The EB Estimation of Scale-parameter for Twoparameter Exponential Distribution Under the Type-I Censoring Life Test

Yimin Shi and Weian Yan

Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an. 710072, P.R. China. E-mail: ymshi@nwpu.edu.cn

Received November 11, 2010; accepted November 20, 2010

ABSTRACT

This paper is devoted to the estimation of scale-parameter for two-parameter exponential distribution using empirical Bayes procedure. Under the type-I censoring life test, we first choose the prior distribution of the scale-parameter and find its Bayes estimation, and then we use maximum likelihood method to obtain the estimation of the super-parameter which is included in the prior distribution. finally, the empirical estimation of Scale-parameter is derived from current samples. Moreover, an illustrative example is examined numerically by means of the Monte-Carlo simulation, and this shows that such EB estimation is simple and efficient.

1. Introduction

The idea of Bayes and empirical Bayes (EB) approach is due to Robbines [1]. In recent years, A number of paper investigated the Bayes or empirical Bayes estimation of unknown parameter for specific distribution families, for example, Rayleigh [2], Gamma [3], Weibull [4], normal [5], Uniform [6], ect. Parameter estimation problems associated with the exponential distribution are of obvious interest in applied work. A.M.Sarhan [7] studied EB estimates in one-parameter exponential reliability model, Zhou [8-9] considered Bayes estimation and prediction for one-parameter and two exponential distribution, Suppose that the prior distribution of unknown parameter is unknown, Ye and Yang [10] considered the EB estimation of location parameter of two- parameter exponential lifetime distribution under type-II censoring model, and they obtained the convergence rate of EB estimation.

The purpose of this paper is to investigate the EB estimation of scale-parameter for two- parameter exponential distribution under the type-I censoring life test. A type-I censoring life test (n, t_0, n_0) means that there are n units placed on the test which is terminated at a fixed time t_0 . The failure units are not replaced during the test.

The EB method has three steps. Firstly, we choose the prior distribution of the scale-parameter and get its Bayes estimation; then, use maximum likelihood method to obtain the estimation of the super-parameter which is included in the prior distribution; finally, the empirical estimation of Scale-parameter is derived from current samples.

2. Bayes estimation of scale-parameter

Suppose that the life distribution of unit X follows the two-parameter exponenttial distribution with the probability density function (pdf) $p(t | \mu, \sigma)$ given by

$$p(t \mid \mu, \sigma) = \sigma \exp\{-\sigma(t - \mu)\} \quad t > \mu > 0, \sigma > 0.$$
(1)

where μ is location-parameter, and σ is scale-parameter. Assume that the minimum life (i.e.ensured life) μ is a known constant.

In the special case ($\mu = 0$), the distribution reduces to be ordinary oneparameter exponential distribution, whose density function is

$$p_0(t \mid \sigma) = \sigma \exp(-\sigma t), \qquad t > 0, \sigma > 0.$$

We now place n units and perform the type-I censoring life test. Suppose that the failure units number is r in time interval $(0, t_0)$. Where t_0 is a fixed time. Failure times of r units are denoted by order statistics $t_{(1)} \le t_{(2)} \le \cdots \le t_{(r)} \le t_0$, $1 \le r \le n$. From

[11] we can prove that the associated density function of $(t_{(1)}, t_{(2)}, \dots, t_{(r)})$ is

$$f(t_1, t_2, \dots, t_r \mid \sigma) = \frac{n!}{(n-r)!} \prod_{i=1}^n p(t_i \mid \sigma) [1 - F(t_0 \mid \sigma)]^{n-r}, \quad t_1 \le t_2 \le \dots \le t_r \le t_0, 1 \le r \le n.$$
(2)

where $p(t_i | \sigma)$ and $F(t_0 | \sigma)$ respectively are regarded as density function and distribution function of the unit X_i , $i = 1, 2, \dots, r$.

$$p(t_i \mid \mu, \sigma) = \sigma \exp\{-\sigma(t_i - \mu)\} \quad t_i > \mu > 0, \sigma > 0.$$

$$F(t_0 \mid \sigma) = 1 - \exp\{-\sigma(t_0 - \mu)\} \quad t_0 > \mu > 0.$$

Let $t=(t_1, t_2, \dots, t_r)$, then we can get $f(t \mid \sigma)$.

$$f(t \mid \sigma) = \frac{n!}{(n-r)!} \prod_{i=1}^{n} p(t_i \mid \sigma) [1 - F(t_0 \mid \sigma)]^{n-r}$$

= $\frac{n!}{(n-r)!} \prod_{i=1}^{r} \sigma \exp\{-\sigma(t_i - \mu)\} [\exp\{-\sigma(t_0 - \mu)\}]^{n-r}$
= $\frac{n!}{(n-r)!} \sigma^r \exp\{-\sigma\sum_{i=1}^{r} (t_i - \mu)\} [\exp\{-\sigma(t_0 - \mu)\}]^{n-r}$
= $\frac{n!}{(n-r)!} \sigma^r \exp\{-\sigma\sum_{i=1}^{r} (t_i - \mu) + (n-r)(t_0 - \mu)]\}$.

We choose the prior distribution of σ is

$$\tau(\sigma) = \beta \exp\{-\beta\sigma\}, \quad \sigma > 0$$
(3)

Where β is a super-parameter. So, the posterior distribution of σ is

$$h(\sigma \mid t) = \frac{f(t \mid \sigma)}{\int_{0}^{+\infty} f(t \mid \sigma) \pi(\sigma) d\sigma} = \frac{\sigma^{r} \exp\{-\sigma [\sum_{i=1}^{r} (t_{i} - \mu) + (n - r)(t_{0} - \mu) + \beta]\}}{\int_{0}^{+\infty} \sigma^{r} \exp\{-\sigma [\sum_{i=1}^{r} (t_{i} - \mu) + (n - r)(t_{0} - \mu) + \beta]\}} d\sigma$$
$$= \sigma^{r} [\sum_{i=1}^{r} (t_{i} - \mu) + (n - r)(t_{0} - \mu) + \beta]^{r+1} \exp\{-\sigma [\sum_{i=1}^{r} (t_{i} - \mu) + (n - r)(t_{0} - \mu) + \beta]\} [\Gamma(r + 1)]^{-1}$$

Under the square error loss, The Bayes estimation of scale parameter σ is

$$\hat{\sigma}_{B} = E(\sigma \mid t) = \int_{0}^{+\infty} \sigma h(\sigma \mid t) d\sigma$$

$$= \int_{0}^{+\infty} \sigma^{r+1} [\sum_{i=1}^{r} (t_{i} - \mu) + (n - r)(t_{0} - \mu) + \beta]^{r+1} \exp\{-\sigma [\sum_{i=1}^{r} (t_{i} - \mu) + (n - r)(t_{0} - \mu) + \beta]\} [\Gamma(r+1)]^{-1} d\sigma$$

$$= (r+1) [\sum_{i=1}^{r} (t_{i} - \mu) + (n - r)(t_{0} - \mu) + \beta]^{-1}$$
(4)

3. Empirical Bayes estimation of scale-parameter

As β is an unknown constant, $\hat{\sigma}$ can not be used. In order to estimate β , we

need to use the maximum likelihood method. Since the life distribu- tion of every unit X follows two-parameter exponential distribution, and its probability density function is given by (1). So, the margin density function of X is as follows

$$f_{X}(t) = \int_{0}^{\infty} p(t \mid \mu, \sigma) \pi(\sigma) d\sigma = \int_{0}^{\infty} \beta \exp(-\sigma\beta) \sigma \exp[-\sigma(t-\mu)] d\sigma$$
$$= \int_{0}^{\infty} \beta \sigma \exp[-\sigma(t-\mu+\beta)] d\sigma = \beta(t-\mu+\beta)^{-2} .$$
$$1 - F_{X}(t_{0}) = \int_{t_{0}}^{\infty} f_{X}(t) dt = \int_{t_{0}}^{\infty} \beta(t-\mu+\beta)^{-2} dt = \beta(t_{0}-\mu+\beta)^{-1} .$$

Hence, the associate density function of $(t_{(1)}, t_{(2)}, \dots, t_{(r)})$ is

$$\begin{split} L &= \frac{n!}{(n-r)!} [\prod_{i=1}^{r} f_{X}(t_{i})] [1 - F_{X}(t_{0})]^{n-r} = \frac{n!}{(n-r)!} \beta^{r} [\prod_{i=1}^{r} (t_{i} - \mu + \beta)^{-2}] \beta^{n-r} [\beta + t_{0} - \mu]^{-(n-r)} \cdot \\ lg L &= lg \frac{n!}{(n-r)!} + r (lg \beta) - 2 \sum_{i=1}^{r} lg(t_{i} - \mu + \beta) + (n-r) [lg \beta - lg(t_{0} - \mu + \beta)] \cdot \\ \frac{d lg L}{d\beta} &= \frac{r}{\beta} - 2 \sum_{i=1}^{r} \frac{1}{(t_{i} - \mu + \beta)} + (n-r) (\frac{1}{\beta} - \frac{1}{t_{0} - \mu + \beta}) = g_{1}(\beta) - g_{2}(\beta) \cdot \\ \\ Where g_{1}(\beta) &= \frac{r}{\beta} + (n-r) (\frac{1}{\beta} - \frac{1}{t_{0} - \mu + \beta}) - g_{2}(\beta) = 2 \sum_{i=1}^{r} \frac{1}{t_{i} - \mu + \beta} , \ t_{0} \geq t_{i} > \mu \, . \end{split}$$

In order to obtain the maximum likelihood estimation of β , we just draw a conclusion that the equation $g_1(\beta) = g_2(\beta)$ has unique solution. The reason is as follows.

For any $\beta > 0$, $g_1(\beta) > 0, g_1(\beta) \to 0(\beta \to \infty), g_1(\beta) \to \infty(\beta \to 0)$ $g_1^{(1)}(\beta) = -\{(r\beta^{-2} + (n-r)[\beta^{-2} - (\beta + t_0 - \mu)^{-2}]\} < 0$ $g_1^{(2)}(\beta) = 2r\beta^{-3} + (n-r)[2\beta^{-3} - 2(\beta + t_0 - \mu)^{-3}]\} > 0.$ Where $g_1^{(k)}(\beta) = \frac{d^k g_1(\beta)}{d\beta^k}$, k = 1, 2. One arrives that $g_1(\beta)$ is strict monotone increasing concave function in $(0, +\infty)$. Similarly

For any
$$\beta > 0$$
, $g_2(\beta) > 0$, $g_2(\beta) \to 0$, $(\beta \to \infty)$, and $g_2(\beta) \to 2\sum_{i=1}^r \frac{1}{2t_i - \mu}$, $(\beta \to 0)$
 $g_2^{(1)}(\beta) = -2\sum_{i=1}^r (t_i - \mu + \beta)^{-2} < 0$ £ $g_2^{(2)}(\beta) = 4\sum_{i=1}^r (t_i - \mu + \beta)^{-3} > 0$.

Where $g_2^{(k)}(\beta) = \frac{d^k g_2(\beta)}{d\beta^k}$, k = 1, 2. We get that $g_2(\beta)$ is also strict monotone increasing

concave function in $(0, +\infty)$. Moreover

$$\lim_{\beta \to \infty} \frac{g_1(\beta)}{g_2(\beta)} = \lim_{\beta \to \infty} [\frac{r}{\beta} + (n-r)(\frac{1}{\beta} - \frac{1}{t_0 - \mu + \beta})](2\sum_{i=1}^r \frac{1}{t_i - \mu + \beta})^{-1} = \frac{1}{2} < 1$$

From above conclusion, we could conclude that the equation $\frac{d \lg L}{d\beta} = 0$ (i.e)

 $g_1(\beta) = g_2(\beta)$) has unique solution. From the equation $\frac{d \lg L}{d\beta} = 0$, we can get

$$\beta = r [2\sum_{i=1}^{r} \frac{1}{t_i - \mu + \beta} - (n - r) \frac{t_0 - \mu}{\beta(t_0 - \mu + \beta)}]^{-1}$$

Using iterative computing method to obtain the solution, the iteration formula is as follows

$$\beta^{(k+1)} = r \left[2\sum_{i=1}^{r} \frac{1}{t_i - \mu + \beta^{(k)}} - (n - r) \frac{t_0 - \mu}{\beta^{(k)}(t_0 - \mu + \beta^{(k)})} \right]^{-1}$$
(5)

Where $\beta^{(k)}$ is kth iteration value $(k = 1, 2, \dots)$. $\beta^{(0)}$ is an initial value. If the iteration solution is denoted by $\hat{\beta}$ and replacing β in (4) by $\hat{\beta}$, then we can obtain the EB estimator of the Scale-parameter σ .

As a result, we have the following important theorem.

Theorem Let loss function be square errors loss. Under the type-I censoring life test (n, t_0,n_0), the EB estimation of scale-parameter σ in two- parameter exponent -tial distribution (1)(μ is a known constant) is given as following expression (6), if the prior distribution is exponential distribution (3) and super-parameter is given by the maximum likelihood estimation $\hat{\beta}$.

$$\hat{\sigma}_{_{EB}} = (r+1)\left[\sum_{i=1}^{r} (t_i - \mu) + (n-r)(t_0 - \mu) + \hat{\beta}\right]^{-1}.$$
(6)

Corollary Let loss function be square errors loss. Under the type-I censoring life test (n, t_0,n_0), the EB estimation of scale-parameter σ in two- parameter exponenttial distribution (μ is a known constant) is given as following expression (7), if the prior distribution is exponential distribution (3) and super-parameter is given by the maximum likelihood estimation $\hat{\beta}$.

$$\hat{\sigma}_{EB} = (r+1) \left[\sum_{i=1}^{r} t_i + (n-r)t_0 + \hat{\beta} \right]^{-1}.$$
(7)

Where $\hat{\beta}$ is iteration solution of the following equation:

$$\beta^{(k+1)} = r \left[2 \sum_{i=1}^{r} \frac{1}{t_i + \beta^{(k)}} - (n-r) \frac{t_0}{\beta^{(k)}(t_0 + \beta^{(k)})} \right]^{-1}, \quad k = 0, 1, 2, \cdots$$

Where $\beta^{(0)}$ is an initial value.

4. Numerical example

Suppose that the prior distribution function of σ is given by (3), and probability density function of two- parameter exponential distribution is

 $p(t) = \sigma \exp(-\sigma(t-3)), \quad t > 3.$

Let n=13, t₀=16 and σ =0.085. By using Monte-Carlo simulation, we can get the failure times of type-I censoring life test (n, t₀,n₀). In the time interval (0, t₀), failure times are

_	t_1	t_2	t_3	t_4	t5	t_6	t ₇	t ₈	
	3.1005	4.0536	5.2314	6.5667	8.1082	9.9314	12.1629	15.7296	

Programming with C language to do the iteration. When the iteration times N=100, we get the iterative solution $\hat{\beta}$ =8.387356.

From the expression (6) of the theorem, we obtain that $\hat{\sigma}_{EB} = 0.079$, which is close to true value of σ .

5. Conclusion

Using Bayes and maximum likelihood estimation method, we study the empirical Bayes estimation of scale- parameter for two- parameter exponent- tial distribution under the type –I censoring life test. The Monte-carlo simula- tion is used to examine the result of the empirical Bayes estimation. The simulation result shows that such EB estimation is simple and straightforward, and its precision is good.

REFERENCES

- 1. H. Robbinrs, 1964, 'The empirical Bayes approach to statistical decision problems,' *Ann. Math. stat.*, 35, 1-20.
- 2. Younshik Chung,1995, 'Estimation of scale parameter from Rayleigh distribution under entropy loss,' *The Korean Journal of computational and applied Mathematics*,1,33-40.
- 3. Younshik Chung, 1996, 'Simultaneous estimation of gamma scale parameter under entropy loss: Bayes approach, '*The Korean Journal of Computational and Applied Mathematics*, 1, 55-64.
- 4. Yushuang Liu, lixin Song,2009, 'The EB Estimation of Scale-parameter for

Two-parameter Weibull distribution under the type-II cesoring Life Test,' *Journal of Jilin Normal University*, 2, 16-18.

- 5. G. Jugde, R.S. Hill, M.E.Bock, 1990, 'An adaptive empirical Bayes estimator of the multivariate normal mean under quadratic loss,' *J. Econometrics* 44, 189-213.
- 6. J. Gao, 1990'Empirical Bayes absolute error loss estimation for parameter of uniform distribution families $u(\theta, c\theta)$, '*Acta Math.Sin.*33, 486-496.
- 7. A.M. Sarhan, 2003, 'Empirical Bayes estimates in exponential reliability model,' *Applied Mathematics and Computation* 135, 319-332.
- 8. Y.Q. Zhou, 1998, 'Prediction problem for exponential distribution,' *Structure and Environment Engineering*, 2, 1-13.
- 9. Y.Q. Zhou, W.S. Liu, S.L.Tian, 2004, 'Reliability assessment of two-parameter exponential distribution,' *Quality & Reliability*, 1, 5-10.
- E.H. Ye, J.L. Yang,1995, 'EB estimation of location-parameter of two-Parameter meter exponential lifetime distribution for the Type-II Censoring model,'*Journal of Nanjing University of Aeronautics & Astronautics*, 3, 333-340.
- 11. Kan Cheng, 1999, 'The life distribution and the theory for reliability mathematics,' Beijing, Science Press.