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ABSTRACT
Here the author give several characterizations of Relatively normal lattices in terms
of n-ideals. They introduce the notion of relative n-annihilators in a lattice. They

show that the lattices of finitely generated n-ideals F (L) is relatively normal if and

only if for any two incompearable prlme n-ideals Pand Q , Pv Q=L .
AMS Subject Classifications (2000) : 06A12, 06A99,06B10

1. Introduction:

Relative annihilators in lattices and semilattices have been studied by many
authors including Mandelker [5] and Varlet [8]. Cornish in [2] has used the
annihilators in studying relative normal lattices.

For a, b e L, <a,b>={xeL:x/\aSb} is known as
annihilator of a relative to b, or simply a relative annihilator. It is very easy to see
that in presence of distributivity, <a, b > is an ideal of L. Again fora, b € L
we define < a,b >, = {x xvaz> b}, which we call a dual annihilator of a relative
to b, or simply a relative dual annihilator. In presence of distributivity of L,
<a,b>, is a dual ideal (filter). .For an element ne L, a convex sublattice
containing n is called an n-ideal. n-ideal generated by a finite number of elements
Qe ,a, 1s called a finitely generated n-ideal, denoted by <a1 yeveeees a,> - Set of all

finitely generated n-ideals is a lattice, denoted by F (L) n-ideal generated by a

single element is called a principal n-ideal. Set of all principal n-ideals is denoted by
P (L) Moreover, <a1, ....... ,ar>n =[a1 Ao ANA, AR, A,V ......... v a,]

n

={xeL| A Aeee. NA, ARSXSA V. va, vn} and <a>n =[a/\n,a\/n]
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98 Finitely Generated n-ideals which form Relatively Normal Lattices

For two finitly generated n-ideals [a,b] and [c,d],[a,b]/\[c,d]z [avc,b A d]
and [a,b]\/[c,d] :[a/\c, bvd]. Fora, b € L and a fixed element 77 € L, we
define

<a,b>”={xeL:m(a,n,x)e<b>”}={xeL:bAnSm(a,n,x)Sbvn}.We call
<a,b>" the annihilator of a relative to b around the element n or simply a
relative n- annihilator. It is easy to see that for all a,bel, <a,b>" is always a
convex subset containing n . In presence of distributivity, it can be easily seen that
<a,b>" is an n-ideal. For two n-ideals A and B of a lattice L, <A,B> denotes

{x eL:m (a, n, x) € B} for allae A4 . In presence of distributivity, clearly <A,B>
is an n-ideal. Moreover, we can easily show that
<a,b>"=<<a>, <b> > <ab>"=<<a>,<b> >. Recently [6] has

studied relative n-annihilators extensively .
A distributive lattice with 0 is a normal lattice if its every prime ideal contains a
unique minimal prime ideal. A distributive lattice L is called a relatively normal
lattice if its every interval [a, b] is normal.

In this paper we characterize those F, (L) which are relatively normal in terms of

n-ideals and relative n- annihilators. These results are generalizations of several
results on relatively normal lattices. We show that F| (L) is relatively normal if and

only if any two incomparable prime n-ideals of L are comaximal.

We start the paper with the following result on n-ideals due to [4].

Lemma 1.1: For nel, F (L);(n]d x[n). m

Following result is also essential for the development of the paper, whch is due to
[1,Theorem 2.1.12].

Lemma 1.2 : Let I and J be two n-ideals of a distriutive lattice. Then for any
xelvJ,xvn=i v j and xAn=i, A j, forsome i,,i,el, j,j,eJ, with

i,,jy2zn, and i,,j, <n, [

Now we include the following result which is due to [6] and is a generalization of [2,
lemma 3.6].

Theorem 1.3 Let L be a distributive lattice. Then the following hold
B (), v (3,0 (00, = (), (x),);
(i1) <<x>",J> = , \e/ ; <<x>n,<y>”>, the supremum is taken

in the lattice of n-ideals of L, for any X € L and any n-ideal J. ]
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Following lemmas will be needed for further development of this
paper. Lemma 1.4 is the dual of [2,Jlemma 3.6]. .Moreover, lemma 1.5
and lemma 1.6 are due to

[6].We prefer to omit the proof as they are easy to prove.

Lemma 1.4  Let L be a distributive lattice. Then the following hold.

M (xayix), =)
(ii) < [x),F>d =y:F<x,y>d,whereFisaﬁlterofL.

(i) {(x,a), v (y.a), }n [a,b]
= {<x,a>d N [a,b]}v {<y,a>d N [a,b]} .

Lemma 1.5 Let L be a distributive lattice with n € L, Suppose a,b, ¢ €L.
D Ifabe=n, ten {m (a,n, b))y . {c), )
= <<a> . () n>v <<b> . () > is equivalent 1o
<a A Db, c>= <a, c>\/ <b, c>;
iy If a, b, ¢ <n then
((m (@n.b)),. (e}, )= ((a),. (e}, > v ((<b),.){e),} is equivalent 1o

<avb,c>d =<a,c>dv<b,c>d [

Lemma 1.6 Let L be a distributive lattice with ne L , Suppose a, b, ¢, € L.
i Fora,b,c > n,
<<c>,,<a>, v<b> >=<<c>,<a>>v<<c>,,<b> >

isequivalentt0<c,a v b>= <c,a>\/ <c,b>;

(ii) Fora,b,cSn,<<c>n,<a>nv<b>n>
- <<c >n , <a >n >v <<c >n , <b >n> is equivalent to
<c,a/\b>d:<c,a>dv<c,b>d. n

A distributive lattice L with 1 is called a dual normal Iattice if Ld is a
normal lattice. In other words, a distributive lattice L with 1 is called dual normal if
every prime filter of L is contained in a unique ultrafilter (maximal and proper) of L.

In fact, this condition in a lattice is self-dual. Thus for a bounded distributive
lattice, the concept of normality and dual normality coincides.
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Following the technique of the proof of [2, Theorem 2.4], we can similarly
prove the following result, which gives some characterizations of dual normal
lattices.

Let x be any element of a lattice L with 0. We denote (x]* = {y eL:ynx= 0}.

In presence of distributivity this is an ideal. Similarly for a lattice L with 1, we
denote

[x)*d :{yeL:yvx=1}.

Theorem 1.7 Let L be a distributive lattice with 1. Then the following conditions
are equivalent.

(i) L is dual normal ;
(ii) Each prime filter of L is contained in a unique ultrafilter (maximal
and proper) ;
(ii)y  Foreach x,y e L,[xv y)™=[x)"v [y)™:
I,f XVJ’:LX,)’EL, Then [X)*d\/b/)*d:L |

Corollary 1.8 L be a bounded distributive lattice. Then the following conditions
are equivalent.
(i) L is normal

(ii) Foreach x,ye€lL, (x A y] (x] v ( ]

(i) IFXAY=0, Then (x]*v(y]* =L

(iv)  Foreach x,yeL, [xvy)* =[x)* v[y)*?

(v) IfFxv y=1, then[x) \/[y)*d=L.

Recall that a distributive lattice L is relatively normal if each interval [x, y]

with x <y (x, ye L) is a normal lattice.

Since for a bounded distributive lattice the concept of normality and dual
normality coincides, so the concept of relative normality is self-dual in any
distributive lattice.

Following result is due to [2, Theorem 3.7].

Theorem 1.9 Let L be a distributive lattice. Let a,b,c € L be arbitrary elements

and A, B be arbitrary ideals. Then the following are equivalent.
1) L is relatively normal,

i) (a,b)v (b,a)=L,

111)<cavb> < >v<cb>

) (e} v B)= (e} v (c].B),
<a/\bc>=<ac> <,c>
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Now we include the following result due to [6] whose
technique of proof is dual to [2, Theorem 3.71.

Theorem 1.10 Let L be a distributive lattice. Let a,b,c € L be arbitrary elements

and A, B arbitrary filters. Then the following are equivalent:
(i) L is relatively normal

(1) <a,b>dv<b,a>d =1L;

6 eva n 8, = (eraly v {eb)y

(iv)  <[e),dvB> ;=<]c),4> ;v<|c),B> ; ;
) (avb,cy ={a,cy, v {(,cy, =

Now we prove our main results of this paper which are generalizations of [2,
Theorem 3.7] and [5, Theorem 5] . These give characterizations of those F, (L) and

P

n

Theorem 1.11. Let F n (L) be distributive lattice and A and B be two n-ideals
of L, Then for all a,b,c € L, the following conditions are equivalent. F,(L) is

(L) which are relatively normal.

relatively normal.
1) <<a>n,<b>n>v < L
) D)V (), (b))
(i) <<c>n,AvB>=<< >n,B> 5
(iv) <<m(a,n,b)>n ,<c>n > = < a>n ,<c n>v <<b>n ,<c>n> 5
Proof: (i) = (ii). Let z e[, consider the interval [ = [ <a>n m<b>n m<z>n,<z>nJ
in Fn (L) Then <a>n M <b>n N <Z>n is the smallest element of the interval 1. By

(i), I is normal, then by [2,Theorem 2.4] there exists finitely generated -ideals [p, q]
,,s]el suchthat.<a Y, 0 (z) N [p.q]

={a) n{b) n(z) = <b>n N <z>n A [r,s] and <Z>n=[p, q]v[r,s]
Now,
<a>,n[pygl=<a>,n[p.qgln<z>,

=<a>,N<b>, N<z>, c<b>, implies
[p.qlc<<a>,.<b>,>.Also <b> N[r,s]l=<b>, n<z>, n|rs]

=<a>,N<b>,N<z>, c<a>, Iimplies [r,s]g<<b>n,<a>n>.Thus
(2), = (@), (8), )v {(B), (), Jandso = < ((a), . b), ) v ((B),-€a), )
Hence ((ay (b, v (b)), . (a), Y= L.
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(i) = (iii). Suppose (ii) holds. For (iii), R. H. S. C L. H. S. is obvious. Now,
let e <<c>n,<a>n v <b>n> - Then ;v ne ({e),.{a), v (b)), andso
m(zvn, n,c)e[a/\b/\n,avbvn]. That is,
(zvn)a(cvn)<avbvnNow by (i1),

zvone <<a>n,<b>n>V <<b>n,<a>n>'
Sozvn<(pvn)v(gvn)forsome pvine ({a) (b))

and g vhe<<b> ,<a> >
Hence,zvn=((zvn)a(pvn))v((zvn)a(gvn))=rvs (say)
Now,m(pvn,n,a)=(pvn)/\(avn)Sbvn.So
barn)<ra(avin)<bvn.

Hence, r/\(cvn):r/\(zvn)/\(cvn)Sr/\(avbvn)

=@ rlavun)vraBvn)bvn.

This implies , . <<c >n ’ <b >n >’ similarly, g ¢ <<c >n , <a >n > .

Hence 2 v n < (), (a), )v ((e), . (b), )

Again z ¢ ((c),.{a), v (p),) implies

zZ AN E <<c >n R <a >n \Y, <b >n > Then a dual calculation of above shows

that z A n € <<c>n,<a>n>v <<c>n,<b>n> .

Thus by convexity, z € <<c>n ,<a>n>v <<c>n,<b>n> and so (iii) holds.

(iii)) = (iv). Suppose (iii) holds. In (iv), R. H. S. C L. H. S is obvious. Now let
X e <<c>", A v B>- Then x v n € <<c>n, A v B>-

Thus m (x v n, n,c)e A v B.

Now m(xvn,nc)=(xvn)a(nve)zn implies
m(xvn, n,c)e (4v B)n [n)

Hence by Theorem 1.3 (ii), x v n € <<c >n,(A N [)v (B [n ))>
re (4n hd)v B~ In )))<<c 20K

But by Theorem 1.2, r € (A4 ~ [n))v (B n [n)) implies

r = 8V [ forsomese A, te B and S, 2 n.

They by (i), ((cy ., (r), Y= ((e), (s v i), )

= (0,20, v D, ) = (e, o0, v (edy ()
C ((eyye A ) (e 8-

Hence x v 5 € <<c>n,A>v <<c>n,B>.
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Also y ¢ <<c>n,A v B> implies x/\ne<<c>n,AvB>.
Since m(x/\n, n,c): (x/\n)v (n/\c)é n, So
X A Nne ¢ >n,(A v B)r\ (n]> Then by Theorem 1.3 (i),
X A ne<< c>n,(Am(n] )V(Bm(n] )>

v

te(4n(n] )v(BA(n])
Using Theorem 1.2 again, wesethat £ = p A g where p e 4,9 € B,p,q < n.
Thenby (i) ((c), . (1), )= (), (P ra),)
= {(e), (p Y, v (a),)
= (D P, )V (), ey )
c (), A)v (), B)
Hence x A 5 € <<c ) A >V <<c > . B > Therefore by Convexity,

X e <<c 5,4 >v <<c 5 B > and so (iv) holds.

(iv) = (iii) is trivial.

(il)) = (v). In(v)R.H.S. C L. H. S. is obvious. Let

Z € L.H.S.Then 7 ¢ <<m (a ,n,b )>n , <c >n >, which implies

zZV n e <<m (a,n,b)>n,<c>n > By (i),
zv one <<a >n ,<b >n>v <<b >n ,<a >n> Then by Theorem 1.2,

<Le> L, <t>, >

ZVin = XVYy for some xe <<a >n, <b >n > and
y e <<b>n’<a>n> and X,y 2 n. Ths, (x) ~(a) < (B),
and SO

(x), N (a), =(x), 0 (a), N (b), =(zvnm), n(a), nb),
<z Vv n>n N <m (a,n,b)>n C <c >n. This implies

xe ((a),. ey, ) Smialy e (b), . (), ).

mdso z v n e ((a),.e), )v ((8),-(), )

Similarly, a dual calculation of above shows that

2ame (), led, Yy (B, (e,
Thus by convexity, » <<a >n,<c>n>v <<b>n,<c>n>

and so (v) holds.
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(v), = (1). Suppose (v) holds, Let b, ¢ =2n. By (v),

((m Ganb ), L), ) = (a), <c>> (b)), (e, ) But

by Lemma 1.5 (i), this is equivalent to (a A b,c) = (a,c)v (b,c) Then by [2,

Theorem 3.7], this shows that [}’l) is a relatively normal lattice. Similarly, for a, b, ¢

<n, using the Lemma 1.5 (ii) and Theorem1.10, we find that (n] is relatively
normal.
Therefore F, (L) is relatively normal by Lemmal.l.

Finally we need to prove (iii) = (i). Suppose (iii) holds. Leta, b, c € (n]

By (i ((e),.(a), v (8), )= (€], {a), ) v ((e},. ), )

But by Lemma 1.6(i), this is equivalent to <c,a \Y b> = <C, a> \Y <C,b> which
says by [2, Theorem 3.7] [n) is relatively normal.

Similarly for a, b, ¢ < 1, using the Lemma 1.6 (ii) and Theorem 1.10, we find that

(}’l] is relatively normal. Hence by Lemma 1.1, F (L) is relatively normal.
Following result is due to [2, Lemma 3.4].

Theorem 1.12 A distributive lattice is relatively normal if and only if any two
incomparable prime ideals are comaximal. [

Now we generalize the above result.

Theorem 1.12  Let L be a distributive lattice. Then the following conditions are

equivalent:
(i) F (L) is relatively normal.
(i1) Any two incomparable prime n-ideals P and Q are comaximal, that

is PvQO=1L.
Proof : Suppose (i) holds. Let P, Q be two incomparable prime
n-ideals of L. Then there exist a, b € Lsuch that g € P — Q and pe Q- P.Then

ay <« P-0/(b) c0-P.SinceF (L) is relatively normal, so by Theorem
< >n— Q’< >n—Q n( y y

1.11

<<a >n , <b >n >v <b >n,<a >n > = L. But as P, Q are prime, so it is easy to see

that, <<a>n,<b>n> cO and <<b><a>>g p, Therefore LcPvQ and so
P v O = L. Thatis, (ii) holds.

Conversely, suppose (ii) holds. Let Pl and O, be two incomparable prime ideals of
[n) Then by [2, Lemma 3.4] there exist incomparable prime ideals P and Q of L

such that P =PnN [n) and O, =0nN [n) Since ne€ Pjand neQ,, so by
Lemma 1.7 P, Q are in fact two incomparable prime n-ideals of L. Then by (ii),



Md. Abul Kalam Azad, Md. Bazlar Rahaman and A. S. A. Noor 105

PvQ=L. Therefore, Bv O, =(PvO)nn)=[n)
Thus by [2, Theorem 3.5], [n) is relatively normal.

Similarly, considering two prime filters of (n] and proceeding as above and
using the dual result of [2, Theorem 3.5] we find that (n] is relatively normal.
Therefore by Lemma 1.1, F’

n
By [3] an element ne L is called neutral if for all x,yel

(L) is relatively normal.

x/\(yvn)z(X/\y)v (X/\I’l) and n /\(xvy)z(n/\n)v (X/\y).
n is called a central element if it is neutral and complemented in each interval
containing it . We know that P, (L) =F (L) when n is a central element of L. So

n

we conclude the paper with the following result.

Corollary 1.14 Let n be a central element of a distributive lattice L. Then the
following conditions are equivalent.
(1) P n (L) is a relatively normal lattice
(ii) Forall a,b,ce L
(111) <«<a>,,<b>>v<<b> ,<a> >=L
(iti) Forall a,b,ce L,<<c>, ,<a> v<b> >=<<c> ,<a> >
v<<e>, ,<b> >.

(iv) Any two incomparable prime n-ideals P and Q are comaximal; that

is PvQ=L n
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