Jordan Left Derivations of Two Torsion Free ΓM – Modules

A.C.Paul and Amitabh Kumer Halder

Department of Mathematics University of Rajshahi Rajshahi University – 6205 Rajshahi, Bangladesh <u>acpaul_math@yahoo.com</u>

Received November 4, 2009; accepted November 11, 2009

ABSTRACT

Let M be a Γ -ring and X be a 2-torsionfree left Γ M-module. The purpose of this paper is to investigate Jordan left derivations on M considering $a\alpha\beta\beta c=a\betab\alpha c$, for

every $a,b,c \in M$ and $\alpha,\beta \in \Gamma$. We show that the existence of a nonzero Jordan left derivation of M into X implies M is commutative. We also show that if X = M is a semiprime Γ -ring, then the derivation is a mapping from M into its centre. Finally we show that if M is a prime Γ - ring, then every Jordan left derivation d: $M \rightarrow M$ is a left derivation.

Mathematics Subject Classification: Primary 16Y30, 16W25; Secondary 16U80.

Keywords: n-torsionfree, Jordan left derivations, left Γ M-modules, commutativity, prime Γ -rings, semiprime Γ -rings.

1. Introduction

Let M and Γ be additive abelian groups. M is said to be a Γ -ring if there exists a mapping MX Γ XM \rightarrow M (sending (x, α ,y) into x α y) such that

(a) $(x + y) \alpha z = x\alpha z + y\alpha z$,

 $x(\alpha + \beta)y = x\alpha y + x\beta y$,

 $x\alpha (y + z) = x\alpha y + x\alpha z$,

(b) $(x\alpha y)\beta z = x\alpha (y\beta z)$,

for all $x,y,z \in M$ and $\alpha,\beta \in \Gamma$.

A Γ -ring M is commutative if $a\alpha b = b\alpha a$ for all $a, b \in M$ and $\alpha \in \Gamma$. A subset A of a Γ -ring M is a left(right) ideal of M if A is an additive subgroup of M and $M\Gamma A = \{m\alpha a: m \in M, \alpha \in \Gamma, a \in A\}(A\Gamma M)$ is contained in A. The centre of M, written as Z(M), is the set of those elements in M that commute with every element in M i.e., $Z(M) = \{m \in M: m\alpha x = x\alpha m, \text{ for all } x \in M \text{ and } \alpha \in \Gamma \}$. M is prime if $a\Gamma M\Gamma b = 0$ with $a, b \in M$, then a = 0 or b = 0. M is semiprime if $a\Gamma M\Gamma a = 0$ with $a \in M$, then a = 0.

Let M be a Γ -ring and X be an additive abelian group. X is a left Γ M-module if there

exists a mapping MXFXX \rightarrow X (sending (m, α ,x) into m α x) such that

(a) $(m_1 + m_2) \alpha x = m_1 \alpha x + m_2 \alpha x$,

(b) ma $(x_1 + x_2) = m\alpha x_1 + m\alpha x_2$,

(c) $(m_1 \alpha m_2)\beta x = m_1 \alpha (m_2 \beta x)$,

for all $m, m_1, m_2 \in M$, $x, x_1, x_2 \in X$ and $\alpha, \beta \in \Gamma$.

X is n-torsionfree if nx = 0, for $x \in M$ implies x = 0,where n is an integer. An additive mapping d: $M \to X$ is a derivation if $d(a\alpha b) = a\alpha d(b) + d(a) \alpha b$, a left derivation if $d(a\alpha b) = a\alpha d(b) + b\alpha d(a)$, a Jordan derivation if $d(a\alpha a) = a\alpha d(a) + d(a) \alpha a$ and a Jordan left derivation if $d(a\alpha a) = 2a\alpha d(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$.

Y.Ceven [4] studied on Jordan left derivations on completely prime Γ -rings. He obtained that the existence of a nonzero Jordan left derivation on a completely prime Γ -ring makes Γ -ring commutative with an assumption. He also showed that a Jordan left derivation on a completely prime Γ -ring is a left derivation with the same assumption. In this paper, an example of a Jordan left derivation is given for Γ -rings. Mustafa Asci and Sahin Ceran [6] investigated a nonzero left derivation d on a prime Γ -ring M for which M is commutative with the conditions $d(U) \subseteq U$ and d^2 - $(U) \subseteq Z$, where U is an ideal of M and Z is the centre of M. They also showed that M is commutative if d_1 and d_2 are nonzero left and right derivations on M and $d_2(U) \subseteq U$ and $d_1d_2(U) \subseteq Z$.

In [8], Sapanci and Nakajima defined a derivation and a Jordan derivation on Γ -rings and showed that a Jordan derivation on a certain type of completely prime Γ -rings is a derivation. They also gave examples of a derivation and a Jordan derivation of Γ -rings.

Bresar and Vukman [2] proved that every Jordan derivation on a prime ring is a derivation. Furthermore, in [3], Bresar and Vukman investigated the existence of a nonzero Jordan left derivation of R into X which makes R commutative, where R is a ring and X is a 2-torsionfree and 3-torsionfree left R-module.

In [5], Jun and Kim proved their results without the property 3-torsionfree. In this paper, we modify the results of Jun and Kim [5] and a part of M.Bresar and J.Vukman [3] in Γ -rings with Jordan left derivations. We prove that the existence of a nonzero Jordan left derivation of M into X implies M is commutative. We also show that the semiprimeness of the Γ -ring X = M makes the mapping d: M \rightarrow Z(M) a derivation and d: M \rightarrow M is a left derivation if X = M is prime and d is a Jordan left derivation.

Throughout this paper, the condition $a\alpha b\beta c = a\beta b\alpha c$, for all $a,b,c\in M$ and $\alpha,\beta\in\Gamma$ will represent by (*).

2. Jordan Left Derivations

For proving our main results, we have needed some important results which we have proved here as lemmas. So we start as follows.

Lemma 2.1 Let M be a Γ -ring satisfying (*) and X a 2-torsionfree left Γ M-module. Let d: M \rightarrow X be a Jordan left derivation. Then (a) d(a\alpha b + b\alpha a) = 2a\alpha d(b) + 2b\alpha d(a), (b) $d(a\alpha b\beta a) = a\beta a\alpha d(b) + 3a\alpha b\beta d(a) - b\alpha a\beta d(a),$ (c) $d(a\alpha b\beta c + c\alpha b\beta a) = (a\beta c + c\beta a) \alpha d(b) + 3a\alpha b\beta d(c) + 3c\alpha b\beta d(a) - b\alpha c\beta d(a) - b\alpha a\beta d(c),$ (d) $(a\alpha b - b\alpha a)\beta a\alpha d(a) = a\alpha (a\alpha b - b\alpha a)\beta d(a),$ (e) $(a\alpha b - b\alpha a)\beta (d(a\alpha b) - a\alpha d(b) - b\alpha d(a)) = 0,$ for all $a,b,c \in M$ and $\alpha,\beta \in \Gamma$. The proof of this lemma is given in Y.Ceven [4].

```
Lemma 2.2 Let M be a \Gamma-ring satisfying (*) and let X be a 2-torsionfree \GammaM-
module. Then there exists a Jordan left derivation d: M \rightarrow X such that
(a) d(a\alpha a\beta b) = a\alpha a\beta d(b) + (a\beta b + b\beta a) \alpha d(a) + a\alpha d(a\beta b - b\beta a),
(b) d(b\alpha a\beta a) = a\alpha a\beta d(b) + (3b\beta a - a\beta b) \alpha d(a) - a\alpha d(a\beta b - b\beta a),
(c) (a\alpha b - b\alpha a)\beta d(a\alpha b - b\alpha a) = 0,
(d) (a\alpha a\beta b - 2a\alpha b\beta a + b\alpha a\beta a) \alpha d(b) = 0,
for all a,b,c \in M and \alpha,\beta \in \Gamma.
```

Proof. Substituting b β a and a β b for b in Lemma 2.1(a), we get

(1) $d(a\alpha b\beta a + b\beta a\alpha a) = 2a\alpha d(b\beta a) + 2b\beta a\alpha d(a)$ and

(2) $d(a\alpha a\beta b + a\beta b\alpha a) = 2a\alpha d(a\beta b) + 2a\beta b\alpha d(a).$

Taking (2) minus(1) and then using (*), we get

(3) $d(a\alpha a\beta b - b\alpha a\beta a) = 2a\alpha d(a\beta b - b\beta a) + 2(a\beta b - b\beta a) \alpha d(a).$

Replacing a by a αa in Lemma 2.1(a) and then by (*), we get

```
(4) d(a\alpha a\beta b + b\alpha a\beta a) = 2a\alpha a\beta d(b) + 4b\beta a\alpha d(a).
```

By (3) and (4) with the condition that X is 2-torsionfree, we have (a).

Subtracting (3) from (4) and then applying the same condition, we obtain (b). By Lemma 2.1(e), we have

```
(5) (a\alpha b - b\alpha a)\beta(d(a\alpha b) - b\alpha d(a) - a\alpha d(b)) = 0.
```

Using Lemma 2.1(a) in (5), we get

(6) $(a\alpha b - b\alpha a)\beta(d(b\alpha a) - a\alpha d(b) - b\alpha d(a)) = 0.$

Taking (5) minus (6), we obtain (c).

By Lemma 2.1(a), Lemma 2.1(b) and (*), we have

 $d((a\alpha b - b\alpha a)\beta(a\alpha b - b\alpha a))$

```
= -3(a\alpha a\beta b - 2a\alpha b\beta a + b\alpha a\beta a) \alpha d(b) - (b\alpha b\beta a - 2b\alpha a\beta b + a\alpha b\beta b) \alpha d(a).
```

```
On the other hand, using (c), we have d((\alpha\alpha b - b\alpha a)\beta(\alpha\alpha b - b\alpha a)) = 0.
Thus we have
```

```
(7) 3(a\alpha a\beta b - 2a\alpha b\beta a + b\alpha a\beta a) \alpha d(b) + (b\alpha b\beta a - 2b\alpha a\beta b + a\alpha b\beta b) \alpha d(a) = 0.
From Lemma 2.1(d),
```

```
(8) (a\alpha a\beta b - 2a\alpha b\beta a + b\alpha a\beta a) \alpha d(a) = 0.
```

Replacing a by a + b in (8), we obtain

(9) $(a\alpha a\beta b - 2a\alpha b\beta a + b\alpha a\beta a) \alpha d(b) - (b\alpha b\beta a - 2b\alpha a\beta b + a\alpha b\beta b) \alpha d(a) = 0.$

```
Adding (7) and (9), and then using the condition that X is 2-torsionfree, we get
```

(10) $(a\alpha a\beta b - 2a\alpha b\beta a + b\alpha a\beta a) \alpha d(b) = 0.$

Hence from (9) and (10), we obtain (d).

Theorem 2.3 Let M be a Γ -ring satisfying (*) and let X be a 2-torsionfree Γ Mmodule. Suppose that $a\alpha M\beta x = 0$ with $a \in M$, $x \in X$ and $\alpha, \beta \in \Gamma$ implies that either a = 0 or x = 0. If there exists a nonzero Jordan left derivation d: $M \rightarrow X$ then M is commutative.

Proof. By Lemma 2.1(d), we have $(x\alpha x\beta y - 2x\alpha y\beta x + y\alpha x\beta x) \alpha d(x) = 0$, for all $x, y \in M$ and $\alpha, \beta \in \Gamma$. Replacing $a\alpha b - b\alpha a$ for x and then using Lemma 2.2(c), we get $(a\alpha b - b\alpha a) \alpha (a\alpha b - b\alpha a) \alpha \gamma \beta d(a\alpha b - b\alpha a) = 0$, for all a,b,v \in M and $\alpha,\beta\in\Gamma$. By assumption, either $(a\alpha b - b\alpha a) \alpha (a\alpha b - b\alpha a) = 0$ or $d(a\alpha b - b\alpha a) = 0$. Suppose that $(a\alpha b - b\alpha a) \alpha (a\alpha b - b\alpha a) = 0$, for all $a, b \in M$ and $\alpha \in \Gamma$. Applying Lemma 2.1(a), Lemma 2.1(b), $(a\alpha b - b\alpha a) \alpha (a\alpha b - b\alpha a)$ = 0 and (*), we have (11) $E = d(((a\alpha b - b\alpha a) (x)\beta((a\alpha b - b\alpha a) \alpha y\beta(a\alpha b - b\alpha a)) + ((a\alpha b - b\alpha a)))$ $\alpha y \beta (a\alpha b - b\alpha a)) \beta ((a\alpha b - b\alpha a) (x))$ = $6(a\alpha b - b\alpha a) \alpha x \beta(a\alpha b - b\alpha a) \alpha y \beta d(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a) \alpha y \beta \{2(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a) \alpha y \beta \}$ $b\alpha a)\beta d(a\alpha b - b\alpha a) \alpha x$. On the other hand, by (*), $(\alpha\alpha b - b\alpha a) \alpha (\alpha\alpha b - b\alpha a) = 0$ and Lemma 2.2(c), we have (12) $E = d(((a\alpha b - b\alpha a) \alpha x)\beta((a\alpha b - b\alpha a) \alpha y\beta(a\alpha b - b\alpha a)) + ((a\alpha b - b\alpha a))$ bαa) $\alpha y \beta (a \alpha b - b \alpha a)) \beta ((a \alpha b - b \alpha a) \alpha x))$ = $3(a\alpha b - b\alpha a) \alpha x \beta(a\alpha b - b\alpha a) \alpha y \beta d(a\alpha b - b\alpha a)$. Comparing (11) and (12), we get (13) $3(a\alpha b - b\alpha a) \alpha x \beta(a\alpha b - b\alpha a) \alpha y \beta d(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a) \alpha y \beta \{2(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a) \alpha y \beta \}$ $-b\alpha a$) $\beta d(a\alpha b - b\alpha a) \alpha x$ = 0, for all $a, b, x, y \in M$ and $\alpha, \beta \in \Gamma$. And, by (*) and Lemma 2.2(c), we have (14) $F = d((a\alpha b - b\alpha a) \alpha x \beta(a\alpha b - b\alpha a) + x \beta(a\alpha b - b\alpha a) \alpha (a\alpha b - b\alpha a))$ = $3(a\alpha b - b\alpha a) \alpha x \beta d(a\alpha b - b\alpha a)$. On the other hand, we also have (15) $F = d((a\alpha b - b\alpha a) \alpha x \beta(a\alpha b - b\alpha a) + x \beta(a\alpha b - b\alpha a) \alpha (a\alpha b - b\alpha a))$ = $2(a\alpha b - b\alpha a) \alpha d(x\beta(a\alpha b - b\alpha a))$. Comparing (14) and (15), we get (16) $3(a\alpha b - b\alpha a) \alpha x \beta d(a\alpha b - b\alpha a)$ = $2(a\alpha b - b\alpha a) \alpha d(x\beta(a\alpha b - b\alpha a))$, for all $a, b, x \in M$ and $\alpha, \beta \in \Gamma$. Using $(a\alpha b - b\alpha a) \alpha (a\alpha b - b\alpha a) = 0$, we have (17) $(a\alpha b - b\alpha a) \alpha d(x\beta(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a)\beta x)$ = $2(a\alpha b - b\alpha a) \alpha x \beta d(a\alpha b - b\alpha a)$, for all $a, b, x \in M$ and $\alpha, \beta \in \Gamma$. From (16) and (17), we have (18) $3(a\alpha b - b\alpha a) \alpha \{ d(x\beta(a\alpha b - b\alpha a)) + d((a\alpha b - b\alpha a)\beta x) \}$ = $4(a\alpha b - b\alpha a) \alpha d(x\beta(a\alpha b - b\alpha a))$, for all $a, b, x \in M$ and $\alpha, \beta \in \Gamma$.

```
Thus
```

- (19) $(a\alpha b b\alpha a) \alpha d(x\beta(a\alpha b b\alpha a))$
 - = $3(a\alpha b b\alpha a) \alpha d((a\alpha b b\alpha a)\beta x)$, for all $a,b,x \in M$ and $\alpha,\beta \in \Gamma$.

From (19), we get

(20) $(a\alpha b - b\alpha a) \alpha d(x\beta(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a)\beta x)$

= $4(a\alpha b - b\alpha a) \alpha d((a\alpha b - b\alpha a)\beta x)$, for all $a, b, x \in M$ and $\alpha, \beta \in \Gamma$.

```
On the other hand, using (a\alpha b - b\alpha a) \alpha (a\alpha b - b\alpha a) = 0, we have
```

(21) $(a\alpha b - b\alpha a) \alpha d(x\beta(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a)\beta x)$

= $2(a\alpha b - b\alpha a) \alpha x \beta d(a\alpha b - b\alpha a)$, for all $a, b, x \in M$ and $\alpha, \beta \in \Gamma$.

- From (20) and (21) and since X is 2-torsionfree, we get
- (22) $2(a\alpha b b\alpha a) \alpha d((a\alpha b b\alpha a)\beta x)$

```
= (a\alpha b - b\alpha a) \alpha x \beta d(a\alpha b - b\alpha a), for all a, b, x \in M and \alpha, \beta \in \Gamma.
```

From (13) and (22), we obtain

```
(23) 3(a\alpha b - b\alpha a) \alpha x \beta(a\alpha b - b\alpha a) \alpha y \beta d(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a) \alpha y \beta(a\alpha b - b\alpha a) \alpha y \beta(\alpha b - b\alpha
```

```
baa) \alpha x \beta d(a\alpha b - b\alpha a) = 0, for all a, b, x, y \in M and \alpha, \beta \in \Gamma.
```

Using (*) in (22), and then replacing $y\alpha (a\alpha b - b\alpha a)\beta y$ for x, we get

 $4(a\alpha b - b\alpha a) \alpha (a\alpha b - b\alpha a)\beta y\alpha d((a\alpha b - b\alpha a)\beta y) = (a\alpha b - b\alpha a)\beta y\alpha (a\alpha b -$

 $b\alpha a)\beta y\alpha d(a\alpha b - b\alpha a)$, for all $a,b,y \in M$ and $\alpha,\beta \in \Gamma$. Using (*) and $(a\alpha b - b\alpha a) \alpha$

 $(a\alpha b - b\alpha a) = 0$ in the above relation, we get

(24) $(a\alpha b - b\alpha a) \alpha y \beta (a\alpha b - b\alpha a) \alpha y \beta d (a\alpha b - b\alpha a)$

= 0, for all a,b,y \in M and α , $\beta \in \Gamma$.

Replacing x + y for y in (24), we get

```
(25) (a\alpha b - b\alpha a) \alpha x \beta(a\alpha b - b\alpha a) \alpha y \beta d(a\alpha b - b\alpha a) + (a\alpha b - b\alpha a) \alpha y \beta(a\alpha b - b\alpha a)
```

 $\alpha x \beta d(a\alpha b - b\alpha a) = 0$, for all $a, b, x, y \in M$ and $\alpha, \beta \in \Gamma$.

From (23) and (25), and then using that X is 2-torsionfree, we have

(26) $(a\alpha b - b\alpha a) \alpha x \beta (a\alpha b - b\alpha a) \alpha y \beta d (a\alpha b - b\alpha a)$

= 0, for all a,b,x,y \in M and α , $\beta \in \Gamma$.

From (26), it follows that for each $a \in M$ either $a \in Z(M)$ or $d(a\alpha b - b\alpha a) = 0$, for all $a,b \in M$ and $\alpha \in \Gamma$. We consider the case $d(a\alpha b - b\alpha a) = 0$, for all $a,b \in M$ and $\alpha \in \Gamma$. Then by Lemma 2.1(b), Lemma 2.2(b) and (*), we get $2d(b\alpha a\beta a) = 2\{a\alpha a\beta d(b) + a\alpha b\beta d(a) + b\alpha a\beta d(a)\}$.

Using the condition that X is 2-torsionfree , Lemma 2.2(b) and (*) in this relation, we obtain

(27) $(a\alpha b - b\alpha a)\beta d(a) = 0$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$.

Replacing b(x for b in (27), we have $(a\alpha b\alpha x - b\alpha x\alpha a)\beta d(a) = 0$. This gives $(a\alpha b - b\alpha a) \alpha x\beta d(a) + b\alpha (a\alpha x - x\alpha a)\beta d(a) = 0$. This implies that $(a\alpha b - b\alpha a)$

 $\alpha x\beta d(a) = 0$, for all $a,b,x \in M$ and $\alpha,\beta \in \Gamma$. Therefore, it follows that for each $a \in M$ either $a \in Z(M)$ or d(a) = 0. Since d is nonzero, $a \in Z(M)$. This completes the proof.

Corollary 2.4 Let M be a Γ -ring satisfying (*). Let X = M be a prime Γ -ring. If d: M \rightarrow M is a Jordan left derivation, then d is a left derivation.

Proof. Given that X = M be a prime Γ -ring. By Theorem 2.3, M is commutative. Then $a\alpha b = b\alpha a$, for all $a,b\in M$ and $\alpha \in \Gamma$. Therefore, by Lemma 2.1(a), we have $d(a\alpha b) = a\alpha d(b) + b\alpha d(a)$, for all $a,b\in M$ and $\alpha \in \Gamma$.

Theorem 2.5 Lel M be a Γ -ring satisfying (*) and let X be a left Γ M-module. Let d: M \rightarrow X be a left derivation.

(a) Suppose that $a\alpha M\beta x = 0$ with $a \in M$, $x \in X$ and $\alpha, \beta \in \Gamma$ implies a = 0 or x = 0. If d (0 then M is commutative.

(b) Suppose that X = M is a semiprime Γ -ring. Then d: $M \rightarrow Z(M)$ is a derivation.

Proof. Since d: $M \rightarrow X$ is a left derivation, (28) $d(a\alpha b) = a\alpha d(b) + b\alpha d(a)$, for all $a, b \in M$ and $\alpha \in \Gamma$. Replacing b by $b\beta a$ in (28), we have (29) $d(a\alpha b\beta a) = d(a\alpha (b\beta a)) = a\alpha b\beta d(a) + a\alpha a\beta d(b) + b\beta a\alpha d(a)$ and (30) $d(a\alpha b\beta a) = d((a\alpha b)\beta a) = a\alpha b\beta d(a) + a\beta a\alpha d(b) + a\beta b\alpha d(a).$ From (29) and (30), we gwt (31) $(a\alpha b - b\alpha a)\beta d(a) = 0$, for all $a, b \in M$ and $\alpha, \beta \in \Gamma$. Writing cyb for b in (31), and then by (*), we get (32) $(a\alpha c - c\alpha a)\beta b\alpha d(a) = 0$, for all a,b,c(M and ($\beta(\Gamma)$. By assumption, for each a(M either a(Z(M) or d(a) = 0). But then Z(M) and Ker $d = \{m(M: d(m) = 0)\}$ are additive subgroups of M and M = Z(M) (Ker d. Since Z(M) and Ker d are proper subgroups of M, by Brauer's trick, either M = Z(M) or M = Ker d. But d(0, then M = Z(M)). This gives (a). Let X = M be a semiprime Γ -ring. Replacing a by a + m in (32), we get (33) $(a(c - c(a)\beta b(d(m) + (m(c - c(m)\beta b(d(a)$ = 0, for all a,b,c,m(M and (β , ((Γ . For all a,b,c,x,m(M and (β , (, (,((Γ , we have $((a(c-c(a)\beta b(d(m)))(x((a(c-c(a)\beta b(d(m))))))))$ Since M is semiprime, we get from the above relation $(a\alpha c - c\alpha a)\beta b\gamma d(m) = 0$. In particular, $(a\alpha d(m) - d(m)\alpha a)\beta b\gamma(a\alpha d(m) - d(m)\alpha a) = 0$. This implies that $a\alpha d(m)$ $= d(m)\alpha a$. This shows that $d(m) \in Z(M)$, for every $m \in M$ and we obtain (b).

REFERENCES

- 1. W.E. Barnes, On the Γ-rings of Nobusawa, Pacific J. Math., 18(1966), 411-422.
- M. Bresar and J. Vukman, Jordan derivations on prime rings, Bull. Austral. Math.Soc.,37(1988), 321-322.[3] M. Bresar and J. Vukman, On the left derivations and related mappings, Proc. of the AMS., Vol: 110, 1(1990), 7-16.
- 3. Y. Ceven, *Jordan left derivations on completely prime gamma rings*, C.U. Fen-Edebiyat Fakultesi, Fen Bilimleri Dergisi (2002) Cilt 23 Sayi 2.
- 4. K.W. Jun and B.D. Kim, *A note on Jordan left derivations*, Bull. Korean Math. Soc., 33(1996), No: 2, 221-228.
- 5. Mustafa Asci and Sahin Ceran *The commutativity in prime gamma rings with left derivation*, International Mathematical Forum,2,2007,no.3,103 108.
- 6. N. Nobusawa, On a generalization of the ring theory, Oska J. Math., 1(1964).
- 7. M. Sapanci and A. Nakajima, *Jordan derivations on completely prime gamma rings*, Math. Japonica, Vol: 46. No: 1, 1997, 47-51.