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ABSTRACT 
In fuzzy domain, a variable (vague linguistic term) often depends not only on a 
single variable but on more then one variables. In such a situation multiple 
regression analysis is more appropriate than simple regression analysis involving 
one independent variable. This paper introduces fuzzy multiple regression equations 
of fuzzy sets those are treated as a variable with certain values assigned to them. The 
error analysis is done by using standard least square technique. 
 
Keywords: Fuzzy set, Regression equation, Mean, Standard deviation. 
 
1. Introduction 

Regression analysis is quite a common tool in classical statistics. In fuzzy 
mathematics too, regression plays an important role in analyzing imprecise data. 
Mostly, simple regression equation involving a single dependent and a single 
independent fuzzy variable are used to analyze situation involving fuzzy data. 

In Korner, Nather 16 and Wu 17 linear regression analysis for fuzzy input 
and output data has been discussed using fuzzy extension principle. In Kratschmer 
19 too almost same approach has been used for vague concepts. In Ozelkan, 
Duckstein 20, several multi-objective fuzzy regression techniques are introduced to 
overcome the problem of fuzzy regression that does not allow all data points to 
influence the estimated parameter.    Kim, Moskowitz, Koksalan 22 compared 
statistical linear regression and fuzzy linear regression from different perspective 
and it is shown that fuzzy regression can be used as a viable alternative when data 
are vague and/or model specification is poor. 

Here, in this paper, we introduce the notion of multiple regression that 
involves one fuzzy dependent variable depending on more than one independent 
variables. In Bargiela et. al. 23 iterative algorithm for multiple regression with fuzzy 
data is used, where, regression problem is posed as a gradient-descent optimization. 
On the other-hand, we have built up our concept of fuzzy multiple regression as an 
extension of fuzzy simple regression described in section 2. We have also shown 
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that some properties of simple regression are true for multiple regression too. Lastly, 
an example is cited to show the practical implication of the theory developed. 
 
2. Fuzzy-Valued Variable, Simple Regression 

Let  A={ x1,  x2, … xp} be a finite universal set and F be the set of all normal, 
convex fuzzy sets defined over A.  Let X ε  F with membership grade function µX 
such that µX (xk) ε [0,1], xk  ε A. 

 Now, we discuss something about fuzzy-valued variable and its simple 
regression equations. 

A fuzzy-valued variable X is defined as a function X: F -> F $ where F is 
the set of normal, convex fuzzy sets defined over the universal set A. 
As for example, we can take the vague term "Beauty" as a fuzzy-valued variable 
with comparatively less vague terms "Physical Beauty" and "Intelligence" as its 
values, all being defined on a set of people. 

Obviously, a fuzzy-valued variable is quite different from fuzzy random 
variable which is nothing but a function that assigns fuzzy sets to elements of A 
[(Puri, Ralescu), (Kwakernaac), (Baudrit, Couso, Dubois)]. Moreover, the values of 
X are chosen to be fuzzy sets akin to X semantically. So, it can be assumed that 
values x1, x2, …, xp of X have equal weights as far as intuitive similarity with X is 
concerned. 

Similarly, 'marks in Mathematics' is a fuzzy-valued variable if its values are 
fuzzy sets like 'almost fail', 'round about 40', or 'about to pass' etc. 
Suppose the result of ten students in a test of mathematics is represented by the 
following:  

Three students 'nearly passed', four got 'average' and three scored 'high 
marks'. The fuzzy data table for fuzzy-valued variable 'marks in Mathematics' is 
given by Table-1. 
 

X Y 
Nearly Passed 3 
Average 4 
High Marks 3 

                             
                                        Table 1: Fuzzy data table 
    

So we see that a fuzzy-valued variable is nothing but a fuzzy set. So why is 
this new approach? What is special about fuzzy-valued variable? 

We know that there may be different ways to define a fuzzy set. But 
whatever be the approach, it is important to construct a proper membership grade 
function that captures the essence of the linguistic term represented by the fuzzy set. 
It would not be an exaggeration to say that comparatively less vague terms are easier 
to handle when question of construction of membership grade function arises. 

 In human conversation, it is quite common to express the meaning of an 
apparently vague linguistic term in terms of other less vague terms. This mechanism 
is easily employed by human brain which is so far the best known soft-computing 
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machine. We have just tried to mimic this mechanism by our new approach of 
fuzzy-valued variable. In our research, every fuzzy set is treated as a fuzzy-valued 
variable with suitable and appropriate values. 
 
Remark 1. That X is a function defined over F and not on A is another reason for 
not calling it fuzzy random variable. 
 
Remark 2. These fuzzy sets can be considered as fuzzy extensions of class-intervals 
used in classical statistics. 
 
Definition 1.  Let X and Y be two fuzzy-valued variables. Let X takes values X1, X2, 
… ,Xn  and Y takes values Y1,  Y2, …,Yn where Xi and Yi are the usual normal, 
convex fuzzy sets defined over the universal set A. 
  

We define the fuzzy regression equations of X and Y as the system of 
equations 
            
Y1 = A11 X1 + A12X2 + …+ A1nXn +e1               
Y2 = A21 X1 + A22X2 + …+ A2nXn +e2 
                              …                                                           ………………………(1)  
Yn = An1 X1 + An2X2 + …+ Ann Xn +en 
 
subject to the condition that∑

k
µ 2 

ei (xk) is minimum for all i = 1, 2,…, n.  

The fuzzy sets Aij, i, j =1, 2,…, n defined over A are called the coefficients 
of fuzzy regression.  
Let us define the fuzzy error sets ei as 
µei (xk) =| - µyi (xk) + (1/n)( µAi1 (xk) µX1 (xk) + µAi2 (xk) µX2 (xk)+… 
               +µAin(xk)µXn(xk))|                                                                     …………..(2) 
and 
  µYi (xk) =| - µei (xk) + (1/n)( µAi1 (xk) µX1 (xk) + µAi2 (xk) µX2 (xk)+… 
                  +µAin(xk)µXn(xk))|                                                                      ………..(3) 
for all i=1, 2, …,n. 
 

The product between fuzzy sets Aij and  Xj is considered to be understood in 
terms of their membership grades . 
For 
              u = ∑

k
µ 2 

ei (xk) 

                 =  ∑ [| - µyi (xk) + (1/n)( µAi1 (xk) µX1 (xk) + µAi2 (xk) µX2 (xk) 
                      k        +…+ µAin  (xk) µXn (xk))|]2                                                                    ……….(4)    
to be minimum for all i =1, 2, …, n, we differentiate u partially with respect to µAit  
(xk) for t=1, 2, …, n and equate them to 0. 

  Thus for a fixed xk and fixed i, we get, 
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              µYi (xk) =  (1/n)( µAi1 (xk) µX1 (xk) + µAi2 (xk) µX2 (xk)+…+ µAin (xk) µXn (xk)) 
i.e., n µYi (xk) = µAi1 (xk) µX1 (xk) + µAi2 (xk) µX2 (xk)+  …+ µAin (xk) µXn (xk))  
                                                                                                                   ……… (5)         

 For a fixed xk and fixed i, equation (5) is a single equation in n unknowns 
µAi1 (xk), µAi2 (xk), …, µAin (xk) and may possess an infinite number of solutions. But 
of these n unknowns, (n-1) must be independent and the remaining one depends on 
them.  

 We take that unknown as the dependent one whose coefficient is greatest 
among all the coefficients. 

Let, µXr (xk) = max (µX1 (xk), µX2 (xk), …, µXn (xk)).  
Therefore, we take µAir (xk) as the dependent unknown and µAit (xk), t=1, 2, 

…, r-1, r+1,… ,n as the independent ones. 
Let initial guess for independent unknowns be µ0

Ait (xk), t=1, 2, …,r-1, r+1, 
… ,n.  

Hence, the dependent unknown is given by, 
µ0

Air (xk) = (1/ µXr (xk)) (n µYi (xk) - µ0
Ai1 (xk) µX1 (xk)-… 

-µ0
Air-1 (xk) µXr-1(xk) - µ0

Air+1 (xk) µXr+1 (xk)-… 
- µ0

Ain (xk) µXn (xk))                                                        ……….. (6) 
Obviously, for 0 < µ0

Ait (xk) < 1, t=1, 2, … , r-1, r+1, …,n we get, 0 < µ0
Air 

(xk) < 1.  
If µ0

Air (xk) is not less than 1, we apply the normality condition 
                                 µ0

Air (xk) = µ0
Air (xk) / ([µ0

Air (xk)] + 1). 
 

Thus we can find the regression coefficients Aij for i,j=1, 2, … ,n. 
Using equation (2) we can find ei for i=1, 2, … ,n. 

 
3. Multiple Regression of Fuzzy-valued variable 

In the previous section, we have considered simple regression equations of 
fuzzy-valued variable. Now we extend our concept of simple regression to multiple 
regression with one dependent variable and more than one independent variable. 

Let X be a fuzzy-valued variable with assigned values X1,  X2, … ,Xn  as 
defined in definition 1. 

Hereafter, the above fact will be denoted by X (X1,  X2, … ,Xn). 
With this notation in mind, let, X1 (X1

1, X2
1 ,…, Xn

1
  ) , X2 (X1

2, X2
2 ,…, Xn

2
  ), 

…, Xn (X1
n, X2

n ,…, Xn
n

  )  be n independent fuzzy-valued variables and Y(Y1, Y2
 

,…, Yn  ) be the dependent variable depending on them. 
Since values of X's and Y are chosen by an agent according to the need of a 
situation, it may so happen that the assigned values are not equal in numbers. In such 
cases, we shall make them equal by considering pseudo values. These pseudo values 
are fuzzy sets for which every element has membership 0. 
Now, Y (Y1, Y2

 ,…, Yn ) depends on X1 (X1
1, X2

1 ,…, Xn
1

  ). Therefore, by applying 
the simple regression analysis as described in section 2, we get fuzzy regression 
coefficients A1

pq, p, q = 1, 2, …, n and the error set e1 (e1
1, e2

1 ,…, en
1)  such that,  

 
Y1 = A11

1
 X1

1
 + A12

1X2
1

 + …+ A1n
1Xn

1
 +e1

1 
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Y2 = A21
1

 X1
1

 + A22
1X2

1
 + …+ A2n

1Xn
1

 +e2
1 

                  …………………….…………..           ………………….. (7) 
 

Yn = An1
1

 X1
1

 + An2
1X2

1+ …+ Ann
1Xn

1
 +en

1                    
 

Similarly, dependence of Y on each of  X1 , X2, …, Xn  gives rise to (n-1) 
more  such systems of n hyper-planes of dimension (n+1). 
As a result, there are n systems of n, (n+1) dimensional hyper-planes given by 
 

Y1 = A11
j
 X1

j
 + A12

jX2
j
 + …+ A1n

jXn
j
 +e1

j 

 

Y2 = A21
j
 X1

j
 + A22

jX2
j
 + …+ A2n

jXn
j
 +e2

j 

                                             ……….. 
 

Yn = An1
j
 X1

j
 + An2

jX2
j+ …+ Ann

jXn
j
 +en

j                  …………………..(8) 
 
for j = 1, 2, …, n. 
Now, for a particular j ε {1, 2, …, n}, we get n2 fuzzy simple regression coefficients 
Apq

j , p, q = 1, 2, …, n, and n error sets e1
j , e1

j ,…, e1
j . 

To find fuzzy regression coefficients for multiple regression, these simple regression 
coefficients should be coordinated in a comprehensive manner. We use the weighted 
aggregation operation to find the multiple regression coefficients Apq

multiple  as 
follows: 
For all xk in A,  
                                                  n 
                       µApq 

multiple
 (xk) = ∑  µApq 

j
 (xk) wj                                                               …………(9) 

                                                 j=1 
where  w1, w2,…, wn are real number lying in [0,1] and represent intuitive 
dependence of Y on X1 , X2, …, Xn  respectively with the condition that  ∑wj =1. 

Replacing the simple regression coefficients Apq
j   for p, q, j = 1, 2, …, n by 

corresponding multiple regression coefficients in equation (8) and calling Y1, Y2, … 
Yn  respectively Y1

j
 , Y2 

j
 ,…, Yn 

j  we get the equation for multiple regression of Y 
and Xj as given by, 

 
Y1 

j
 = A11

multiple
 X1

j
 + A12

multipleX2
j
 + …+ A1n

multipleXn
j
 +e1

j 

 

Y2 
j
 = A21

multiple
 X1

j
 + A22

multipleX2
j
 + …+ A2n

multipleXn
j
 +e2

j 

                                             ……….. 
 

Yn 
j
 = An1

multiple
 X1

j
 + An2

multipleX2
j+ …+ Ann

multipleXn
j
 +en

j ……..(10) 
 
                      for j = 1, 2, …, n. 
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Now, for a particular j ε{1, 2, … n}, Y1 
j , Y2 

j ,… Yn 
j  do not give required 

Y1, Y2,… Yn respectively but together they must give Y1, Y2,… Yn  because each of 
Y1, Y2,… Yn depend on all of X1 , X2, …, Xn

 . 
So, Yi

1, Yi
2,… Yi

n are to be combined to give a single Yi  and ei
1, ei

2 ,… ei
n 

are to be combined to give ei,  i=1, 2, …, n, the fuzzy sets constituting the error set e 
(e1, e2

 ,…, en) of multiple regression. For the coordination we again use the weighted 
aggregation as in equation (9) and Yi  and ei  are given by, for all xk in A, 

µYi  (xk) = ∑  µYi 
j
 (xk) wj                                                                                           ……………(11) 

and 
             µei (xk) = ∑  µei 

j
 (xk) wj                                                                                      ……………….(12) 

 
Theorem 1.  µ Yi =  ∑µ Yi 

j wj for i= 1, 2, …, n. 
             j 
Proof. We know, for all i =1, 2, …, n, 

µ Yi
1 =(∑ µYi

1(xk)) / p 
             k 
  µ Yi

2 =(∑ µYi
2(xk)) / p 

               k 
……..………. 
µ Yi

n =(∑ µYi
n(xk)) / p 

             k              
Multiplying the above equations by w1, w2,…, wn  respectively and adding 

together we get, for all i= 1, 2,…, n, 
 ∑µ Yi

j wj = ∑(∑ µYi
j(xk) wj) / p 

        j                         j     k 

                 =   ∑µ Yi 
j wj                    

 
Theorem 2. E(Y) ≤  E(e) + p  provided the frequencies of  Yi's are same and 
frequencies of ei' s also are same. 
 
Proof. Here, we first recall the definition of frequency and expectation of a fuzzy-
valued variable. 

Frequency of a fuzzy set X  is the number of elements of finite universal set 
A which have non-zero membership grade in X. 
Expectation of fuzzy-valued variable Y is defined as 
                  E(Y) = (∑µ Yi bi) / ∑bi , Where bi is the frequency of fuzzy set Yi.  
    

Now, individual dependence of Y on X1 , X2, …, Xn  gives rise to equations 
(10). 

We have, 
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µ Yi
1 ≤ µ ei

1 + p 

µ Yi
2 ≤ µ ei

2 + p 
   ………….. 
µ Yi

n ≤ µ ei
n + p                                    ...................................(13) 

For all i = 1, 2, ... ,n. 
 

  Multiplying the above equations by wj  for j= 1, 2, …,n, respectively and 
adding together we get, E(Y) ≤  E(e) + p. 
 [Remembering that  ∑wj =1] 
 
4. Practical Application 

Let us take the fuzzy-valued variable "Personality" as the dependent variable 
depending on fuzzy-valued variables "Intelligence" and "Beauty" which are taken to 
be independent. 

Let "Personality (Y)" has two values, "Well-behaviour (Y1)” and "Charm 
(Y2)". "Intelligence (X1)" has two values viz., "Knowledge (X1

1)" and "Mental 
Sharpness (X1

2)". "Beauty (X2)" has two values, "Physical Beauty (X2
1)" and 

"Noble-mind (X2
2)".  

Let set of people U = {x1, x2, x3, x4, x5} be the universal set. All the above X 
and Y are defined on U. 
Let,                         

 X1
1 X1

2 Y1 Y2 
x1 0.4 0.8 0.3 0.4 
x2 0.9 0.5 0.9 0.6 
x3 0.3 0.4 0.7 0.2 
x4  0.1 0.5 0.2 0.7 
x5 0.4 0.6 0.3 0.9 

 
 be the observed fuzzy sets. Using simple regression as defined in section 2 for Y 
and X1 and using normality condition where necessary, we get the following 
regression coefficients for simple regression. 
                                 

 A1
11 A1

12 A1
21 A1

22 
x1 0.3 0.6 0.5 0.75 
x2 0.8 0.7 0.6 0.2 
x3 0.6 0.75 0.9 0.32 
x4  0.3 0.74 0.4 0.9 
x5 0.7 0.53 0.2 0.96 

 
From similar observations for “Beauty” and “Personality”, we get the simple 
regression coefficients as 
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 A2
11 A2

12 A2
21 A2

22 
x1 0.37 0.44 0.2 0.71 
x2 0.25 0.8 0.54 0.39 
x3 0.5 0.4 0.9 0.2 
x4  0.6 0.41 0.67 0.32 
x5 0.56 0.72 0.81 0.51 

 
Let, the intuitive dependence of “Personality” on “Intelligence” be 0.6 and that on 
“Beauty” be 0.4, i.e., w1 = 0.6 and w2 = 0.4. 

Therefore, we get the coefficients of multiple regression as  
                          
 

 
We find error sets with the new found multiple regression coefficients 

Amultiple
pq as follows. 

 e1
1 e1

2 e2
1 e2

2  
x1 0.01 0.03 0.2 0.34 
x2 0.65 0.27 0.07 0.42 
x3 0.49 0.01 0.43 0.52 
x4  0.04 0.5 0.26 0.37 
x5 0.008 0.58 0.61 0.41 

 
From above table, we get the coordinated error sets for fuzzy multiple 

regression as                            
 
 
 
 
                           
 
 
 
 5. Conclusion 

To find a relation between a dependent variable and several independent 
variables, a modular approach has been taken in this paper. First we have analyzed 
the relation of the dependent variable with each of the independent variables 
separately and then combined them to get the overall effect. This is simply the 
human thought process that we have followed in doing the regression analysis 
between fuzzy variables. 

 Amultiple
11 Amultiple

12 Amultiple
21 Amultiple

22 
x1 0.33 0.54 0.38 0.73 
x2 0.15 0.74 0.58 0.28 
x3 0.56 0.61 0.9 0.27 
x4  0.42 0.6 0.5 0.67 
x5 0.64 0.6 0.44 0.78 

 e1 e2 
x1 0.09 0.15 
x2 0.43 0.33 
x3 0.47 0.21 
x4  0.13 0.45 
x5 0.25 0.51 
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