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ABSTRACT

In this paper the authors have studied a lattice L whose set of finitely generated n-
ideals F, (L) form a generalized Stone lattice. They have shown that F(L) is

* sk
<x>,v<x> =L

generalized Stone if and only if , which is also equivalent

* * *
<x>,N<y>,) =<x>, v<y>, .

or all x,yeL' <x>

to ( n denotes the

principal n-ideal generated by x and <X Z0is the pseudo complement of <Xy

in the lattice of n-ideals of L. They have also shown that F,(L) is generalized Stone
if and only if PvQO=L for any two minimal prime n-ideals P and Q of L.

Keywords: Pseudo complementation, n-ideals, Stone Ilattice, Generalized Stone
lattice.
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1 Introduction:

Finitely generated n-ideals of a lattice were studied extensively in [3], [5]
and [7]. In this paper we will study those lattices whose finitely generated n-ideals
form a generalized Stone lattice and we will give generalizations of several results of
generalized Stone lattices in terms of n-ideals.

For a fixed element n of a lattice L, a convex sub lattice containing n is
called an n-ideal. The idea of n-ideals is a kind of generalization of both ideals and
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filters of a lattice. The set of all n-ideals of a lattice L is denoted by I,(L), which is

an algebraic lattice under set inclusion. Moreover, {n} and L are respectively the
smallest and the largest elements of I,(L).

For any two n-ideals I and J of L, it is easy to check that -
InJ=1InJ={xeL/x=mli,n,j)for some icl, jeJ}

where
m(x,y,2)=(x A y)v (¥ A z)v(z A x)
and
IvJ={xeLlinj<x<i,v j, forsomei,i, €l and j, j, €J}

The n-ideal generated by a finite number of elements is called a finitely generated n-
ideal. The set of all finitely generated n-ideals is denoted by F,(L). n-ideal generated

by a]) aZD """ Dam is denoted by m >n’ Wthh is the

interval LA AN 2 A e, ANQ, NN, AV Ay V... va, vy

Thus, the members of F,(L) are simply the intervals [a, b] such that
as<n<b . A neat description of finitely generated n-ideals can be found in [7]. By

[3] and [7], we know that F,(L) is a lattice and for [a’b],[al’bl] € Fy(L),
[a, 0] A [a,,b]_ [aVv a,,bAD] and [a’b]v[alabl]=[a/\alab\/bl]'

The n-ideal generated by a single element a is called principal n-ideal,

denoted by <a >n A Clearly, <a >n= [a ANn,av n] .

Let L be a lattice with 0 and 1. An element a*el is called a pseudo

. * — — . . * .
complementofaeL,lfa/\a =0 ang anx=0 implies that X <@ ™ L is
called pseudo complemented if its every element has a pseudo complement.

A lattice L with 0 is called a sectionally pseudo complemented lattice if the

interval [0, x] is pseudo complemented for each X € L.
A distributive lattice L with 0 and 1 is called a Stone lattice if it is pseudo

* kk
complemented and for each acL,a*va 1.

2 Sectional pseudo complementation in the lattice of finitely generated n-ideals.
For any n-ideal J of L, we

denote'] - {x €L:m(x,n,j)=n forall j e J} .Observe that J’ is an n-ideal
and JNJ = {n } In fact, this is the largest n-ideal which annihilates J. We call

this as the pseudo complement of J in I,(L). Moreover, for a distributive lattice L,
I.(L) is a distributive algebraic lattice and so it is pseudo complemented. Observe
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that F,(L) has always the smallest element viz. {n}. But it does not necessarily

contain the largest element. So in a general distributive lattice L with nel >Wwe can
not talk on pseudo complementation in the lattice F,(L). But we can discuss on
sectional pseudo complementation in Fy(L). F(L) is called sectionally pseudo

complemented if for each [a.b]& F,(L) , the interval [{n },[a,b]] in F(L) is pseudo
complemented. That is, each finitely generated n-ideal contained in % b has a
relative pseudo complement in [{n }’ [a,b]] which is also a member of F,(L).

e.d] le.d]’

We shall denote the relative pseudo complement of [

le. d]

, while
denotes the pseudo complement of [c, d] in [(L).

~ d d
By [7], we know that F,(L)= (n] % [n) where (n] denotes the dual of the lattice

(n] . So we have the following result.

Theorem 2.1: Let L be a distributive lattice and " € L Fu(L) is sectionally pseudo

complemented if and only if (n] sectionally dual pseudo complemented and [n) is
sectionally pseudo complemented. [

A distributive lattice L with 0 is called a generalized Stone lattice if for each

xel, (v (x]**=L . By Katrinak[2], we know that a distributive lattice L with 0

is a generalized Stone lattice if and only if each interval [0, x], ¥ €L js a Stone
lattice.

The main results of this section are given in theorem 2.8 which gives several
characterizations of those F,(L) which are generalized Stone and this also
generalizes some of the work of [1]. To prove this theorem we need the following

~ d
results. Lemma 2.2 is trivial by the fact F(L) = (] x[n) , while lemma 2.3 and 2.4

are due to [5].

Lemma 2.2 : Suppose Fy(L) is a sectionally pseudo complemented distributive
lattice. Then F,(L) is generalized stone if and only if (n] is generalized dual Stone
and [n) is generalized Stone. [

Lemma 2.3: Let L be a distributive lattice and "€ L. Then for any
[a,b] €F,(L) In[a,b] N[a, b]=1" N[a, b]

and for any n-ideal I, .0
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Lemma 2.4: Suppose F,(L) is a sectionally pseudo complemented distributive
lattice and [C d] < [a’ b] in F” (L) then
(1) [C: d] ‘= [C, dT< m[aa b] and

(i) [c, d1" =[c, d]” N[a, b]. 0
0.leL. If [n ): [7.1] is pseudo complemented, then for be [n), b*

=[0,n]

Suppose

denotes the relative pseudo complement of b in [n ) Also if (n] is dual

pseudo complemented, then for acs (n ]

a in [0, n].Following result is due to [6]

+d
»@ " denotes the dual pseudo complement of

Lemma 2.5: Let [ (L) be a distributive pseudo complemented lattice (Then of

course Fy (L) has a largest element, and so 0, 1 €L). Then for [a, b] <€ F” L),

[a,b] _[a™ .67 -

If [a, b]€[{n}, [c, d]]. Then {n} < [a, b]< [c, d]. The relative pseudo
0
complement if [a, b] in above interval is denoted by[a’b] . Here
0d
c<as<n<b<d a™ {enotesthe relative dual pseudo complement of a in [c, n]

and b° denotes the relative pseudo complement of b in [n, d], if [c,n] is relatively
dual pseudo complemented and [n,d] is relatively pseudo complemented. Thus by
the same proof of Lemma 2.5, we have the following corollary:

Fy (L) be a sectionally pseudo complemented distributive

a,blcle,dl.la,b]’ =[a" b1

Corollary 2.5.1: Let

lattice. Then for el 0

Theorem 2.6 : Suppose Fp(L) is a sectionally pseudo complemented distributive

lattice. Let x, y € L with <x>7"" <y>n={n}. Then the following conditions are
equivalent:

* *
<xX>, V<y>, _

(1) L;

elL; 0V<m(yanat)>n0:<t>n

(i1) For any t~ 7> <m(x, n, t)>" *where <m(x, n,
0

t)>n
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denotes the relative pseudo complement of < m(x, n, t)>7 in [{n}, <t>7].

Proof :(i) = (ii). Suppose (i) holds. Then for any t€L, using Lemma 2.4

0 o
<m(x,n,t)>n v<m(y,n,t)>,

=(<X>nm<t>n)0 V(<y>, m<t>n)O

(x>, n<t>)n<t>)v((Ky>, N<t>) N<t>))

_(cx>, n<t>)v(<y>, m<t>"))(byLemma2.3)

_((<x> v<y>)n<t>=Ln<t> =<t>

(id)= (i) : Suppose (ii) holds and ¢ € L . By (i),

0 0_
< m(x, n,t) Zn V< m(y, ", Z) Zn =<!Zn-Then by calculation of (i) = (ii) , we have

<x> v<y>)N<t> =<t> L <t> x> v<y>
( n y>,) n n, This implies [>,e<x>, Y=o
<x> v<y>'=L

*

*
te<x> v<y>
n Yz, Therefore,

and so 0

Theorem 2.7: Let F,(L) be a sectionally pseudo complemented distributive lattice.
Then the following conditions are equivalent:

@) F.(L) is generalized Stone;
(i) ForanyxeL,<x>n v<y>, :L;
x,yel,(<x> N<y>) =<x> v<y>".

(iii) For all ;

(ivy  Forall ® yeL<x>, n<y>,={n} implies that
<x>, v<y>'=L

Proof: (i) = (ii) . Suppose (i) holds and €L . Then forany X€L m(x,n,t)

€<!>u and so <m(t,n,x)>”€[{n}’<t>"].

Since F,(L) is generalized Stone, so <m (t, n, X )>
0 00
w v <mltnx)>y0=<t>, . Then by Lemma 2.4,

<t>n:(< m(t, n, x) > m<t>n)v (< m(t, n, x) >n**)m<t>n:

((<x>nm<t>n)*m<t>n)v((<x>nm<t>n)**m<t>n)
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Thus by Lemma 2.3 <t>n:(<x>n* m<t>n)v(<x>n** m<t>n):

= <x>n*v<x>n**)m<t>

sk

<t>c<x> v<x>
n= n n and so

. This implies

* ok * ok
te<x>, v<x>, <x> v<x> =1L

" Therefore,

(ii) = (iif). For any x,yel, (x> N<y> )NKx>, v<y> )_

(x>, N<y> N<x>, )v(Kx> N<y> N<y>) _

tnjvini=in]

<xX>,N<y>, mI:{n}

Now, let for some n-ideal I. Then

<y> Nlc<x>,

ok

" Meeting <20 with both sides, we have

<y> nln<x>"={n} <y> Nlc<x>

"Then
andlm<x>n c<y>,

HenceI:ImLzlm(<x>n v<x>, ) _

In(<x>)vUn<x>")c<x> v<y>"

* *
<xX> v<y> = (< x> N<y> )
Therefore, n Yz n YZal)

i) = (i) Let <¥>n 0<Y>={n} for come x. ¥ €L Then by (iii),
y

L={”}*= (<x>n “<y>n)* =<x>, v <y>"*,Thus (iv) holds.

(iv) = (ii) Let I € L. By Lemma 2.3 and by Lemma 2.4, for any
xe L.,(< x>, V<X >n**)m <t>,

* ok
_ (<x>n m<t>n)v(<x>n m<t>n)

_ ((<x>n n<t> ) n<t>)v(<x>, m<t>n)**m<t>n)

:(< m(t, n, x) > r\<t>n)v(< m(t, n, X) >n**m<t>n)

0

0
" Here <m(x, n, t)>,

0 0
— <m(x,n, 0)>, v<m(x,n,t)>, is finitely

<t>

generated n-ideal contained in nas Fy(L) is sectionally pseudo complemented.

<r>,

0
Then by [3], <m(x,m 0>, g g principal n-ideal, say Now
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<m(x, n, t)>nm<r>n:{n}. So

<m(x, n, t)>n0v<r>n0=<t>

by (iv) and Lemma 2.4

n Therefore,

* *3k
(<x>n v<x>, )m<t>n:<t>nandSO

<x> v<x>'=L

7, This implies " Thus (ii) holds.

To complete the proof we shall show that (iv) = (i). Since Fy(L) is
sectionally pseudo complemented, so by Theorem 2.1, (n] is sectionally dual pseudo
complemented and [n) is sectionally pseudo complemented.

te<x>:v<x>

0
Suppose <b<d . Let b be the relative pseudo complement of b in [n,

0 00 0 00
d] Now bO/\bOOZn,Thus <b >nm<b >n:[n3b /\b ]

<b’> <b”> c<d>

={n}. Also,

7. Then by the equivalent condition of Theorem 2.7,

<mlp®n, d)>" v <m®®.n . d)>=<d>
we  have n n n,
mp®,n,d)=6" . mp™, n,d)=b  n<p® b <d.

<b’>0=<p” >

But

But by

00 _0_ 7000 _ _ 10
and b >, =<bT >, =<b" >,

<d>=<b"> v<b’> =<b"vp" >

corollary 2.6

Therefore, n  which  gives

0 00
b"vb™ = d. This implies [n, d] is a Stone lattice. That is [ n ) is generalized
Stone.

A dual proof of above shows that (iv) also implies that (n] is a generalized dual
Stone lattice. There fore, by Lemma 2.2, F,(L) is generalized Stone.

3 Minimal prime n-ideals: A prime n-ideal P of a lattice L is called a minimal

prime n-ideal if there exists no prime n-ideal Q such Q=P and Oc P. The
following characterization of minimal prime n-ideals is due to [5].

Theorem 3.1: Let F” (L) be a sectionally pseudo complemented distributive lattice
and P be a prime n-ideal of L. Then the following conditions are equivalent.

1) P is minimal;

i) X € P implies <* &P,
iii) X € P implies <¥>» <P,
iV)PﬁD(<l >”):¢f0rall teL-P

where ;



14 M. Ayub Ali and A.S.A Noor
D(<t>,)={xe<t>, :<x>,={n}l

For a prime ideal P of a distributive lattice L with 0, Cornish in [1] has defined O(P)
={X €Lixny=0 fOI’ some y € L — P}. Clearly, O(P) is an ideal and O(P)
cP . Cornish in [1] has shown that O(P) is the intersection of all the minimal prime
ideals of L which are contained in P.

For a prime n-ideal P of a distributive lattice L, we write n(P)=

{yeL:m(y,n,x)=n for some x e L—P}.

( ) Clearly, n (P ) is an n-ideal
and " P cP .

Lemma 3.1.1: Let P be a prime n-ideal in a distributive lattice L. Then each
minimal prime n-ideal belonging to n(P) is contained in P.

Proof: Let Q be a minimal prime n-ideal belonging to n(P). If oo i , then choose
yeQ-r. By [5] we know that Q is either an ideal or a filter. Without loss of
generality suppose Q is an ideal. Now let S§= {S eL: m(y 11, S) € n(P)} We
shall show that S -¢—Q. If not, let D= (L _Q)V [y) Then n(P)mD = ¢

For otherwise, YATE n(P) for some | < L-0 . Then by convexity,
y/\rSm(y,n,r)S(y/\r)vn m(y,n,r)en(P).

res =Y , which is a contradiction. Thus, by Stone’s separation theorem for n-
ideals in [4] there exists a prime n-ideal R containing n(P) disjoint to D. Then

implies Hence

Rc Q . Moreover, R Q as Ve R’ this shows that Q is not a minimal prime n-

ideal belonging to n(P), which is a contradiction. Therefore, S0 . Hence there
exists zeQ such that m(y 1, Z) < I’l(P) Thus

m(m(y,n,z),n,x)zn for some xeL—P. It is easy to see that

m(m(y,n,z), n,x)= m(m(y,n,z),n,z). Hence m(m(y,n,x),n,z) = n.

X%P’ m(yan:x)gp‘

Since P is prime and v, SO Therefore,

zen(P)cQ

, which is a contradiction. Hence Q gP.

Proposition 3.1.2: If P is a prime n-ideal in a distributive lattice L, then n(P) is the
intersection of all minimal prime n-ideals contained in P.
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Proof: Clearly n(P) is contained in any prime n-ideal which is contained in P.
Hence n(P) is contained in the intersection of all minimal prime n-ideals contained
in P. Since L is distributive, so by [4], n(P) is the intersection of all minimal prime
n-deals belonging to it. By [6] as each prime n-ideal contains a minimal prime n-
ideal, above remarks and Lemma 2.2 establish the proposition. [

Theorem 3.4 gives another characterization of those F, (L) which are
generalized Stone in terms of minimal prime n-ideals. To prove this we need the
help of the following result which is due to [6].

Theorem 3.2: Let F, (L) be sectionally pseudo complemented distributive Lattice.
Then the following conditions are equivalent:

* Aok
. el,<x> v<x> =1L
(i) For any * » S X 2 H

(i) For  all X, yeL,<x>nm<y>n:{n}

* *
<x>,v<y> =L

implies  that

J

Theorem 3.3: Let F,, (L) be a sectionally pseudo complemented distributive Lattice.
Then the following conditions are equivalent.
@) For any xel,<x>,v<x>, =L , equivalently, F, (L) is
generalized Stone;
(ii) For any two minimal prime n-ideals P and Q, PvO=L ;
(i)  Every prime n-ideal contains a unique minimal prime n-ideal;
(iv) For each prime n-ideal P, n(P) is a prime n-ideal.

Proof: (l) = (ii)' Let xeP-0. then <x>,cP-0 . Now,

<x> ﬂ<x>*:{n}cQ. <x>cQ . . . P
" " = So n=2% as Q is prime. Again X €

<x> CP L=<x> v<x> CP

Therefore, PvQ=L .
(i.)<:> (iii) is trivial.
(iii ) = (iv) is direct consequence of Proposition 3.3

(i ):> (i ) Suppose (iv) holds. First we shall show that for all x, ¥ €L With
<x> v<y> =1L

implies by theorem 3.1. Hence by (i),

<x>,N<y>,={n . If it does not hold, then there

* *
<x>,v<y> #L

implies

exists ©VEL with <¥>n n<y>,={n} such that .As L

is distributive, so by Stone’s separation theorem, there is a prime n-ideal P such that

* * : <yp>"
<x>,v<y>cP o <x>cP ,<y>chP imply *£7(P) and
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e n(P)

yen(P) . But n(P) is prime and so m(x,n,y) =n is contradictory.

Thus for all x, y€L with <x>nm<y>n:{”}
<x> v<y> =1L

[]

implies  that

. Hence by equivalent conditions of theorem 3.4, (i) holds.

We conclude the paper with the following result is an immediate consequence of
above theorem. This has also been proved separately in [6].

Theorem 3.4: Let F, (L) be an pseudo complemented distributive Lattice. Then the
following conditions are equivalent:
(i) F. (L) is Stone;

(i1) For any two minimal prime n-ideals P and Q,
are comaximal;

(iii)  Every prime n-ideal contains a unique minimal prime n-ideal;

(iv) For each prime n-ideal P, n(P) is a prime n-ideal. [

PvO=L, ¢ is, they
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