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ABSTRACT 

Following Deissler’s theory, the decay for the concentration fluctuation of a dilute 
contaminant undergoing a first order chemical reaction in MHD turbulence at times 
before the final period in presence of dust particle for the case of multi-point and 
multi-time is studied and have considered correlations between fluctuating quantities 
at two and three point.  Two and three point correlation equations are obtained and 
the set of equations is made to determinate by neglecting the quadruple correlations 
in comparison to the second and third order correlations. The correlation equations 
are converted to spectral form by taking their Fourier transforms. Finally we 
obtained the decay law of magnetic energy for the concentration fluctuations before 
the final period in presence of dust particle for the case of multi-point and multi-time 
by integrating the energy spectrum over all wave numbers. 

 Keywords: MHD Turbulence, First order Reactant, Dust particle, Decay before the 
final period  

1. Introduction 
      The relative motion of dust particle and the air will dissipate energy because of 
the drag between dust and air, and extract energy from turbulent intensity is reduced 
than the Reynolds stresses will be decreased and the force required to maintain a 
given flow rate will likewise be reduced. Sarker [1] discussed the vorticity 
covariance of dusty fluid turbulence in a rotating frame. 
   . The behavior of dust particles in a turbulent flow depends on the concentration of 
the particles and the size of the particles with respect to the scale of turbulent fluid. 
Saffman [2] derived and equation that describe the motion of a fluid containing 
small dust particle, which is applicable to laminar flows as well as turbulent flow. 
Using the Saffman’s equations Michael and Miller [3] discussed the motion of dusty 
gas occupying the semi-infinite space above a rigid plane boundary. Sarker and 
Rahman [4] considered dust particles on their won works. Sinha [5] studied the 
effect of dust particles on the acceleration covariance of ordinary turbulence. 
Kishore and Sinha [6] also studied the rate of change of vorticity covariance in dusty 
fluid turbulence. 
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     Deissler [7,8] developed a theory “decay of homogeneous turbulence for times 
before the final period”. Using Deissler’s theory, Loeffler and Deissler [9] studied 
the decay of temperature fluctuations in homogeneous turbulence before the final 
period. In their approach they considered the two and three-point correlation 
equations and solved these equations after neglecting fourth and higher order 
correlation terms. Using Deissler theory, Kumar and Patel [10] studied the first-
order reactant in homogeneous turbulence before the final period  
of decay for the case of multi-point and single-time correlation. Kumar and Patel 
[11] extended their problem [10] for the case of multi-point and multi-time 
concentration correlation. Patel [12] also studied in detail the same problem to carry 
out the numerical results. Sarker and Kishore [13] studied the decay of MHD 
turbulence at time before the final period using chandrasekher’s relation [14]. Sarker 
and Islam [15] studied the decay of MHD turbulence before the final period for the 
case of multi-point and multi-time. Azad  and Sarker [16] studied the Decay of 
MHD turbulence before the final period for the case of multi-point and multi-time in 
presence of  dust particle. Islam and Sarker [17] also studied the first order reactant 
in MHD turbulence before the final period of decay for the case of multi-point and 
multi-time. 
       Following Deissler’s theory we studied the magnetic field fluctuation of 
concentration of a dilute contaminant undergoing a first order chemical reaction in 
MHD turbulence before the final period of decay for the case of multi-point and 
multi-time in presence of dust particle. Here, we have considered the two-point, two-
time and three-point, three-time correlation equations and solved these equations 
after neglecting the fourth-order correlation terms. Finally we obtained the decay 
law for magnetic field energy fluctuation of concentration of dilute contaminant 
undergoing a first order chemical reaction in MHD turbulence for the case of multi-
point and multi-time in presence of dust particle is obtained. If the fluid is clean , the 
equation reduces to one obtained earlier by Islam and Sarker[17]. 
 
2. Basic Equations 
 The equations of motion and continuity for viscous, incompressible dusty fluid 
MHD turbulent flow are given by  
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Here, ui, turbulence velocity component; hi, magnetic field fluctuation component; 

vi, dust particle velocity component; 2

2
1),ˆ( hPtxw +=

ρ
 total MHD pressure 

),ˆ( txp , hydrodynamic pressure; ρ, fluid density; ν, Kinematic viscosity; 

MP
νλ =  , magnetic diffusivity; PM, magnetic prandtl number; xk, space co-

ordinate; the subscripts can take on the values 1, 2 or 3 and the repeated subscripts in 

a term indicate a summation; ∈mkl, alternating tensor;
ρ

KNf = , dimension of 

frequency ; N, constant number density of dust particle sss Rm ρπ 3

3
4

=  ,  mass of 

single spherical dust particle of radius Rs; ρs,  constant density of the material in dust 
particle.    
 
3. Two-Point, Two-Time Correlation and Spectral Equations 
Under the conditions that (I) the turbulence and the concentration magnetic field are 
homogeneous (ii) the chemical reaction has no effect on the velocity field and (iii) 
the reaction rate and the magnetic diffusivity are constant, the induction equation of 
a magnetic field fluctuation of concentration of a dilute contaminant undergoing a 

first order chemical reaction at  the points p and p′ separated by the vector 
∧

r  could 
be written as 
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Multiplying equation (5) by hj and equation (6) by hi and taking ensemble 

average, we get 
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Angular bracket −−−−−  is used to denote an ensemble average. 
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Using the relations of Chandrasekhar [14]    

,jikjik hhuhhu ′′−=′    jkikij hhuhhu ′=′′ . 
Equations (10) and (11) become  

[ ]jkijik
k

ji hhuhhu
rt

hh
′−′′

∂
∂

+
∂

′∂
2 〉〈−

∂∂

′∂
= '

2

22 ji
kk

ji hhR
rr

hh
λ                (12) 

and   [ ]jkijik
k

ji hhuhhu
rt

hh
′−′′

∂
∂

+
∂

′∂
〉〈−

∂∂

′∂
= '

2

ji
kk

ji hhR
rr

hh
λ  .                (13) 

 
Now we write equations (12) and (13) in spectral form in order to reduce it to an 
ordinary differential equation by use of the following three-dimensional Fourier 
transforms: 
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Interchanging the subscripts i and j then interchanging the points p and p′ gives 

( ) ( )tttrhhuttrhhu jikjik ∆+∆−−′=∆′′ ,,ˆ,,ˆ  

( ) ( )[ ] KdrKitttKjii
ˆˆ.ˆˆexp,,ˆ∫

∞

∞−

∆+∆−−′= ψψα                                             (16) 

where K̂  is known as a wave number vector and Kd ˆ =dK1 dK2 dK3. The magnitude 
of K̂  has the dimension 1/length and can be considered to be the reciprocal of an 
eddy size. Substituting of equation (14) to (16) in to equations (12) and (13) leads to 
the spectral equations 
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The tensor equations (17) and (18) becomes a scalar equation by contraction of the 
indices i and j  
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The terms on the right side of equations (19) and (20) are collectively proportional 
to what is known as the magnetic energy transfer terms. 
 
4. Three-Point, Three-Time Correlation and Spectral Equations 
Similar procedure can be used to find the three-point correlation equations. For this 
purpose we take the momentum equation of dusty fluid MHD turbulence at the point 
P and the induction equations of magnetic field fluctuations, governing the 
concentration of a dilute contaminant undergoing a first order chemical reaction at p′ 
and p′′ separated by the vector r̂ and r ′ˆ  as 
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Multiplying equation (21) by h′i hj′′, equation (22) by ulhj′′ and equation (23) by 
ulhi′, taking ensemble average, one obtains 
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In order to convert equations (27)–(29) to spectral form, we can define the 

following six dimensional Fourier transforms:  
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( ) ( )[ ] KdKdrKrKitttKKtttrrhhv jiljil ′′′+′∆∆′′′′=′∆∆′′′ ∫ ∫
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  Interchanging the points P′ and P′′ along with the indices i and j result in the 
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Writing this equation in terms of the independent variables r̂   and r ′ˆ   
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Taking the Fourier transforms of equation (28) 
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( ) ( ) ( ) ( )llikilkkiikl kkitttKKkkitttKK ′+−′∆∆′′′′′′++′∆∆′′′′′ ,,,ˆ,ˆ,,,ˆ,ˆ ββφφββφφ  
 

( ) ( )tttKKftttKK iilii ,,,ˆ,ˆ,,,ˆ,ˆ ′∆∆′′′′−′∆∆′′′′ ββµββγ                 --------- (43) 
 

      ( ) ( )tttKKRKtttKKk
t iiliilL ,,,ˆ,ˆ,,,ˆ,ˆ 2 ′∆∆′′′′



 ++′∆∆′′′′

∆∂
∂ ββφ

λ
λββφ         

 
( ) ( )tttKKiktttKKik ikilkiiklk ,,,ˆ,ˆ,,,ˆ,ˆ ′∆∆′′′′′+′∆∆′′′′′−= ββφφββφφ                         

                                                                                                                   --------- (44) 
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and ( ) ( )tttKKRKtttKKk
t iiliill ,,,ˆ,ˆ,,,ˆ,ˆ 2' ′∆∆′′′′



 ++′∆∆′′′′

′∆∂
∂ ββφ

λ
λββφ  

 
   ( ) ( )tttKKkitttKKki iiilkiiklk ,,,ˆ,ˆ,,,ˆ,ˆ ′∆∆′′′′′′+′∆∆′′′′′′−= ββφφββφφ  .                 
                                                                                                                 ---------- (45) 
5. Solution for Times Before the Final Period 

It is known that the equation for final period of decay is obtained by 
considering the two-point correlations after neglecting third-order correlation terms. 
To study the decay for times before the final period, the three-point correlations are 
considered and the quadruple correlation terms are neglected because the quadruple 
correlation terms decays faster than the lower-order correlation terms. The term 

ji ββγ ′′′  associated with the pressure fluctuations should also be neglected. Thus 

neglecting all the terms on the right hand side of equations (43) to (45)  
 

( ) ( )( )[ ×
−+′+′+++′∆∆′′′′

∂
∂ fsRkkPkkPtttKKK
t MMiill λλ

λββφ 1221,,,ˆ,ˆ 22

                                       ( ) 0,,,ˆ,ˆ =′∆∆′′′′ tttKKiil ββφ                       ---------- (46) 

( ) ( ) 0,,,ˆ,ˆ,,,ˆ,ˆ 2 =′∆∆′′′′



 ++′∆∆′′′′

∆∂
∂ tttKKRktttKKK

t iiliill ββφ
λ

λββφ                  

                                                                                                                        ----- (47) 
 

and   ( ) ( ) 0,,,ˆ,ˆ,,,ˆ,ˆ 2' =′∆∆′′′′



 ++′∆∆′′′′

′∆∂
∂ tttKKRktttKKK

t iiliill ββφ
λ

λββφ                  

                                                                                                                     ------- (48) 
 
where iiliil C ββφββµ ′′′=′′′  and 1-C=S, here C and S are arbitrary constant. 
  
Integrating equations (46) to (48) between to and t, we obtain 

( )( )[{ ( )}oMMliill ttfsRkkPkkPfk −−+′+′++−=′′′
λλ

θλββφ 12cos21exp 22









∆






 +−=′′′ tRKgk liill λ

λββφ 2exp  

and  






 ′∆





 +−=′′′ tRkqk liill λ

λββφ 2'exp  . 

 
For these relations to be consistent, we have 
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( )( )( )[{ tktkttkkPkk oMoiilliill ′∆′+∆+−′++−′′′=′′′ 22221exp λββφββφ

( ) ( )]}ooM ttfsttttRttkkP −−






 ∆+∆
+−+−′+

λλ
θ

2
2cos2

'

0         -------- (49)                                                 

                                                                                                                           
where θ is the angle between K̂  and K ′ˆ  and 

oiil ββφ ′′′  is the value of iil ββφ ′′′  at  

t = to ,  ∆t = ∆t′ =0, 
MP

νλ =  

 By letting 0ˆ =′r  , ∆t′ =0 in the equation (30) and comparing with equations (15) 
and (16) we get  

( ) ( )∫
∞

∞−

′∆′′′′=∆′ KdtotKKttK iiliki
ˆ,,,ˆ,ˆ,,ˆ ββφψψα                     ----------- (50) 

and ( ) ( )∫
∞

∞−

′∆′−′′′=∆+∆−−′ KdtotKKtttK iiliki
ˆ,,,ˆ,ˆ,,ˆ ββφψψα  .                              

                                                                                                                 ---------- (51) 
Substituting equation (49) to (51) into equation (19), one obtains 

( ) ( ) ( )[∫
∞

∞−

∆′′′′=∆′



 ++∆′

∂
∂ ttKKikttKRkttK
t iilliiii ,0,,ˆ,ˆ2,,ˆ2,,ˆ 2 ββφψψ

λ
λψψ            

   ( ) ] ( )( ){[ ( )oMoiil ttkkPttKK −′++−∆′−−′′′− 221exp,0,,ˆ,ˆ λββφ  

   ( ) ( )}]ooM ttfstttRkkttPtk −−∆+−+′−+∆+
λλ

θ )(2cos2 0
2 kd ˆ                   

                                                                                                               ------------(52)    
                                                                                                                                                                                       
Now, Kd ′ˆ  can be expressed in terms of k′ and θ as - kd)(cosdk2 ′θ′π (cf. Deissler 
[8]) 
 i.e. kddkKd ′′−=′ )(cos2ˆ θπ                                                      --------- (53) 
  
Substituting of equation (53) in equation (52) yields 

( ) ( ) ( )[∫
∞

′′′′=∆′



 ++∆′

∂
∂

0

2 ˆ,ˆ22,,ˆ2,,ˆ KKikttKRkttK
t iilliiii ββφπψψ

λ
λψψ

( )] ( )( )[{ ( )



−′++−′′−−′′′− ∫

−

1

1

222 1expˆ,ˆ
oMoiil ttkkPkKK λββφ

( ) ( )]} kddttfstttRkkttPtk ooM ′
−−∆+−+′−+∆+ )(cos)2(2cos2 0

2 θ
λλ

θ                     

                                                                                                                  ----------(54)                        
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The quantity ( ) ( ) 0iiliil ]K̂,K̂K̂,K̂[ ′−−β′′β′φ−′β ′′β′φ  depends on the initial 
conditions of the turbulence. 
 
In order to find the solution completely and following Loeffler and Deissler [9] we 
assume that 

 ( ) ( )[ ]
( )

( )2442
2

0
oiiliill kkkk

2
K̂,K̂K̂,K̂ik ′−′

π
δ−

=′−−β′′β′φ−′β′′β′φ      ---------- (55) 

where δ0 is a constant determined by the initial conditions. The negative sign is 
placed in front of δ0 in order to make the transfer of energy from small to large wave 
numbers for positive value of δ0. 
Substituting equation (55) into equation (54) we get  

( ) [ ] ( ) ( )∫
∞

′′−′−=∆′++∆′
∂
∂

0

22442
0

2 2,,ˆ22,,ˆ2 kkkkkttKRkttK
t iiii δψψπλλψψπ  

( )( )[{ ( )oM ttkkP −′++−



∫
−

22
1

1

1exp λ ( ) θcos22 kkttPtk oM ′−+∆+   

 )2(2
0

tttR
∆+−+

λ
 ( ) ( ) kddttfs

o ′









−− ˆcosθ

λ
                                --------- (56) 

 
Multiplying both sides of equation (56) by k2, we get 
 

          FEk
t
E

=+
∂
∂ 22λ                                                                         ---------- (57) 

where, iikE ψψπ ′= 22 , E is the magnetic energy spectrum function and F is the 

magnetic energy transfer term and is given by  

( ) ×′′−′−= ∫
∞

0

222442
02 kkkkkkF δ ( )( )[{ ( )oM ttkkP −′++−




∫
−

22
1

1

1exp λ  

( ) θcos22 kkttPtk oM ′−+∆+   

)2(2
0

tttR
∆+−+

λ
( ) ( ) kddttfs

o ′









−− θ

λ
cos                              ---------(58) 

 Integrating equation (58) with respect to cosθ and 'k  we have 
 

( ) ( )
( ) ×









−







+−
−= o

Mo

Mo ttfs

Ptt

P
F

λλ

πδ
exp

14 2
5

2
32

3  
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( )
( ) ( )






+−
×








∆+−−








∆

+
+
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+
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MoM

M

M

M
o
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PttP
kPtttRt

P
Ptt

P
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14
15)2(2

21
1

1
21exp 222

4
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2

λ
λ

 

     ( ) ( ) ( )
8

3

36
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2

112
3

1
5 k

P
P

P
P

ttP
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P
P

M

M

M

M
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+
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−
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( ) ( )
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
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






+∆+−
− o

Mo
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Pttt

P
λλ

πδ
exp

14 2
5

2
32

3   

( )
( ) ( )


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

+∆+−
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


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
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




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+
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+
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Mo

M

M

M
o
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M

Pttt
kPtttRt
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P
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14
15)2(2
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21exp 22

4

0

2

ν
λ

 

   
( ) ( ) ( ) 














+
−

+
+

∆+−




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

−
+

+ 8
3

36
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112
3

1
5

k
P

P
P

P
tttP

k
P
P

M

M

M

M

oMM

M

λ
.                             

                                                                                                                      ------ (59) 
The series of equation (59) contains only even power of k and start with k4 and the 
equation represents the transfer function arising owing to consideration of magnetic 
field at three-point and three-times. 
 
If we integrate equation (59) for ∆t=0 over all wave numbers, we find that 

      ∫
∞

=
0

0Fdk                                                                                         ---------- (60) 

which indicates that the expression for F satisfies the condition of continuity and 
homogeneity. Physically it was to be expected as F is a measure of the energy 
transfer and the total energy transferred to all wave numbers must be zero. 

 
The linear equation (57) can be solved to give  
 

( )[ ( )[ ]∫ ∆+−+∆+−−= dttttRkFtttkE oo 2)(2exp22exp 22

λλλ  

             ( ) ( )[ ]2(2exp 2 tttRkkJ o ∆+−+−+ λλ                           ---------- (61) 

where ( )
π

=
2

okNkJ  is a constant of integration and can be obtained as by Crrsin[18]. 

Substituting the values of F from equation (59) into equation (61) gives the equation 

( )][
( )

( )[ ]o

M

Mo
o

o ttfs
P

P
tttRk

kN
E −×

+
+∆+−+−= exp

14
2)(2exp

2
72

3
2

2

λ

πδ
λλ

π
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   ( )




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kPP
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92
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2
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3234
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M
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FkPP

tttP

kPP ωλ
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    where  ( ) ∫−=
ω

ωω
0

22

dxeeF x
,    

( )
MP
tt

k
+

−
=

1
0λ

ω    or        
( )

MP
ttt

k
+

∆+−
1

0λ
 

 
By setting 0ˆ =r , j=i,  = k̂)dd(cosk-2k̂d 2 θπ and jikE ψψπ ′= 22  in equation 

(14) we get the expression for magnetic energy decay law as 
   

  ∫
∞

=
′

02
Edk

hh ii                                                                                       --------- (63) 

 
Substituting equation (62) into equation (63) and after integration, we get 
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where T=t-t0 . 
 

For  2
TTTm

∆+=  , equation (64) takes the form       
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This is the decay law of magnetic energy fluctuations of concentration of a 
dilute contaminant undergoing a first order chemical reaction of MHD 
turbulence before the final period for the case of multi-point and multi-time  
in presence of dust particle.  
6. Results and Discussion 
      In equation (65) we obtained the decay law of magnetic energy fluctuations of a 
dilute contaminant undergoing a first order chemical reaction before the final period  
considering three-point correlation terms for the case of multi-point and multi-time  
in MHD turbulence in presence of dust particle.  If the fluid is clean then f=0, the 
equation (65) becomes 
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 which was obtained earlier by Sarker and Islam [17]. 
 
 If we put ∆T=0, R=0, in equation (66) we can easily find out  
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 which is same as obtained earlier by Sarker and Kishore [13].        
This study shows that due to the effect of rotation of fluid in the flow field with 
chemical reaction of the first order in the concentrarion the magnetic field 
fluctuation  in MHD turbulence in presence of dust particle for the case of multi-
point and multi-time i,e.the turbulent energy decays more   slowly than the energy 
for clean fluid and the rate is governed by ]exp[ fs . Here the chemical reaction 
(R≠0) in dusty fluid MHD turbulence for the case of multi-point and multi-time 
causes the concentration to decay more they would for clean fluid and it is governed 
by  exp }{[ ]fsRTM −− 2         
The first term of right hand side of equation (65) corresponds to the energy of 
magnetic field fluctuation of concentration for the two-point correlation and 
the second term represents magnetic energy for the three-point correlation. In 
equation (65), the term associated with the three-point correlation die out 
faster than the two-point correlation. If higher order correlations are 
considered in the analysis, it appears that more terms of higher power of time 
would be added to the equation (65). For large times the last term in the 
equation (65) becomes negligible, leaving the -3/2 power decay law for the 
final period. 
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