(1) w(AB,q) 2 min{ w(A,q), m(B,q) },
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(i) vi(AB,q) < max{ vi(A,q), va(B,@) },
(111) M}»(A_laq) = HX(A9q) s
(IV) V?»(A_l’q) = V?»(Asq) .

3.3 Definition
An intuitionistic Q-fuzzy HX subgroup A of a HX group 9 is said to be an
intuitionistic Q-fuzzy normal HX subgroup of 3 if ,
(i) w(ABA'q) > p(B,q) forall A and B €9 and qeQ,
(i) vi(ABA',q) < v,(B,q) forall A and B €9 and qeQ.

Theorem 3.1 If A and n be the intuitionistic Q-fuzzy normal HX subgroups of a HX

group 9, then A M 7 is an intuitionistic Q-fuzzy normal HX subgroup of a HX group

9.

Proof. Let A= {((A,q), m(A,q), a(A,q) )/ AeS and qeQ }
1= {((A), tn (AQ), vy (AQ) )/ AcB and qeQ },then

Anm = {{(A,q), min {(A,q), y(A,q)}, max {vi(A,q), vy (A,q)})/ A€ and
qeQ §,

Let .~y = min {u(A,q), un(A,q)} and 8,y = max {vi(A,q), vy (A,Q)}.

Forany A, B €9 and qeQ,

@0 (ABA™,q) = min {p(ABA™,q), py( ABA™,q)},

@.qn (ABAY,q) 2 min {1,(B,q), tn( B,@)} = @1y (B,q) and

81 ~n (ABA™,q) max {v,(ABA™,q), v, (ABA" ,q)},

8.n (ABA',q) < max {vi(B,q), vy (B,Q)} = 81y (B,Q).

Hence, A N 1 is an intuitionistic Q-fuzzy normal HX subgroup of a HX group 3. [

AV

Remark
Arbitrary intersection of intuitionistic Q-fuzzy normal HX subgroups of a
HX group is an intuitionistic Q-fuzzy normal HX group.

Theorem 3.2 If A be the intuitionistic Q-fuzzy normal HX subgroup of a HX
group$, then [J A is an intuitionistic Q-fuzzy normal HX subgroup of a HX group 9 .
Proof. Let A be the intuitionistic Q-fuzzy normal HX subgroup of a HX group 3
and let 0 A = { ( (Aq , m(Aq), I-wmA,q) ) / AeS and qeQ }.
Let 8,(A,q) = 1-(A,Q).

A be the intuitionistic Q-fuzzy normal HX subgroup of a HX group $ then
m(ABA™,q) > m(B.,q) and v,(ABA",q) < vi(B,q) forall A and B €9 and qeQ.
Now, 8,(ABA™, q) = 1-i(ABA™, q) <1-w(B,q) =8(B.q) .

Thus , [ A is an intuitionistic Q-fuzzy normal HX subgroup of a HX group 3. [J
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Theorem 3.3 If A be the intuitionistic Q-fuzzy normal HX subgroup of a HX group
9, then OA is an intuitionistic Q-fuzzy normal HX subgroup of a HX group 9 .
Proof. Let A be the intuitionistic Q-fuzzy normal HX subgroup of a HX group 9
and let OA = { ¢ (A, 1-vi(A,q), A, ) / AeS and qeQj}.
Let ¢x(A,q) = 1-vi(A,Q).

A be the intuitionistic Q-fuzzy normal HX subgroup of a HX group 9 then
w(ABA',q) > w(B,q) and vi(ABA',q) < v,(B,q) forall A and B €9 and qeQ.
Now, pi(ABA™,q) = 1-vi,(ABA™,q) > 1-vi(B.q) = ¢;(B.q).

Thus, OA is an intuitionistic Q-fuzzy normal HX subgroup of a HX group 3. [

Theorem 3.4 Let G be a classical group and A be an Q-fuzzy HX subgroup of a HX
group 3.Then the following conditions are equivalent.

i. A is an intuitionistic Q-fuzzy normal HX group on 5.

ii. AMABA™',q)=M\B,q), forall A,Be 9 and qeQ.

iii. MAB,q) =MBA,q), for all A,Be § and q€Q.
Proof. i = ii
Let A be an intuitionistic Q-fuzzy normal HX subgroup of a HX group 9.Then,
w(ABA,q) > w(B,q) and vi(ABA™',q) < vy(B.q) for arbitrary A and B €9 and
qeQ. Thus, taking advantage of the arbitrary property of A, we get,

m(ABA,q) = m(A'B(A) \q) = m(B.q),
Therefore, p(B.,q) = (A" (ABA™A ,q) > mi(ABA™,q) > w(B,q).
Hence, 1(ABA™,q) = w(B,q).
Similarly, we have
Vi(A'BALQ) = vi(A'B(A") ) < vi(B.q),

Therefore, vi(B,q) = vi(A" (ABA)A ,q) < vi(ABA',q) < vi(B.q).
Hence, v,(ABA™,q) = vi(B,q).
Hence, M(ABA™,q) = A(B.q) , for all A,Be 9 and qeQ.
ii =iii, Substituting B for BA in ( ii ), we can easily get ( iii ).
iii = i, According to M(AB,q) =M(BA,q) , for all A,Be 3 and qeQ, we obtain
MABA™,q) = MBAA™,q) = M(B,q) > A(B,q).
That is, M(ABA™,q) > A(B, q) implies that
m(ABA™,q) > w(B,q) and vi(ABA',q) < vi(B,q) for arbitrary A and B €9 and
qeQ.
Hence, A be an intuitionistic Q-fuzzy normal HX subgroup of a HX group 3. [

Theorem 3.5 Let G be an classical abelian group and A be an intuitionistic Q-fuzzy
HX group of an abelian HX group 3. Then A is an intuitionistic Q-fuzzy normal HX
group on 9.
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Proof. Let A be an intuitionistic Q-fuzzy HX group of an abelian HX group 9.
Then AB = BA for every A and B €9.

Hence MAB,q) =MBA,q), forall A,.Be 3 and qeQ .

Therefore, A is an intuitionistic Q-fuzzy normal HX group on 9. [J

4.Properties of level subsets of an intuitionistic Q-fuzzy HX subgroup
In this section, we introduce the concept of level subset of an intuitionistic
Q-fuzzy normal HX subgroup and discuss some of its properties.

4.1 Definition

Let A be an intuitionistic Q-fuzzy normal HX subgroup of a HX group 3.
Forany o, B €[0,1], we define the set, A<, 3- ={A e 3/ wm(A,q)=>0a and
v (A, q) <P, forsome q €Q }, is called the level subset of A.

Theorem 4.1 Let G be a classical group. Then the intuitionistic Q-fuzzy HX
subgroup A of a HX group 9 is an intuitionistic Q-fuzzy normal HX subgroup on 9
iff for any o, B €[0,1], A< 3> is a classical normal sub HX group.
Proof. Let A be an intuitionistic Q-fuzzy normal HX subgroup of a HX group
9.Then,
m(ABA™,q) > m(B,q) and vi(ABA',q) < v,(B,q) forall A and B €9 and qeQ.
Forall A, B € A, 3> and q €Q, we have,
w(A,q) > aand vi(A,q) < Pandmw (B,q) = a and v,(B,q) < B.
Now, w.(AB,q) = min {m (A,q)mB,q)}.

w (AB™', q) > min {a,a}=q

vi(AB,q) < max {vi(A,q), v (B,q)}.

vi(AB,q) < max {B,B}=5.

AB"' € Agps .
Forall B € A p>,A€d and q €Q, we have, i, (B,q) > o and wvu(B,q) < B.
Since, A be an intuitionistic Q-fuzzy normal HX subgroup of a HX group 9,
w(ABA™,q) > w(B,q) > aand vi,(ABA™,q) < vi(B,q) < pforall A, B €9 and
qeQ.

ABA™' € A<q p> . Hence A~ g~ is a classical normal sub HX group.
Conversely, for any a, B €[0,1], A<q p># ¢ and A<, g~ is a classical normal sub HX
group. Then ,we have,
m(ABA™,q) > w(B,q) and v;(ABA™,q) < vi(B,q) forall A, B €9 and qeQ.
Otherwise, if there exists Ag or By € 9 and qeQ such that,
m(AoBoAy,q) < m(Bo,q) and vi(AeBoAg", @) > vi(Bo.q).

Take ap = 0.5 [(Bo,q) + 1(AoBoAg",q) Jand Bo=0.5 [vi(Bo,q) + va(AcBoAs ™, q) 1.
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Evidently, oy, By €[0,1] ,we can infer that,
(Bo,q) > oo, 1i(AoBoAg,q) < apand vi(Bo,q) < Bo and vi(A¢BoAg, q) > Bo.
Consequently, we have Bpe A, 0:Bo> and AoBoAy”! 2 Aoy 0 Bo >

This contradicts that A<, > is a classical normal sub HX group.

Hence, we get,
m(ABA™,q) > w(B,q) and v;(ABA™,q) < vi(B,q) forall A, B €9 and qeQ.
Hence, A be an intuitionistic Q-fuzzy normal HX subgroup of a HX group 3. [J

Definition 4.2

Let A be an intuitionistic Q-fuzzy normal HX subgroup of a HX group 9.
The normal sub HX groups A, p>, o, B €[0,1] are called level normal sub HX
groups of A.
Theorem 4.2 An intuitionistic Q-fuzzy subset A of 3 is an intuitionistic Q-fuzzy
normal HX subgroup of a HX group § if and only if the level subsets A, 5> , @, B
€ Image A, are normal sub HX groups of 9.
Proof. Itis clear. [

Theorem 4.3 A is an intuitionistic Q-fuzzy normal HX subgroup of a HX group 9.
The sequence of level normal sub HX groups { A<qn pn>/neN,N=0,1,2,.... }isa
nested family if o, is decreasing and 3, is an increasing sequnences.

Proof. The level normal sub HX groups of an intuitionistic Q-fuzzy normal HX
subgroup A of a HX group 9 form a chain. Since w(E, q ) > w(A, q ) and
Vi(E, q ) < vi(A, q) forall Ain 9 and qe Q, therefore A<, p,> , Where
Ww.(E, q )= 0o and v;(E, q) =Py is the smallest and we have the chain :
{E}chau,py> Sh<a; B, > Shea,,p,> S-S Aea,,p, > =9, Where

Og> 0> 0> ...... > opand B < Br1< Pr<...... < By . O
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