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ABSTRACT 
 

An ideal M of a lattice L is called a modular ideal if for all ideals ( )LIJI ∈,  with 

IJ ⊆ , the relation ( ) ( ) JMIJMI ∨∩=∨∩  is satisfied. In this paper the 
authors have introduced the notion of modular n-ideals of a lattice. They have given 
several characterizations and properties of modular n-ideals when n is a neutral 
element in lattice L. They proved that the principal n-ideal ns ><  is a  modular n-
ideal if and only if ns ∧  and ns∨  are modular elements in (n] and [n) 
respectively. Finally, they have characterized modular n-ideals with the help of 
relative n-annihilators. 
 
Keywords: Modular n-ideal, Neutral element, Principal n-ideal, Relative 
annihilators, Relative n-annihilators 

 
1. Introduction 

Distributive, standard and neutral elements (ideals) of a lattice were studied 
extensively by Gratzer and Schmidt in [3], also see [2]. These elements are needed 
to study a larger class of non-distributive lattices. Again Talukder and Noor have 
introduced the notion of modular elements and ideals in [11] and [12] for directed 
below join semi lattices. On the other hand Noor and Latif have studied the standard 
n-ideals of a lattice in [9]. In a very recent paper [1] have studied the distributive n-
ideals of a lattice. In this paper we have introduced the concept of modular n-ideals 
of a lattice and have included some of their characterizations. 

 
         An element m of a lattice L is called modular if for all Lyx ∈,  with 

,xy≤ ( )ymx ∨∧  = ( ) .ymx ∨∧  On the other hand, Malliah and Bhatta in [5] 
have called an element m of a lattice modular if for all Lyx ∈,  with yx ≤ , 
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mymx ∧=∧  and mymx ∨=∨  imply that yx = . It is easy to see that both 
the definitions are equivalent. 
 An ideal I of a lattice L is called modular if it is a modular element of the 
ideal lattice I(L). In [11] and [12] authors have given several characterizations of 
modular elements and modular ideals of a lattice.  
 
 By [2,3] an element s of a lattice L is called a standard element if 

( ) ( ) ( )sxyxsyx ∧∨∧=∨∧  for all Lyx ∈, . It is called neutral if  
(i) s is standard in L and  
(ii) ( ) ( ) ( )ysxsyxs ∧∨∧=∨∧  for all Lyx ∈, .  
s is called a central element if it is neutral and complemented in each 

interval containing it. 
 
 For a fixed element n of a lattice L, a convex sublattice containing n is 
called an n-ideal. The idea of n-ideals is a kind of generalizations of both ideals and 
filters of a lattice. The set of all n-ideals of a lattice L is denoted by In(L), which is 
an algebraic lattice under set-inclusion. Moreover, { }n  and L are respectively the 
smallest and the largest elements of In(L).  

 
For any two n-ideals I and J of L, it is easy to check that 

=∈=∩=∧ xLxJIJI :{  ( )jnim ,,  for some }, JjIi ∈∈ , where 

( ) ( ) ( ) ( )xzzyyxzyxm ∧∨∧∨∧=,,  and 2211:{ jixjiLxJI ∨≤≤∧∈=∨  , for 

some Iii ∈21, and }, 21 Jjj ∈ .  
 

The n-ideal generated by a finite numbers of elements maaa ...,,, 21  is 
called a finitely generated n-ideal, denoted by nmaaa >< ...,,, 21 . Moreover,  

nmaaa >< ...,,, 21  is the interval 
naaanaaa mm ∨∨∨∨∧∧∧∧ ...,...[ 2121 ]. The n-ideal generated by a single 

element a is called a principal n-ideal, denoted by na >< and 
],[ nanaa n ∨∧=>< .  

 
The set of all principal n-ideals of a lattice L is denoted by ( )LPn . By [4] for 

a standard element ( )LPLn n,∈  is a meet semi lattice and 
( ) nnn bnamba >=<><∩>< ,, . ( )LPn  is not necessarily a lattice. But if  n is 

central, then ( )LPn  is a lattice. For detailed  literature on n-ideals we refer the reader 
to consult [4], [8] and [9].  
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2. Modular n-Ideals of a Lattice 
An n-ideal M of a lattice L is called a modular n-ideal if it is a modular element 

of the lattice ( )LIn . In other words M is called modular if for all ( )LIJI n∈,  with 
( ) ( ) ., JMIJMIIJ ∨∩=∨∩⊆  

 
We know from [11] that a lattice L is modular if and only if its every element is 

modular. Also from [4], we know that for a neutral element n of a lattice L, L is 
modular if and only if ( )LIn  is so. Thus, for a neutral element n, the lattice L is 
modular if and only if its every n-ideal is modular.  

Following result gives a characterization of modular n-ideals of a lattice. 
 

Theorem 2.1: ( )LIM n∈  is modular if and only if for any Lba ∈,    
with nn ab >⊆<>< , ( ) ( ) .nnnn bMabMa ><∨∩><=><∨∩><    
 
Proof: Suppose M is modular. Then above relation obviously holds from the 
definition. Conversely, suppose ( ) ( ) nnnn bMabMa ><∨∩><=><∨∩><  for 
all Lba ∈,  with .nn ab >⊆<><  Let ( )LITS n∈,  with  ST ⊆ . We need to show 
that ( ) ( ) TMSTMS ∨∩=∨∩ . Clearly ( ) ( )TMSTMS ∨∩⊆∨∩ . To 
prove the reverse inclusion let ( )TMSx ∨∩∈ . Then Sx∈ and TMx ∨∈ . 
Then 11 tmxtm ∨≤≤∧  for some .,,, 11 TttMmm ∈∈  Thus, 

ntmnx ∨∨≤∨ 11  which implies nn ntnmnx >∨<∨>∨∈<∨ 11  

nntM >∨<∨⊆ 1 . Moreover, nntxnx >∨∨∈<∨ 1  and 

nn ntntx >∨⊇<>∨∨< 11 . Hence by the given condition, 

.)()(
)(

11

11

TMSntMntx
ntMntxnx

nn

nn

∨∩⊆>∨<∨∩>∨∨<
=>∨<∨∩>∨∨∈<∨

 

By a dual proof of above we can easily see that TMSnx ∨∩∈∧ )( . Thus by 
convexity TMSx ∨∩∈ )( . Therefore, TMSTMS ∨∩=∨∩ )()( , and so M is 
modular.   
 
 Now we give another characterization of modular n-ideals when n is a 
neutral element in the lattice. 
 
Therefore 2.2:  Suppose n is a neutral element of a lattice L. An n-ideal M is 
moudular if and only if for any nyMx ><∨∈  with nn xy >⊆<>< , 

)()()()( 21 yxmxyxmxx ∨∧∨=∧∨∧=  for some Mmm ∈21, . 
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Proof: Suppose M is modular and nyMx ><∨∈ . Then 

nnnn yMxyMxx ><∨∩><=><∨∩>∈< )()(  . This implies 
nyqxnyp ∨∨≤≤∧∧  for some Mxqp n ∩>∈<, . By [6], 

Mxq n ∩>∈< implies that 
)())(()()()( nqnqxnqnxqxq ∧∨∨∧=∧∨∧∨∧= . Thus, 

nxnynqxnx ∨≤∨∨∨∧≤∨ ))(( , which implies  
=∨∨∧∨∨∧=∨∨∨∧=∨ nnxynqxnynqxnx ))(())(())((  

nyxnqx ∨∧∨∨∧ )())(( , as n is neutral. Hence by the neutrality of n again, 
])())([()( nyxnqxxnxxx ∨∧∨∨∧∧=∨∧= = 

=∧∨∧∨∨∧=∧∨∧∨∨∧∧ )()())(()()])())([(( nxyxnqxnxyxnqxx  
)())(( yxnqx ∧∨∨∧ , which is the first relation where Mnqm ∈∨=1 . A dual 

proof of above established the second relation.  
 
 Conversely, let nn xy >⊆<>< . By theorem 2.1, we need to show that 

nnnn yMxyMx ><∨∩><=><∨∩>< )()( . Clearly R.H.S SHL ..⊆ . To 
prove the reverse inclusion let )( nn yMxt ><∨∩>∈< . Then nxt >∈<  and 

nyMt ><∨∈ . Then nymtnym ∨∨≤≤∧∧ 1  for some Mmm ∈1, .  
Thus, nymnyt ∨∨≤∨∨ 1  and so nnyMnyt >∨<∨∈∨∨ and 

nn nytny >∨∨⊆<>∨< . So by the given condition 
nytnyt ∨∨=∨∨ (( ) )() nym ∨∨′∧ for some Mm ∈′ . Since nxyt >∈<, , so 

nxnyt >∈<∨∨ . Moreover, by the neutrality of n, 
))(( mnyt ′∧∨∨ ynmnytny ∨∨′∧∨∨=∨∨ )]()[()(  = 

nn yMxymnnytm ><∨∩><∈∨′∨∨ )(),,( . Therefore, 

nn yMxnyt ><∨∩><∈∨∨ )( . By a dual proof we can show that 

nn yMxnyt ><∨∩><∈∧∧ )( . Thus by the convexity, 

nn yMxt ><∨∩><∈ )( . Therefore, 

nnnn yMxyMx ><∨∩><=><∨∩>< )()(  and so by theorem 2.1, M is 
modular.   

 
In [5], it has been proved that for a modular ideal M and an arbitrary ideal I 

if MI ∨ and MI ∩ are principal, then I is itself principal. Now we generalize this 
result for modular n-ideals. It should be mentioned that similar result on standard n-
ideals has been proved by Noor and Latif in [10]. 
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Theorem 2.3: Let n be a neutral element of a lattice L. Suppose M is a modular n-
ideal and I is any n-ideal of L. If naIM >=<∨  and nbIM >=<∩ , then I is 
principal.  
 
Proof: Here naIM >=<∨  = ],[ nana ∨∧ , then imna ∨≤∨  for some 

., IiMm ∈∈  Since m, nai ∨≤ , so imna ∨=∨ . Similarly 11 imna ∧=∧ for 
some Mm ∈1 and Ii ∈1 . Again, 

nbIM >=<∩  implies nabna ∨≤≤∧ . Thus, 

],[],[ 11 nmnmnibnibMIMa n ∨∧⊇∨∨∧∧∨⊇∨=><  ,[ 1 nib ∧∧∨  

nanananib ><=∨∧=∨∨ ],[] . This implies 
],[ 1 nibnibMIM ∨∨∧∧∨=∨ . On the other hand, 

nnn bbMnibnibMIMb >=<><∩⊇∨∨∧∧∩⊇∩=>< ],[ 1  implies that 
=∩ IM   

],[ 1 nibnibM ∨∨∧∧∩  . Since Inibnib ⊆∨∨∧∧ ],[ 1 , So by the definition 
of modularity of M in [5],we have =I  ],[ 1 nibnib ∨∨∧∧ . Now by [4], we 
know that for a neutral element n, any finitely generated n-ideal contained in a 
principal n-ideal is principal. Since nanibnib >⊆<∨∨∧∧ ],[ 1 , so I is 
principal.     
 
Theorem 2.4: If M is a modular n-ideal and I is any n-ideal of a lattice L, then 

MI ∩ is also modular in the sublattice I.  
Proof: Let J, K be any two n-ideals contained in I with JK ⊆ . Then 

)]([])[( KMIJKMIJ ∨∩∩=∨∩∩ , as M is modular and IK ⊆ . Thus,  
)(])[( KMIJKMIJ ∨∩∩=∨∩∩  = KMJKMJ ∨∩=∨∩ )()(  (using the 

modularity of M again) = KMIJ ∨∩∩ ))(( . This implies MI ∩ is a modular n-
ideal in I.       
                                                                                                                                                                  
      Relative annihilators in lattices have been studied by many authors including 
Mandelker [6]. For  Lba ∈, ,  { }baxLxba ≤∧∈>=< :,  is known as annihilator 
of a relative to b, or simply a relative 
annihilator. In presence of distributivity, >< ba,  is an ideal of L.  
Now we give a characterization of modular element of a lattice using relative 
annihilators. 
 
Theorem 2.5 : An element Lm∈  is modular if and only if whenever ab ≤ , ( ]bx∈  
and >∈< bam , ,  then >∈<∨ bamx , , .,, Lxba ∈  
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Proof:  Suppose m is modular. Since  ,, >∈< bam  so .bma ≤∧  Also .abx ≤≤  
Thus by modularity of m, .)()( bxmaxma ≤∨∧=∨∧  This implies 

., >∈<∨ baxm  Conversely, let the given condition holds. Suppose Lzx ∈,  with 
.xz ≤ Then xxmz ≤∧∨ )(  and ( ])( xmzz ∧∨∈ . Also, )( xmzxm ∧∨≤∧  

implies >∧∨∈< )(, xmzxm . Then by the given condition, 
.)(, >∧∨∈<∨ xmzxmz This implies .)()( zxmmzx ∨∧≤∨∧  Since the 

reverse inequality is trivial, so m is a modular element.       
 
Theorem 2.6: For an element s of a lattice L, ns ><  is modular if and only if ns ∧  
and ns∨  are 
     modular in ( ]n  and [ )n  respectively. 
Proof:  Let ns ∧  and ns∨  are modular in ( ]n  and [ )n  respectively. Suppose 

nn ab >⊆<>< , 
., Lba ∈  Then nanbnbna ∨≤∨≤∧≤∧ . So, )( nnn bsa ><∨><∩>< = 

],[],[ nbsnbsnana ∨∨∧∧∩∨∧ = )()(),()( nbsnanbsna ∨∧∧∨∧∧∨∧ = 
)]())()(()),()(()[( nbnsnanansnb ∨∨∨∧∨∧∨∧∧∧ . Again, 

=><∨><∩>< nnn bsa )(  
],[)]()(),()[( nbnbnsnansna ∨∧∨∨∧∨∧∨∧  = 

)]())()(()),()(()[( nbnsnansnanb ∨∨∨∧∨∧∨∧∧∧ . Thus 
=><∨><∩>< )( nnn bsa  

nnn bsa ><∨><∩>< )( . Hence by Theorem 2.1, ns >< is modular. 
Conversely let ns ><  be modular. Suppose nanbn ∨≤∨≤ . Then 

>∨>⊆<∨< nanb , and 

nnnnnn nbsnanbsna >∨<∨><∩>∨<=>∨<∨><∩>∨< )()( . Then by 
a routine calculation, )]())()((,[)]()(,[ nbnsnannbsnan ∨∨∨∧∨=∨∨∧∨ . 
This implies ))()(()( nbnsna ∨∨∨∧∨ = )())()(( nbnsna ∨∨∨∧∨ , and so 

ns∨  is modular in [ )n . Similarly ns ∧  is also modular in ( ]n .  
                                                                                                                                                             
 In [7], Noor and Ayub has introduced the notion of relative n-annihilators. 
For Lba ∈,  and a fixed element Ln∈ , 

{ } { }nbxnamnbLxbxnamLxba n
n ∨≤≤∧∈=>∈<∈=>< ),,(:),,(:,  is 

called the annihilator of a relative to b around the element n or simply a relative n-
annihilator. 
 It is easy to see that for all nbaLba ><∈ ,,, is always a convex subset 
containing n, but not necessarily an n-ideal. But in presence of distributivity of L, 
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nba >< ,  is an n-ideal. Moreover =>< nba,  >><><< nn ba , ,relative annihilator 

in ).(LIn  
 
 We conclude the paper with the following characterization of modular n-
ideals with the help of relative n-annihilators. 
 
Theorem 2.7: Let n be a neutral element in a lattice L. For an element Ls∈ , the 
following conditions are equivalent. 
                     i) ns ><  is modular, 

                    ii) For nn ab >⊆<>< and nbas >∈< ,  implies 
nbaxsxs >∈<∨∧ ,,  for all  nbx >∈< . 

Proof: )()( iii ⇒ . Suppose (i) holds, nn ab >⊆<>< and nbas >∈< , .Then by 
Theorem 2.6, ns∨  is modular in [ )n . Also, nbsnam >∈<),,( . Then 

nbnsnasa ∨≤∧∨∧∨∧ )()()( , which implies 
 nbsa ∨≤∧ . Thus, 

=∨∨∨∧∨=∨∨∧∨=∨∨ ))()(()()()(),,( nbnsnanbsnanbsnam  
=∨∨∨∧∨ )())()(( nbnsna  nbnbsa ∨=∨∨∧ )( , as n is neutral. Hence  

nbnbsnam >∈<∨∨ ),,( , and so nbanbs >∈<∨∨ , . Again ns ∧  is modular in 

( ].n  So a similar proof shows that nbanbs >∈<∧∧ , . Now for nbx >∈< , 
nbxnb ∨≤≤∧ . Then nbsxsxsnbs ∨∨≤∨≤∧≤∧∧  implies 

nbaxsxs >∈<∨∧ ,, , by convexity. 
)()( iii ⇒ . Suppose (ii) holds and let [ )nzx ∈,  with .zx ≤  Then 

zznsx ≤∧∨∨ ))(( , which implies .))(( nn zznsx >⊆<>∧∨∨<  Now 
≤x ))(( znsx ∧∨∨  implies ∈x .))(( nznsx >∧∨∨<  Again 

))(())( znsxzns ∧∨∨≤∧∨  implies 
.))(()(),,( nznsxznsznnsm >∧∨∨∈<∧∨=∨  Hence 

.))((, nznsxzns >∧∨∨∈<∨ Thus by (ii),  
∈∨∨ xns .))((, nznsxz >∧∨∨< That is, ))(()( znsxzxns ∧∨∨≤∧∨∨ , 

which implies ns∨  is modular in [ )n . A dual proof of above shows that ns ∧  is 
also modular in ( ]n . Hence by Theorem 2.6, ns ><  is modular.   
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