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ABSTRACT 
Here the author give several characterizations of Relatively normal lattices in terms 
of n-ideals. They introduce the notion of relative n-annihilators in a lattice. They 
show that the lattices of finitely generated n-ideals ( )LFn  is relatively normal if and 
only if for any two incompearable prlme n-ideals P and Q , LQP =∨  . 
AMS Subject Classifications (2000) : 06A12, 06A99,06B10 
 
1. Introduction: 
 Relative annihilators in lattices and semilattices have been studied by many 
authors including  Mandelker  [5] and Varlet  [8]. Cornish in  [2]  has used the 
annihilators in studying relative normal lattices.  
 For a, Lb ∈ ,  { }baxLxba ≤∧∈=>< :,  is known  as 
annihilator of a relative to b, or  simply a relative annihilator. It is very easy to see 
that in presence of distributivity, >< ba,  is an ideal of L.  Again for a, Lb∈  
we define { }baxxba d ≥∨=>< :, , which we call a dual annihilator of a relative 
to b, or simply a relative dual annihilator. In presence of distributivity of L, 

dba >< ,  is a dual ideal (filter). .For an element Ln∈ , a convex sublattice 
containing n is called an n-ideal. n-ideal generated by a finite number of elements 
a1,........,ar is called a finitely generated n-ideal, denoted by nraa ,......,1 . Set of all 

finitely  generated n-ideals is a lattice, denoted by  ( )LFn . n-ideal generated by a 
single element is called a principal n-ideal. Set of all principal n-ideals is denoted by 

( )LPn .  Moreover, [ ]rrnr aanaaaa ∨∨∧∧∧= .........,.......,......., 111  

={ }naaxnaaLx rr ∨∨∨≤≤∧∧∧∈ ........... 11  and [ ]nanaa
n

∨∧= ,  
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For two finitly generated n-ideals [ ]ba,  and [ ]dc, , [ ] [ ] [ ]dbcadcba ∧∨=∧ ,,,  
and [ ] [ ] [ ]dbcadcba ∨∧=∨ ,,, . For a, Lb∈  and a fixed element Ln∈ , we 
define  

( ){ } ( ){ }nbxnamnbLxbxnamLxba n
n ∨≤≤∧∈=><∈∈=>< ,,:,,:, .We call 

nba >< ,  the annihilator of a relative to b around the element n or simply a 
relative n- annihilator. It is easy to see that for all  nbaLba ><∈ ,,,  is always a 
convex subset containing n . In presence of distributivity, it can be easily seen that 

nba >< ,  is an n-ideal.  For two n-ideals A and B of a lattice L, BA,  denotes  

( ){ }BxnamLx ∈∈ ,,:  for all Aa∈ . In presence of distributivity, clearly BA,   
is an n-ideal. Moreover, we can easily show that 

>><><<=>< nn
n baba ,, .   >><><<=>< nn

n baba ,, . Recently [6] has 
studied relative n-annihilators extensively . 
A distributive lattice with 0 is a normal lattice if its every prime ideal contains a 
unique minimal prime ideal. A distributive lattice L is called a relatively normal 
lattice if its every interval [a, b] is normal. 
In this paper we characterize those ( )LFn  which are relatively normal in terms of 
n-ideals and relative n- annihilators. These results are  generalizations of several 
results on relatively normal lattices. We show that ( )LFn  is relatively normal if and 
only if any two incomparable prime n-ideals of L are comaximal. 
 
 We start the paper with the following result on n-ideals due to [4].  
 
 Lemma 1.1:   For ( ) ( ] )[, nnLFLn d

n ×≅∈ .       ■ 
Following result is also essential for the development of the paper, whch is due to 
[1,Theorem 2.1.12]. 
 
Lemma 1.2  : Let I and J be two n-ideals of a distriutive lattice. Then for any 

11, jinxJIx ∨=∨∨∈  and 22 jinx ∧=∧  for some ,, 21 Iii ∈  ,, 21 Jjj ∈  with 
,, 11 nji ≥   and  ,, 22 nji ≤           ■  

 
Now we include the following result which is due to [6] and is a generalization of [2, 
lemma 3.6]. 
 
Theorem 1.3  Let L be a distributive lattice. Then the following hold   

(i) ;,,
nnnnn

xyxyx =∨  

(ii) ,,,
nnn

yx
Jy

Jx
∈
∨

=  the supremum is taken 

 in the lattice of n-ideals of L, for any Lx∈  and any n-ideal J.         ■ 
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 Following lemmas will be needed for further development of this 
paper. Lemma 1.4 is the dual of [2,lemma 3.6].  .Moreover, lemma 1.5 
and lemma 1.6 are due to  
[6].We prefer to omit the proof as they are easy to prove. 
 
Lemma 1.4 Let L be a distributive lattice. Then the following hold. 

(i) ;,,
dd

xyxyx =∧  

(ii) [ ) ,,,
dd

yx
Fy

Fx
∈
∨

=  where F is a filter of   L  .  

(iii) { } [ ]baayax
dd

,,, ∩∨  

[ ]{ } [ ]{ }baaybaax
dd

,,,, ∩∨∩=   .      ■ 
  
Lemma 1.5    Let L be a distributive lattice with ,Ln∈  Suppose a, b, c ∈L.  

i)    If  a, b, c ,n≥  then ( ) nn cbnam ,,,  

 nnnn cbca ,, ∨=  is equivalent  to  

 ;,,, cbcacba ∨=∧  

ii)   If  ncba ≤,,  then 

( )
nnnnnn

cbcacbnam ,,,,, <∨>=  is equivalent to 

ddd
cbcacba ,,, ∨=∨        ■ 

 
Lemma 1.6  Let L be a distributive lattice with ,Ln∈ Suppose a, b, c, .L∈  

(i) For ,,, ncba ≥  

>><><<∨>><><<=>><∨><><< nnnnnnn bcacbac ,,,
 

is equivalent to bcacbac ,,, ∨=∨  ; 

(ii) For 
nnn

bacncba ∨≤ ,,,,  

nnnn
bcac ,, ∨=  is equivalent to  

.,,,
ddd

bcacbac ∨=∧         ■ 

A distributive lattice L with 1 is called a dual normal lattice if dL  is a 
normal lattice. In other words, a distributive lattice L with 1 is called dual normal if 
every prime filter of L is contained in a unique ultrafilter (maximal and proper) of L.  

In fact, this condition in a lattice is self-dual. Thus for a bounded distributive 
lattice, the concept of normality and dual normality coincides. 
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Following the technique of the proof of [2, Theorem 2.4], we can similarly 
prove the following result, which gives some characterizations of dual normal 
lattices.     
    Let x be any element of a lattice L with 0. We denote ( ] { }0:* =∧∈= xyLyx . 
In presence of distributivity this is an ideal. Similarly for a lattice L with 1, we 
denote 
 [ ) { }.1:* =∨∈= xyLyx d  
 

  
Theorem 1.7    Let L be a distributive lattice with 1. Then the following conditions 
are equivalent.  

(i) L is dual normal ; 
(ii) Each prime filter of L is contained in a unique ultrafilter (maximal 

and proper)   ; 
(iii) For each [ ) [ ) [ ) ddd yxyxLyx ∗∗∗ ∨=∨∈ ,,  ; 

If    ,,,1 Lyxyx ∈=∨   Then [ ) [ ) Lyx dd =∨ ∗∗           ■ 
 
Corollary  1.8     L be a bounded distributive lattice. Then the following conditions 
are equivalent. 

(i) L is normal  
(ii) For each  ( ] ( ] ( ] ∗∗∗ ∨=∧∈ yxyxLyx ,,  

(iii) If ,0=∧ yx  Then ( ] ( ] Lyx =∨ ∗∗  
  (iv)  For each [ ) [ ) [ ) ddd yxyxLyx ∗∗∗ ∨=∨∈ ,,  

(v)  If ,1=∨ yx  then [ ) [ ) .Lyx dd =∨ ∗∗  
Recall that a distributive lattice L is relatively normal if each interval [x,  y] 

with x < y ( )Lyx ∈,  is a normal lattice.  
Since for a bounded distributive lattice the concept of normality and dual 

normality coincides, so the concept of relative normality is self-dual in any 
distributive lattice.  
          Following result is due to [2, Theorem 3.7]. 
 
 Theorem 1.9   Let L be a distributive lattice. Let Lcba ∈,,  be arbitrary elements 
and  A, B be arbitrary ideals. Then the following are equivalent. 
                   i) L is relatively normal, 
                  ii) Labba =∨ ,, , 

                 iii) ,,,, bcacbac ∨=∨  

                 iv) ( ] ( ] ( ] ,,,, BcAcBAc ∨=∨  

                  v) .,,, cbcacba ∨=∧  
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 Now we include the following  result due to [6] whose 
technique of proof is dual to [2, Theorem 3.7]. 

 
Theorem  1.10    Let L be a distributive lattice. Let Lcba ∈,,  be arbitrary elements 
and A, B arbitrary filters. Then the following are equivalent: 

(i) L is relatively  normal  
(ii) ;,, Labba dd =∨  

(iii) ;,,, ddd bcacbac ∨=∧  

(iv) [ ) [ ) [ ) ddd BcAcBAc ><∨><=>∨< ,,,   ; 
(v) .,,,

ddd
cbcacba ∨=∨    ■ 

Now we prove our main results of this paper which are generalizations of [2, 
Theorem 3.7] and [5, Theorem 5] . These give characterizations of those ( )LFn  and  

( )LPn which are relatively normal.  

Theorem  1.11.      Let ( )LFn  be distributive lattice and A and B be two n-ideals 
of  L, Then for all ,,, Lcba ∈  the following conditions are equivalent. ( )LFn  is 
relatively normal.  

(i) ;,, Labba nnnn =∨  

(ii) 
nnnnnnn bcacbac ,,, ∨=∨  ; 

(iii) BcAcBAc nnn ,,, ∨=∨    ; 

(iv) ( ) nnnnnn cbcacbnam ,,,,, ∨=   ; 

Proof: (i) ⇒ (ii).  Let ,Lz∈  consider the interval [ ]nnnn zzbaI ,∩∩=  

in ( )LFn . Then nnn zba ∩∩  is the smallest element of the interval I. By 

(i), I is normal, then by [2,Theorem 2.4] there exists finitely generated  -ideals [p, q] 
, [r, s] I∈  such that. [ ]qpza nn ,∩∩  

nnn
zba ∩∩= [ ]srzb nn ,∩∩=  and [ ] [ ]srqpz n ,, ∨=><  

Now,  
[ ] [ ] nnn zqpaqpa ><∩∩><=∩>< ,,

nnnn bzba ><⊆><∩><∩><=   implies 
[ ] >><><<⊆ nn baqp ,, . Also [ ] [ ]srzbsrb nnn ,, ∩><∩><=∩><  

nnnn azba ><⊆><∩><∩><=  implies [ ] >><><<⊆ nn absr ,, .Thus 

,,, nnnnn abbaz ∨⊆ and so 
nnnn abbaz ,, ∨∈  

Hence .,, Labba nnnn =∨  
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(ii) ⇒ (iii).  Suppose (ii) holds. For (iii), R. H. S. ⊆ L. H. S. is obvious. Now, 
let  

nnn bacz ∨∈ ,  .  Then ,, bacnz nn ∨∈∨  and so 

( ) [ ].,,, nbanbacnnzm ∨∨∧∧∈∨ .  That is, 
( ) ( ) nbancnz ∨∨≤∨∧∨ .Now by  (ii), 

nnnn abbanz ,, ∨∈∨  .     

So ( ) ( )nqnpnz ∨∨∨≤∨  for some 
nn banp ,∈∨   

and >><><<∈∨ nn abnq ,  
Hence, ( ) ( )( ) ( ) ( )( ) srnqnznpnznz ∨=∨∧∨∨∨∧∨=∨  (say) 
Now, ( ) ( ) ( ) nbnanpannpm ∨≤∨∧∨=∨ ,, . So 
( ) ( ) .nbnarnb ∨≤∨∧≤∧  
 Hence,    ( ) ( ) ( ) ( )nbarncnzrncr ∨∨∧≤∨∧∨∧=∨∧  

( )( ) ( )( ) .nbnbrnar ∨≤∨∧∨∨∧=  
This implies ,, nn bcr ∈  similarly,

nn acs ,∈  .     

Hence .,,
nnnn

bcacnz ∨∈∨  

Again 
nnn

bacz ∨∈ ,  implies 

nnn
bacnz ∨∈∧ ,  Then a dual calculation of above shows 

that 
nnnn

bcacnz ,, ∨∈∧  . 

Thus by convexity, 
nnnn

bcacz ,, ∨∈  and so (iii) holds. 

 (iii) ⇒ (iv). Suppose (iii) holds.   In (iv), R. H. S.   ⊆  L. H. S is obvious. Now let 
BAcx

n
∨∈ , .   Then BAcnx

n
∨∈∨ , .    

Thus ( ) .,, BAcnnxm ∨∈∨   
Now ( ) ( ) ( ) ncnnxcnnxm ≥∨∧∨=∨ ,,  implies 
( ) ( ) [ ).,, nBAcnnxm ∩∨∈∨ .  

Hence by  Theorem 1.3   (ii),   [ )( ) [ )( )nBnAcnx
n

∩∨∩∈∨ ,  

[ ) [ )( )( ) .,
nn

rc
nBnAr ∩∨∩∈

∨
=

 

But by Theorem 1.2, [ )( ) [ )( )nBnAr ∩∨∩∈  implies 
tsr ∨= for some BtAs ∈∈ ,  and ., nts ≥  

They by (iii), 
nnnn tscrc ∨= ,,  

nnn
tsc ∨= ,

nnnn tcsc ,, ∨=  

 BcAc nn ,, ∨⊆ . 

Hence .,, BcAcnx nn ∨∈∨  
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 Also BAcx n ∨∈ ,  implies ., BAcnx
n

∨∈∧  

Since ( ) ( ) ( ) ,,, ncnnxcnnxm ≤∧∨∧=∧ So 
( ) ( ] >∩∨>∈<<∧ nBAcnx n ,  Then by Theorem 1.3  (ii), 

( ]( ) ( ]( ) >∩∨∩>∈<<∧ nBnAcnx n ,  

( ]( ) ( ]( ) >><><<
∩∨∩∈

∨
= nn tc

nBnAt
,  . 

 
Using Theorem 1.2  again, we se that  qpt ∧=  where .,,, nqpBqAp ≤∈∈  

Then by     (iii),  
nnnn qpctc ∧= ,,  

  
nnn qpc ∨= ,  

  
nnnn qcpc ,, ∨=  

  BcAc nn ,, ∨⊆  

Hence .,, BcAcnx nn ∨∈∧  Therefore by Convexity, 

.,, BcAcx nn ∨∈  and so   (iv) holds. 

 (iv) ⇒  (iii) is trivial. 
 (ii) ⇒  (v).   In (v) R. H. S. ⊆  L. H. S. is obvious. Let  
∈z  L. H. S. Then ( ) ,,,, nn cbnamz ∈  which implies 

( ) .,,, nn cbnamnz ∈∨  By     (ii),  

.,, nnnn abbanz ∨∈∨   Then by Theorem 1.2,  

yxnz ∨=∨  for some 
nn

bax ,∈  and 

nn aby ,∈  and  ., nyx ≥  Thus , ,nnn bax ⊆∩    

and so 

nnnnnnnn banzbaxax ∩∩∨⊆∩∩=∩  

( ) .,, nnn cbnamnz ⊆∩∨=  This implies 

nn cax ,∈  Similarly  ,, nn cby ∈  

and so .,, nnnn cbcanz ∨∈∨  

Similarly, a dual calculation of above shows that  
.,, nnnn cbcanz ∨∈∧  

Thus by convexity, 
nnnn cbcaz ,, ∨∈  

and so (v) holds.  
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 (v) ⇒  (i). Suppose (v) holds, Let a, b, c .n≥  By (v), 
( ) nn cbnam ,,, .,, nnnn cbca ∨= But 

by Lemma 1.5 (i), this is equivalent to cbcacba ,,, ∨=∧ .Then by [2, 

Theorem 3.7], this shows that [ )n  is a relatively normal lattice. Similarly, for a, b, c 
,n≤  using the Lemma 1.5 (ii) and Theorem1.10, we find that ( ]n  is relatively 

normal.  
Therefore ( )LFn  is relatively normal by Lemma1.1. 
Finally we need to prove  (iii) ⇒  (i). Suppose (iii) holds. Let a, b, c ∈ ( ]n . 

By    (iii),    .,,, nnnnnnn bcacbac ∨=∨  

But by Lemma 1.6(i), this is equivalent to bcacbac ,,, ∨=∨  which 

says by [2, Theorem 3.7]   [ )n  is relatively normal.  
Similarly for a, b, c ,n≤  using the Lemma 1.6 (ii) and Theorem 1.10, we find that 
( ]n  is relatively normal.  Hence by Lemma 1.1 , ( )LFn  is relatively normal.  
Following result is due to  [2, Lemma 3.4].  
 
Theorem  1.12 A distributive lattice is relatively normal  if and only if any two 
incomparable prime ideals are comaximal.      ■ 

Now we generalize the above result.  
 

Theorem 1.12    Let L be a distributive lattice. Then the following conditions are 
equivalent: 

(i) ( )LFn  is relatively normal. 
(ii) Any two incomparable prime n-ideals P and Q are comaximal, that 

is .LQP =∨  
Proof : Suppose (i) holds. Let P, Q be two incomparable prime  
n-ideals of L. Then there exist a, b L∈ such that QPa −∈  and .PQb −∈ Then 

., PQbQPa
nn

−⊆−⊆ Since ( )LFn  is relatively normal, so by Theorem 
1.11  

.,, Labba
nnnn

=>∨  But as P, Q are prime, so it is easy to see 

that,  Qba
nn
⊆,  and ,, Pab

nn
⊆ Therefore QPL ∨⊆  and so 

.LQP =∨  That is, (ii) holds.  
Conversely, suppose (ii) holds. Let 1P  and 1Q  be two incomparable prime ideals of 

[ ).n  Then by [2, Lemma 3.4] there exist incomparable prime ideals P and Q of L 
such that [ )nPP ∩=1  and [ ).1 nQQ ∩=  Since 1Pn∈ and 1Qn∈ , so by 
Lemma 1.7  P, Q are in fact two incomparable prime n-ideals of L. Then by (ii), 
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 .LQP =∨  Therefore, ( ) [ ) [ ).11 nnQPQP =∩∨=∨  

Thus by [2, Theorem 3.5], [ )n  is relatively normal.  

Similarly, considering two prime filters of ( ]n  and proceeding as above and 
using the dual result of  [2, Theorem 3.5] we find that ( ]n  is relatively normal. 
Therefore by Lemma 1.1,  ( )LFn  is relatively normal.          
 By [3] an element Ln∈  is called neutral if  for all Lyx ∈,  

( ) ( ) ( )nxyxnyx ∧∨∧=∨∧  and ( ) ( ) ( )yxnnyxn ∧∨∧=∨∧ . 
n is called a central element if it is neutral and complemented in each interval 
containing it . We know  that ( ) ( )LFLP nn =  when n is a central element of L. So 
we conclude the paper with the following  result. 
 
Corollary 1.14 Let n be a central element of a distributive lattice L. Then the 
following conditions are equivalent. 

(i) ( )LPn  is a relatively normal lattice 
(ii) For all Lcba ∈,,   
(iii) Labba nnnn =>><><<∨>><><< ,,  

 (iii)  For all Lcba ∈,, , >><><<=>><∨><><< nnnnn acbac ,,  

>><><<∨ nn bc , . 
(iv) Any two incomparable prime n-ideals P and Q are comaximal; that 
is           LQP =∨   ■ 
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