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ABSTRACT

Following Deissler’s theory, the decay for the concentration fluctuation of a dilute
contaminant undergoing a first order chemical reaction in MHD turbulence at times
before the final period in presence of dust particle for the case of multi-point and
multi-time is studied and have considered correlations between fluctuating quantities
at two and three point. Two and three point correlation equations are obtained and
the set of equations is made to determinate by neglecting the quadruple correlations
in comparison to the second and third order correlations. The correlation equations
are converted to spectral form by taking their Fourier transforms. Finally we
obtained the decay law of magnetic energy for the concentration fluctuations before
the final period in presence of dust particle for the case of multi-point and multi-time
by integrating the energy spectrum over all wave numbers.

Keywords: MHD Turbulence, First order Reactant, Dust particle, Decay before the
final period

1. Introduction

The relative motion of dust particle and the air will dissipate energy because of
the drag between dust and air, and extract energy from turbulent intensity is reduced
than the Reynolds stresses will be decreased and the force required to maintain a
given flow rate will likewise be reduced. Sarker [1] discussed the vorticity
covariance of dusty fluid turbulence in a rotating frame.

. The behavior of dust particles in a turbulent flow depends on the concentration of
the particles and the size of the particles with respect to the scale of turbulent fluid.
Saffman [2] derived and equation that describe the motion of a fluid containing
small dust particle, which is applicable to laminar flows as well as turbulent flow.
Using the Saffman’s equations Michael and Miller [3] discussed the motion of dusty
gas occupying the semi-infinite space above a rigid plane boundary. Sarker and
Rahman [4] considered dust particles on their won works. Sinha [5] studied the
effect of dust particles on the acceleration covariance of ordinary turbulence.
Kishore and Sinha [6] also studied the rate of change of vorticity covariance in dusty
fluid turbulence.
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Deissler [7,8] developed a theory “decay of homogeneous turbulence for times
before the final period”. Using Deissler’s theory, Loeffler and Deissler [9] studied
the decay of temperature fluctuations in homogeneous turbulence before the final
period. In their approach they considered the two and three-point correlation
equations and solved these equations after neglecting fourth and higher order
correlation terms. Using Deissler theory, Kumar and Patel [10] studied the first-
order reactant in homogeneous turbulence before the final period
of decay for the case of multi-point and single-time correlation. Kumar and Patel
[11] extended their problem [10] for the case of multi-point and multi-time
concentration correlation. Patel [12] also studied in detail the same problem to carry
out the numerical results. Sarker and Kishore [13] studied the decay of MHD
turbulence at time before the final period using chandrasekher’s relation [14]. Sarker
and Islam [15] studied the decay of MHD turbulence before the final period for the
case of multi-point and multi-time. Azad and Sarker [16] studied the Decay of
MHD turbulence before the final period for the case of multi-point and multi-time in
presence of dust particle. Islam and Sarker [17] also studied the first order reactant
in MHD turbulence before the final period of decay for the case of multi-point and
multi-time.

Following Deissler’s theory we studied the magnetic field fluctuation of
concentration of a dilute contaminant undergoing a first order chemical reaction in
MHD turbulence before the final period of decay for the case of multi-point and
multi-time in presence of dust particle. Here, we have considered the two-point, two-
time and three-point, three-time correlation equations and solved these equations
after neglecting the fourth-order correlation terms. Finally we obtained the decay
law for magnetic field energy fluctuation of concentration of dilute contaminant
undergoing a first order chemical reaction in MHD turbulence for the case of multi-
point and multi-time in presence of dust particle is obtained. If the fluid is clean , the
equation reduces to one obtained earlier by Islam and Sarker[17].

2. Basic Equations
The equations of motion and continuity for viscous, incompressible dusty fluid
MHD turbulent flow are given by

ou, 0O ow 0%u,

—+—Wu, —hh)=——+v —+ f(u, —v, 1
ot axk(”‘ ) ox,  ox,0x, S =v) W)
oh, 0 o%h.

i Y hu —uh)=A i 2
o e T = A o @

—4v, ——=—, —u, (3)
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" ou, _le. _8hl. _0
wit o, ox. ox. )
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Here, u; turbulence velocity component; h;, magnetic field fluctuation component;

P
v;, dust particle velocity component; w(X,t)=—+— <h2 > total MHD pressure
e,

p(x,t), hydrodynamic pressure; p, fluid density; v, Kinematic viscosity;
A= %JM , magnetic diffusivity; Py, magnetic prandtl number; X, space co-
ordinate; the subscripts can take on the values 1, 2 or 3 and the repeated subscripts in

a term indicate a summation; €., alternating tensor; f = ——, dimension of

4
frequency ; N, constant number density of dust particle m, = §7ZR3 P, , mass of

single spherical dust particle of radius Ry; ps, constant density of the material in dust
particle.

3. Two-Point, Two-Time Correlation and Spectral Equations

Under the conditions that (I) the turbulence and the concentration magnetic field are
homogeneous (ii) the chemical reaction has no effect on the velocity field and (iii)
the reaction rate and the magnetic diffusivity are constant, the induction equation of
a magnetic field fluctuation of concentration of a dilute contaminant undergoing a

AN

first order chemical reaction at the points p and p' separated by the vector 7 could
be written as

Oh, oh, Ou, 0’ h,
Fiju, Fip, S ) 25 Ry 5)
ot ox, ox, Ox, 0x,
oh’ Oh' ou' o’h’ :
and —+uy —-—h, —-=41 —Rh; . (6)
Ot ox;, ox,, ox, Ox;

Multiplying equation (5) by h] and equation (6) by h; and taking ensemble
average, we get

a<_ a [uhh ()] = zw—mhm @)

X OXy
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oy o, o o) |
and =2 +a[<ukhi i) = b)) = A R (®)
Angular bracket < ————— > is used to denote an ensemble average.
Using the transformations
0 0 0 0 ( 0 j , ( 0 j 0 0 0
—_—= —=—, | =t === A, —=— Q)
ox, or, 0Ox, oOr, \ot Ot OAt Ot OAt
into equations (7) and (8), we obtain
ORI o T . -
R A (), At,t)—akukhih»— (1, 1)), A8, 0)
o*(hh'
:2/1M—2R<hih}> (10)
¥, Or,
a<h’h,> 0 ’ ' ' ’ ~ 62<h1h;> !
and —— - +a[<ukhihj>_<ujhihk >k”»AU) = AW —R{h;h;) (11

Using the relations of Chandrasekhar [14]
(uyhh})) = ~(uph ), (uihhy ) = (uh b)) .
Equations (10) and (11) become

8 h[h’, a ' ' , 52 hlhy |

%Jr 2£[<u"h"hf> ~(unh))|= 2’1%—21«%@ (12)
! 2 ,

and a<};th/> +%[<u,'{hih;>—<uihkh;>]: A%_R%ih» . (13)

Now we write equations (12) and (13) in spectral form in order to reduce it to an
ordinary differential equation by use of the following three-dimensional Fourier
transforms:

<h,h; >(f, At, t) = T<l//,.t//_;. >(I€, At, t)exp[f([%f)]v/[% (14)

—00

0

and <uihk h >(79, At,t)= j<aiy/k V' >(]€, At, t)exp[f(]%f)]z’[% (15)

—00
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Interchanging the subscripts i and j then interchanging the points p and p’ gives

() )7, At ) = (u bl (= 7=t + At)

~ N - Kmnn+ adexpfi (& 7k (16)

where I% i1s known as a wave number vector and dle =dK; dK, dKj. The magnitude

of K has the dimension 1/length and can be considered to be the reciprocal of an
eddy size. Substituting of equation (14) to (16) in to equations (12) and (13) leads to
the spectral equations

ovw))

- w2l + Ry ) = 20k, [ VR At )~ (! Ve Ro—ate+ ac)] - (17)

A

and 6<?Al/t/;> + [/1K2 + R:K!//il//;’> =ik, [<a,.1//kl//j'. >(K, At,t)— <akl//,.1//} >(— K,—~Att+ Al)] (18)

The tensor equations (17) and (18) becomes a scalar equation by contraction of the
indices 1 and

W + 2[/11(2 + R](l//iy/i'> =2ik, [<a[l//kl//i'>(1%, At,t)— <Olkl//il//i,>(— KAt 1+ At)] (19)
and 8%/2';/» + [/1](2 + R](t//l.t//,.’> =ik, [(a,.t,ykt//»(le, At,t)— <akt//l.z//i'>(— KAt + At)] (20)

The terms on the right side of equations (19) and (20) are collectively proportional
to what is known as the magnetic energy transfer terms.

4. Three-Point, Three-Time Correlation and Spectral Equations
Similar procedure can be used to find the three-point correlation equations. For this
purpose we take the momentum equation of dusty fluid MHD turbulence at the point
P and the induction equations of magnetic field fluctuations, governing the
concentration of a dilute contaminant undergoing a first order chemical reaction at p’
and p'’ separated by the vector 7 and 7' as

2
8u1+uk Gu,_hk oh, :_8W+V 0u, +f(u,—vl) _______ @
ot ox, ox,; ox, Ox, 0x,

' ' ' 2711
O\ O 00 W )
ot' ox; Ox; Ox, Ox;,

on by ouy o @H)
" k o Tk PP 7 ”—th . (23)
Ot ox;, ox;, 0x,0x;
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Multiplying equation (21) by h’; hi”, equation (22) by uh;"” and equation (23) by
uhy’, taking ensemble average, one obtains

" h) h 0 (u,h/h"
<” why) , [<uku,h'h )= (/)] = <w +v aiukla;ckj>
+f(<“1hi,h}, > < lhzh;>)
----- (24)
ouhy g | ) ok -
- J>+ax; (w7 - <u,uihkhj>]_,1(ic;:—%—1e<u,hihj>

ouhih) 5

<u, ThihT) - <u,u;'h;h,;'>]: zM—R@ )

d +

™ o ey,
——————— (26)

Using the transformations

o _(o,0) 0 o o _a

ox, or, or, ) ox, or,  ~ox] or ’

2 t't" = Q At,At'—i— 0 ,

Ot Ot OAt  OAt

0_90 °2_9 int tions (24) to (26), we h

o ont A AL into equations 0 , we have

Buhihy ) _ ( . j[<ukulh'h> O = PR O]
7

or, or .

2
+65r [< il khh> < il th}] (iJr a/}<wh,.’h;'>+v(i+ g,j <u1hl.’h‘;'>

i or, or or, oy
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rpn 2 'h"
) /1[62<u1hihj> N 0 <M1h,-hj>] n f<<ulhl.'h_;.'> - <V1h;h;',>)

Gl"kﬁl’k 8}/,{'8;/}{'
—————————— 27)
o(u, 'k, ol i -
< é;At J> " % [<u’”’;hfrhf"’> - <”1“;hih.fﬂ‘>] = ﬂ% — R(u,h;h ;)
------ (28)

o(u,hih) )
OAt'

and

2 1 n
+§ ez ) (et )| = 2 M—Rw,h;w
k

1 Oy

In order to convert equations (27)—(29) to spectral form, we can define the
following six dimensional Fourier transforms:

00 00

a7 60 = | [0 R 0 e+ R
o —(30)
(a0 7700001 = [ [ i) R de e ool (Ko7 + R ik
e (1)
ol Wi s 0) = | TR e v sl 7+ e
e (32)
(w0 770000 = [ [ (e BN e, e (7 + R ke
e ——— (33)
i 7.7 D A1) = [ [ BN R K e xR -+ K 7 el -
o - (34)
(a7, 70080 = [ (g 80N & R de A ool (K7 + R i -
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(ol 77,08 = [ [ R K e e ool (K7 + R ok

——————— (36)
Interchanging the points P’ and P"" along with the indices i and j result in the
relations

<u,u,’€'hi'h;.'> = <u,u,'€hl.'h;.'> ,

By use of these facts and the equations (30)-(36), we can write equations (27)-(29)
in the form

%<¢;ﬂ[ﬂ_}’>(l€,K',At,At',t)+ /1{(1+PM k> + k2 )+ 2P kk'+%——f}

(8 BBIR. K A A )= ik, + b B~ ik, + KN BB
—ilk, + b Xy BT ) + il + ki X BB ) —ilk, + K Xy B )
_f<;ulﬂi,ﬂ],',> ](]%,I%',Al,Al,,l‘) """""" (37)

" <¢,ﬂ BONR K AL A1)+ ;t[K + }<¢,/3 BN, K At A1)

ik, (¢, 8 BAINR. R AN 1)+ ik (4,88 A1) K At A 1)

and %(@ BANK, K A A1)+ E{Kz + ﬂ(@ﬁ!ﬂ;’)(ﬁ R ALA )

=ik} (¢, . 8.8 )R, K0t A0 1)+ ik (8,85, 1)K K At A1)
--------- (39)
If the derivative with respect to X, is taken of the momentum equation (21) for the

point P, the equation multiplied by hi'hj" and time average taken, the resulting
equation

o (whihj) 52

Canoy,  oxx, <<ulukh"’h;>_<h’hkh;h;’>) ---------- (40)




First Order Reactant in MHD Turbulence 29

Writing this equation in terms of the independent variables 7 and 7'

o’ o’ o’ 0’ 0’ 0’ 0’
- +2 + <w ! 'T>: + + -+ —— X
or,0r,  Oror/  or/or/ ! or,0r, ~ Or/Or, Or,0r]  Or/or|

(O AR /i) E— @1

Taking the Fourier transforms of equation (28)
) - (ki +kik, + ki, + ki V(g BL87) ~ (BB BIBT))
PP Kk, + 20kl + Kk |

Equation (42) can be used to eliminate <7/,6’l.'ﬂj'.'> from equation (37)

The tensor equations (37) to (39) can be converted to scalar equation by contraction
of the indices 1 and j and inner multiplication by k;

ﬁk,<¢,ﬂ[’ﬁ[”>(1%,K',Az,m',;)+,1{(1+pM)(k T+ k)4 2P, k' + 27R__ f}

(8 BBNR. R, AL AL )= ik, + K, ) .8, 8.5,
K, K’,At,At',t)—i(kk FKLXBB BB, K, AL A, t)-i(k, +K])
(0B8R R A, A )il + K N g BLBMR, K At A )i, + K]

<%51~',5{'>(1% K’ AL ALt )— f{u, ﬂ[ﬂ{?(K K AL AL, z) --------- 43)

0

k(g BBNR. R At At )+ /1{1& + ﬂ(;ﬁ, BBNR. R At AL 1)

ik, (4,0, B! ,B”}(I% K', At At',t)+ikk (4,08, ﬂ;’}(l&,]& g Az,At',z)
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and %k (.B880R. K" A A 1)+ ,1[1(2 +ﬂ<¢f BB R At AL 1)

ik, (4,6, B, ,B”}(I% K' At,At' z)+zk <¢1¢,[>’ﬂ”>( K’ t,At',t).

5. Solution for Times Before the Final Period

It is known that the equation for final period of decay is obtained by
considering the two-point correlations after neglecting third-order correlation terms.
To study the decay for times before the final period, the three-point correlations are
considered and the quadruple correlation terms are neglected because the quadruple
correlation terms decays faster than the lower-order correlation terms. The term

<}/ﬂ l.'ﬂ;.'> associated with the pressure fluctuations should also be neglected. Thus
neglecting all the terms on the right hand side of equations (43) to (45)

%Kl (6,8 BNR. K A AL )+ A1+ P, \k? + k7 )+ 2P, Kk +% —% fs} x
(GBBNR. R ALAC)=0 (46)
%K,@ﬁ, BBNR. R ALAL )+ A k /1{ }{;ﬁ, BBNK. K" A AL £)=0
----- (47)
and K (4,5 VK. K" At A )+ A[k * }(;fﬁ,ﬁ BR, K", A AL )=0

where < K, ﬂi'ﬂi"> =C <¢, ﬂi'ﬂi"> and 1-C=S, here C and S are arbitrary constant.

Integrating equations (46) to (48) between t, and t, we obtain
k(8,88 = f,expl- 2|1+ P, \i&* +k2)+ 2PMkk'cosé’+27R —%fs(t ~1,)}

kl <¢lﬂi,ﬂi”> =& exl{— A(Kz + ngl}
and kl <¢lﬁi’ﬂi”> =4, eXp|:_ ﬂ(k'z + %jAt} )

For these relations to be consistent, we have
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kz <¢1:8;ﬁi"> = kl <¢lﬁi,ﬂi">o eXp{— ﬂ[(l +P, )(k2 +k"” Xt -1, )-I— KAt + k" At

+2PMkk'cosﬁ(t—t0)+27R(t—t0 + At;At J—ﬁ( S | — (49)

where 0 is the angle between K and K' and <¢1 ,Bl.'ﬂi">a is the value of <¢1 ,Bl.'ﬂi"> at

t=t, = At' =0, /1——
M

By letting 7' =0 , At' =0 in the equation (30) and comparing with equations (15)
and (16) we get

(@)K )= j (B BBNR.K Aot (50)

N>
E
\.Q
B

and <ait//kwi'>(— K,—At,t+ At): I<¢lﬂi'ﬂ">( K,

Substituting equation (49) to (51) into equation (19), one obtains
§<l//il// >(K At, z)+ 2/1{18 /J@/ ! >(K At, t) jzzk [¢lﬁ ﬁ”)(K K',At0, t)
~(pBAN-R-K'AL01) ], exp[— (1+p, &> +52)e-1,)

+k*At+2P, (t—1, )kk' cos9+—(t—t +At)—%(t—t W ak

Now, d[% " can be expressed in terms of k” and 0 as - 21tk'd(cos 0)dk’ (cf. Deissler
8] A
ie. dK'=-27k'd(cos@)dk’ e (53)

Substituting of equation (53) in equation (52) yields
aa ()R Ane)+ 2,1{1(2 /J@/ )& Ane)= 2j2mk (o.887R &)
e £k ] fosnb Ao p o Yo

-1

+k2At+2P, (t—t, k' 0059+—(t t +A/)——t t )]}d(cose)}dk'
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The quantity [<¢1B:B;'>(IA(,IA(')—<¢1B;B£'>(—K,—K')]O depends on the initial
conditions of the turbulence.

In order to find the solution completely and following Loeffler and Deissler [9] we
assume that

ik (o8B (K7~ (o) R )| = %

where 6, is a constant determined by the initial conditions. The negative sign is
placed in front of § in order to make the transfer of energy from small to large wave
numbers for positive value of d.

Substituting equation (55) into equation (54) we get

%2;;(;//,.;//;)(1%, 80,0)+ 2201 +B/ Pl )R )= —25OI(k2k’4 KRR

(kzkm _k4k'2) ---------- (5%

1

I exp{— /1[(1 + P k> + k2 Ne—t,) + k2Ac+2P, (1 —t, k' cos@

-1

+27R(t—t0 +A%) —f(z—to )}d(oose) }dl\?' --------- (56)

Multiplying both sides of equation (56) by k*, we get

%—f+2zk2E =F (57)

where, £ = 27Tk2<%'//i’ > , E is the magnetic energy spectrum function and F is the

magnetic energy transfer term and is given by
1

F= —250T(k2k’4 — KK % {j expl- A[(1+ P, Yk + &7 Ye—t,)
0

-1

+k*At+ 2P, (t —t, k' cos &
2R ,
+7(t—t0 +A%) —%(t—to )}}d(cosﬁ) }dk ......... (58)

Integrating equation (58) with respect to cos® and k'~ we have

el e
F=- — \t—t )px
P e e rfi=e)
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2 4
1+P, 142P, 4P 2 (t—t Y (1+P,)

.\ 5P, 3 k° . P, P, i
(1+p,) 2|P,At-t,) |(+P,) 1+P,

oS

_42%(1—10 A2 (1+ P, ) A

2 4
ex —KAL+2E,) AL+2F, ) t—to+—PM Nt —2R(t—t0+A%) X ISPMkZ
1+B, 1+P, 47 (t—t, + ) (14 B,)

M

. 5P; 3 k* . Py, P, £
(+p,) 2|PAt-t,+At) |(1+P,) 1+P,

------ (59)
The series of equation (59) contains only even power of k and start with k* and the
equation represents the transfer function arising owing to consideration of magnetic
field at three-point and three-times.

If we integrate equation (59) for At=0 over all wave numbers, we find that
[Fdk=0 (60)
0

which indicates that the expression for F satisfies the condition of continuity and
homogeneity. Physically it was to be expected as F is a measure of the energy
transfer and the total energy transferred to all wave numbers must be zero.

The linear equation (57) can be solved to give

E=expl-24k>(t—t, + At2)[ F exl:)[2,1(1c2 + %)(z —1, + At/2)Jdt

+J(k)exp[— 2A(k? +%(1‘—t0 +At/2)J .......... (61)

2
where (k)= Nk s a constant of integration and can be obtained as by Crrsin[18].
T

Substituting the values of F from equation (59) into equation (61) gives the equation

N exp[— 20k + %)(f —t, + At/2)]+ 5, Pz x expfs(t —¢, )]

E- _ OPyNT
7 42201+ P, )"
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—k*A(l+ 2P, 1+P
exp(—+M) t—to+gAt —2R(t—t0+A%)
1+ P, 1+2P,

2P, 22 (t—1,) 3A0+P, Ne—t,)? 301+P, ) (t—1,)"

[ 3k . (1P, — 6k’ 4(3p2 -2, +3k"

L 8V2 (P2 -2pP, +3)° F(a))}r AR expl fs(t -1, ]

3(1+p, ) 451+ p, )

1+P, '

_ 1.2
exp{ k /1(1+2PM)[t_to +%At]—2R(Z—ZO +A%)}

3k* (7P, —6)k*
5 + 3
2P, 22 (t—1, + A1) 3A(1+P, Ne—t, + A1)

4B -2, +3) 8VaBR; -2, + 3)1(9F(a))} o
31+ Py ) (=1, +A0) 2 (1+P,)" By
where F(w)=€_wzjex2dx’ w=k Mr—1,) or k /I(t_to"'At

By setting 7 =0, j=i, dk = —27zkzd(cos¢9)df< and E = 272'k2<y/l.l//;.> in equation

(14) we get the expression for magnetic energy decay law as
hh'y %
(hi) = j Edk (63)
2 0

Substituting equation (62) into equation (63) and after integration, we get
(hh)) N,
ALVA exp[-2R(T + AT/)]
2 8\V2r AP (T +AT/2)" /2
7o,

+
4201+ P, N1+2P,)

—exp[-2R(T + AT/ exp[(f5)]
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5P, (7P, —6) N 5P, (7P, —6)

72 7/2
1+P P
16(1+2P )T T+~ AT 1614 2P T+ ATY?| T+~ M AT
oi+27,) ( 1+2P, J o1 +25, X ) 1+2P,

M M

35p, (3P2 —2P, +3)

9/2
81427, )" 7+ P a7
1+2P,

35pP, (3P2 - 2P, +3)

9/2
8(1+2P, )T +AT)" (T + PMATJ
1+2P,

J’_

. 8P, (P2 —2P, +3)1+2P, ) & 135 (2n+9)

32%2(1+p,)" 2

=S n(2n+127"(1+ P, )

T(2n+1)/2 (T n AT)(2n+1)/2

(T N A%)(2n+1)/2 + (T A A%)(2n+l)/2 _________ (64)

where T=t-t; .

For T, =T + A]/ , equation (64) takes the form

ny _ (ki) N, 75,
= exp[-2RT
2 PR 827 AT My (1+p,)1+2P,)" L]
9 9
§ 5/2 5/2 5/2 &
_AT AT AT
(T /) (’” 1+2P, j (T' * /) ( " 1+2P )j
. 5P, (7P, —6)

ATY" ar "
16(1+2PM)(T —) T+
2 2(1+2P,)

35
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5P, (7P, —6)
3/2 7/2
16(1+ 2P, )(Tm +Mj T, _ AT
2 2(1+2pP,)

This is the decay law of magnetic energy fluctuations of concentration of a
dilute contaminant undergoing a first order chemical reaction of MHD
turbulence before the final period for the case of multi-point and multi-time
in presence of dust particle.

o] (65)

6. Results and Discussion

In equation (65) we obtained the decay law of magnetic energy fluctuations of a
dilute contaminant undergoing a first order chemical reaction before the final period
considering three-point correlation terms for the case of multi-point and multi-time
in MHD turbulence in presence of dust particle. If the fluid is clean then =0, the
equation (65) becomes

(n*) N, 70,
= exp[-2RT +
y - XPl2RT, ]{8\/%/13/2@3/2 42°(1+ P, \1+2P, )"
9 9
§ 2 AT V" 5 AT )"
16|17, — AT T, 16|17 +AT T, —
(m A) (’”+1+2PMJ (ﬁ A) ( 2(1+2PM)J
5P, (7P, - 6)
+ AT 32 AT 7/2
16(1+2P, )(Tm - j T, +—F—
2 2(1+2P,)
N 5P, (7P, - 6) R | IR— (66)

ATY"? ar )"
16(1+2P, |\ T, +—| |T, ———————
2 2(1+2P,)

which was obtained earlier by Sarker and Islam [17].

If we put AT=0, R=0, in equation (66) we can easily find out
' -3/
" :<hl.hi> N 75, - T_5{9 L SPOR-6) }

= + -
2 2 82w 4r(+p,)1+2p, 16 16 1+2P,
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which is same as obtained earlier by Sarker and Kishore [13].

This study shows that due to the effect of rotation of fluid in the flow field with
chemical reaction of the first order in the concentrarion the magnetic field
fluctuation in MHD turbulence in presence of dust particle for the case of multi-
point and multi-time i,e.the turbulent energy decays more slowly than the energy
for clean fluid and the rate is governed by exp[ f5]. Here the chemical reaction

(R#0) in dusty fluid MHD turbulence for the case of multi-point and multi-time
causes the concentration to decay more they would for clean fluid and it is governed

by exp[-{2RT,, - f5]]

The first term of right hand side of equation (65) corresponds to the energy of
magnetic field fluctuation of concentration for the two-point correlation and
the second term represents magnetic energy for the three-point correlation. In
equation (65), the term associated with the three-point correlation die out
faster than the two-point correlation. If higher order correlations are
considered in the analysis, it appears that more terms of higher power of time
would be added to the equation (65). For large times the last term in the
equation (65) becomes negligible, leaving the -3/2 power decay law for the

final period.
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