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ABSTRACT 

 
This paper is devoted to the estimation of scale-parameter for two-parameter 
exponential distribution using empirical Bayes procedure. Under the type-I 
censoring life test, we first choose the prior distribution of the scale-parameter and 
find its Bayes estimation, and then we use maximum likelihood method to obtain the 
estimation of the super-parameter which is included in the prior distribution. finally, 
the empirical estimation of Scale-parameter is derived from current samples. 
Moreover, an illustrative example is examined numerically by means of the Monte-
Carlo simulation, and this shows that such EB estimation is simple and efficient. 
 
1. Introduction 

The idea of Bayes and empirical Bayes (EB) approach is due to Robbines [1]. In 
recent years, A number of paper investigated the Bayes or empirical Bayes 
estimation of unknown parameter for specific distribution families, for example, 
Rayleigh [2], Gamma [3], Weibull [4], normal [5], Uniform [6], ect. Parameter 
estimation problems associated with the exponential distribution are of obvious 
interest in applied work. A.M.Sarhan [7] studied EB estimates in one-parameter 
exponential reliability model, Zhou [8-9] considered Bayes estimation and 
prediction for one-parameter and two exponential distribution, Suppose that the prior 
distribution of unknown parameter is unknown, Ye and Yang [10] considered the 
EB estimation of location parameter of two- parameter exponential lifetime 
distribution under type-II censoring model, and they obtained the convergence rate 
of EB estimation.  

The purpose of this paper is to investigate the EB estimation of scale-parameter 
for two- parameter exponential distribution under the type-I censoring life test. A 
type-I censoring life test (n, t0, n0) means that there are n units placed on the test 
which is terminated at a fixed time t0. The failure units are not replaced during the 
test. 
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The EB method has three steps. Firstly, we choose the prior distribution of the 
scale-parameter and get its Bayes estimation; then, use maximum likelihood method 
to obtain the estimation of the super-parameter which is included in the prior distri-
bution; finally, the empirical estimation of Scale-parameter is derived from current 
samples.  
 
2. Bayes estimation of scale-parameter 

Suppose that the life distribution of unit X follows the two-parameter exponent- 
tial distribution with the probability density function (pdf) ),|( σµtp given by 

)}(exp{),|( µσσσµ −−= ttp � 0,0 >>> σµt .                                                 (1) 
where µ is location-parameter, andσ is scale-parameter. Assume that the minimum 
life ( i.e.ensured life )µ is a known constant.  

In the special case ( 0=µ ), the distribution reduces to be ordinary one-
parameter exponential distribution, whose density function is  

0,0,)exp()|(0 >>−= σσσσ tttp . 
We now place n units and perform the type-I censoring life test. Suppose that the 
failure units number is r in time interval (0, t0). Where t0 is a fixed time. Failure 
times of r units are denoted by order statistics ,0)()2()1( tttt r ≤≤≤≤  .1 nr ≤≤ From 
[11]�we can prove that the associated density function of ),,,( )()2()1( rttt  is  
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where )|t(p i σ  and )|t(F 0 σ  respectively are regarded as density function and 
distribution function of the unit iX , 1 2, , ,i r= . 
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We choose the prior distribution of σ  is  
}exp{)( βσβσπ −= ,   0>σ                                           (3) 

Whereβ is a super-parameter. So, the posterior distribution ofσ is  
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Under the square error loss, The Bayes estimation of scale parameterσ is 
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3. Empirical Bayes estimation of scale-parameter 
As β is an unknown constant,σ̂ can not be used. In order to estimate β , we 

need to use the the maximum likelihood method. Since the life distribu- tion  of 
every unit X follows two-parameter exponential distribution, and its probability 
density function is given by (1). So, the margin density function of X is as follows 

0 0
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In order to obtain the maximum likelihood estimation of β , we just draw a 
conclusion that the equation )()( 21 ββ gg = has unique solution. The reason is as 
follows. 

For any ,0>β 1 1 1g ( ) 0, g ( ) 0( ), g ( ) ( 0)β β β β β> → →∞ →∞ →  
(1) 2 2 2
1 0( ) {( ( )[ ( ) ]} 0g r n r tβ β β β µ− − −= − + − − + − <
(2) 3 3 3
1 0( ) 2 ( )[2 2( ) ]} 0.g r n r tβ β β β µ− − −= + − − + − >  
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From above conclusion, we could conclude that the equation d lg L 0
dβ

= (i.e) 
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Using iterative computing method to obtain the solution, the iteration formula is 
as follows 
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Where ( )kβ is kth iteration value ( 1,2,k = ). (0)β is an initial value. If the iteration 
solution is denoted by β̂ and replacing β in (4) by β̂ , then we can obtain the EB 
estimator of the Scale-parameterσ . 

As a result, we have the following important theorem. 
Theorem Let loss function be square errors loss. Under the type-I censoring 

life test (n, t0,n0),the EB estimation of scale-parameterσ in two- parameter exponent 
-tial distribution (1)(µ is a known constant) is given as following expression (6), if 
the prior distribution is exponential distribution (3) and super-parameter is given by 
the maximum likelihood estimation β̂ . 

1
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Corollary Let loss function be square errors loss. Under the type-I censoring 
life test (n, t0,n0),the EB estimation of scale-parameterσ in two- parameter exponent- 
tial distribution  (µ is a known constant) is given as following expression (7), if the 
prior distribution is exponential distribution (3) and super-parameter is given by the 
maximum likelihood estimation β̂ . 
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Where β̂ is iteration solution of the following equation:  
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Where (0)β is an initial value.   
 
4. Numerical example 

Suppose that the prior distribution function of σ  is given by (3), and probability 
density function of two- parameter exponential distribution is  

( ) exp( ( 3)), 3p t t tσ σ= − − > . 
Let n=13, t0=16 and σ =0.085. By using Monte-Carlo simulation, we can get the 

failure times of type-I censoring life test (n, t0,n0). In the time interval (0, t0), failure 
times are  

t1       t2          t3                t4         t5          t6       t7         t8 
3.1005     4.0536     5.2314    6.5667     8.1082     9.9314    12.1629    15.7296 
 
Programming with C language to do the iteration. When the iteration times 

N=100, we get the iterative solution β̂ =8.387356. 
From the expression (6) of the theorem, we obtain that ˆ 0.079EBσ = , which is 

close to true value ofσ . 
 
5. Conclusion 

Using Bayes and maximum likelihood estimation method, we study the 
empirical Bayes estimation of scale- parameter for two- parameter exponent- tial 
distribution under the type –I censoring life test. The Monte-carlo simula- tion is 
used to examine the result of the empirical Bayes estimation. The simulation result 
shows that such EB estimation is simple and straightforward, and its precision is 
good. 
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