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ABSTRACT 

The unsteady MHD flow of a viscous incompressible electrically conducting fluid 
between two parallel disks, rotating with uniform angular velocity Ω  about two 
different axes has been studied. An exact solution of the governing equations has 
been obtained by using Laplace transform. The solution for the velocity distributions 
as well as shear stresses have been obtained for small times as well as for large 
times. It is found that both the primary and secondary velocities increase on the left 
of the axis of rotation with increase in rotation parameter 2K  and the result is 
reversed on the right of the axis of rotation. It is also found that with increase in 
Hartman number, the primary velocity increases whereas the secondary velocity 
decreases on the left of the axis of rotation, while the reversed result observed on the 
right of the axis of rotation.  
 
Keywords: MHD flow, eccentric rotation, non-coaxial, magnetic parameter. 
 
1.  Introduction 
The incompressible viscous flow between eccentric rotating disks has been studied 
by a numbers of researchers. Beker [1] has considered the flow between two disks 
rotating with same angular velocity. Three dimensional flow between parallel plates 
which are rotating about a common axis or about distinct axes has been studied by 
Lai et al. [2]. Knight [3] has studied the inertia effects of the non-Newtonian flow 
between eccentric disks rotating at different speeds. Rajagopal[4] has considered the 
flow of a second order fluid between two rotating parallel plates. Hydromagnetic 
flow between eccentric rotating disks with the same angular velocity has been 
studied by Mohanty [5]. Rao and Kasiviswanathan [6] have considered the flow of 
an incompressible viscous fluid between two eccentric rotating disks. Hall effects on 
the hydromagnetic flow between two rotating disks with non-coincident parallel 
axes of rotation have been studied by Kanch and Jana [7]. Erdogan [8] has studied 
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Fig.1 Geometry of the problem 

the unsteady viscous flow between eccentric rotating disks. Unsteady flow due to 
concentric rotation of eccentric rotating disks has been studied by Ersoy [9]. Guria et 
al. [10] have studied the unsteady MHD flow between two eccentric disks. 

Our present paper is devoted to study the effect of rotation on the unsteady 
MHD flow between two disks, rotating with same angular velocity about two 
different axes at a distant l  apart. An external uniform magnetic field is applied 
perpendicular to the disks. We assumed that the magnetic Reynolds number is small 
so that the induced magnetic field is neglected. It is found that both the primary and 
secondary velocities increase on the left of the axis of rotation with increase in 
rotation parameter 2K  and the result is reversed on the right of the axis of rotation. 

 
2. Mathematical Formulation and its solution 

 
Consider the viscous incompre-ssible 

conducting fluid occupying the space 
between two non-coaxial disks. Choose a 
cartesian system with z −  axis 
perpendicular to the plane of the disks. 
The upper and lower disks situated at 

=z h±  are rotating about the axes through 
the points ( )0, ,P l h  and ( )0,Q l h− −  
respectively. The middle point of PQ  is 
taken as the origin. Initially, the disks are 
rotating about z − axis with uniform 
angular velocity Ω . At time > 0t , the 
upper and lower disks suddenly start to 
ratate about z′  and z′′  [see Fig.1] axes re-  
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-spectively with the same angular velocity Ω . A uniform  magnetic field 0B  is 
applied perpe-ndicular to the disks. 
The initial and boundary conditions of the problem are  

( )
( )

= , = , = 0 at = 0 for < < ,

= , = , = 0 at = for > 0,

= , = , = 0 at = for > 0,

u y v x w t h z h

u y l v x w z h t

u y l v x w z h t

−Ω Ω −

−Ω − Ω

−Ω + Ω −

 (1) 

where ( ), ,u v w  are the velocity components along x , y  and z  directions 
respectively. 
The geometry of the problem suggests a solution of the form  

( ) ( )= , , = , , = 0.u y f z t v x g z t w−Ω + Ω +  (2) 
 We shall assume that the magnetic Reynolds number for the flow is very small so 
that the induced magnetic field may be neglected. Assuming, the magnetic field 

( ), ,x y zB B B B≡
r

, the solenoidal relation = 0B∇ ⋅
r

 gives =yB  constant 0= B  
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everywhere in the flow. If ( ), ,x y zj j j  be the components of the electric current 
density j

r
, the equation of the conservation of charge = 0j∇ ⋅

r
 gives =yj  constant, 

this constant is zero since disks are non-conducting. Hence, = 0yj  everywhere in 
the flow. Since the induced magnetic field is neglected, the Maxwell's equation 

= 0E∇×
r

 gives = 0xE
z

∂

∂
 and = 0yE

z

∂

∂
. This implied that =xE  constant and =yE  

constant everywhere in the flow. 
Subject to the above conditions and on using (2), the equations of motion along x - 
and y - direction are  

22
20

2

1
= ,

Bf f p
f x g

t xz
σ

ν
ρ ρ

∂ ∂ ∂
− − − Ω −Ω
∂ ∂∂

 (3) 

22
20

2

1
= .

Bg g p
g y f

t yz
σ

ν
ρ ρ

∂ ∂ ∂
− − − Ω + Ω
∂ ∂∂

 (4) 

 The initial and boundary conditions become  
( ) ( ), 0 = 0, , 0 = 0 for < <f z g z h z h− , 

( ) ( ), = , , = 0 for > 0.f h t l g h t t± Ω ±  (5) 
 Differentiating (3) with respect to x  and (4) with respect to y  and adding, we get  

2 2= 2p ρ∇ Ω ,  (6) 
 whose solution is  

( )2 2 2
1 1 1

1
= ,

2
p x y A x B y CρΩ + + + +  (7) 

 where 1A  and 1B  are unknown functions and 1C  is a constant. 
On the use of (7), the equations (3) and (4) become  

22
0 1

2
=

B Af f
f g

tz
σ

ν
ρ ρ

∂ ∂
− − + Ω
∂∂

,  (8) 

22
0 1

2
= .

B Bg g
g f

tz
σ

ν
ρ ρ

∂ ∂
− − − Ω
∂∂

  (9) 

 Combining (8) and (9), we get  
22
0

22
= ,

BF F
i F C

z t
σ

ν
ρ

∂ ∂
− − + Ω

∂ ∂

 
 
 

 (10) 

 where  ( )2 1 1= and = .
1

F f ig C A iB
ρ

+ +  (11) 

 As the flow is symmetry, we may choose the constant 2 = 0C , i.e. 1 1= = 0A B  and  
hence the equation (10) becomes  

22
0

2
= 0.

BF F
i F

tz
σ

ν
ρ

∂ ∂
− − + Ω
∂∂

 
 
 

  (12) 
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 Introducing non-dimensional variables  

1 = , = ,
F

F
l

z
h

η
Ω

  (13) 

 above equation (12) becomes  

( )
2

2 21 1
12

= 0,
F F

M iK F
η τ

∂ ∂
− − +

∂ ∂
  (14) 

 where 
2

2 =
h

K
ν
Ω  is the rotation parameter and 

2 2
2 0=

B h
M

σ
ρν

 the magnetic 

parameter. 
The corresponding initial and boundary conditions become  

( )1 , 0 = 0 for 1 < < 1,F η η−  

( ) ( )1 11, = 1, 0, = 0F Fτ τ± ± [symmetric condition]. (15) 
 To solve the equation (14), we substitute  

( ) ( ) ( )2 2

1 , = , ,
M iK

F H e
τ

η τ η τ
− +

  (16) 
 and we get  

2

2
= .

H H
τ η

∂ ∂

∂ ∂
  (17) 

 The initial and boundary conditions (15) become  
( ), 0 = 0 for 1 < < 1H η η− , 

( ) ( ) ( )
2 2

1, = , 0, = 0.
M iK

H e H
τ

τ τ
+

± ±  (18) 
 Taking Laplace's transform of (18), we get  

2

2
= ,

d H
sH

dη
  (19) 

 where  
0

= .sH He dτ τ
∞ −∫   (20) 

 The corresponding boundary conditions for ( ),H sη  are  

( ) ( )2 2

1
1, = .H s

s M iK
± ±

− +
  (21) 

 The solution of the equation (19) subject to the boundary conditions (21) is  

( ) ( )2 2

1
, = .

s s

s s

e e
H s

s M iK e e

η η

η
−

−

−

− + −

 
  
 

 (22) 

 
Taking inverse Laplace's transform of the equation (22), we have  
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( )
( )2 2

2 2

sinh
, =

sinh

M iK
H

M iK

η
η τ

+

+
 

 ( ) ( ) ( )2 2 2 2

2 2 2 2
=1

2 1 sin
.

n
n M iK

n

n n
e

n M iK
π τπ πη

π

∞ − + +−
+

+ +
∑  (23) 

 On the use of (16), we have  
( )
( )

( ) ( )
2

1 2 2 2 2
=1

sinh 2 1
( , ) = sin ,

sinh

n

n

n

i n
F n e

i n M iK
λ τα β η π

η τ πη
α β π

∞
−+ −

+
+ + +

∑  (24) 

 where  2 2 2 2 2= ,n n M iKλ π + +  ( )
1/21

4 4 22
1

, = .
2

M K Mα β + ±
 
 
 

 (25) 

 On separating into a real and imaginary parts, we get  
( ) ( ) ( ) ( )

( ) ( )
( ) ( )

( )22 2 2 2 2 4
=1

1 sin
= 2

n

n

S S C C n nf
l S C n M K

αη α αη α π πη
α α π

∞+ −
+

Ω + + +
∑  

 ( ) ( )2 2 2
2 2 2 2 2 2cos sin

n M
n M K K K e

π τ
π τ τ

− +
+ − ×  , (26) 

( ) ( ) ( ) ( )
( ) ( )

( ) ( )
( )22 2 2 2 2 4

=1

1 sin
= 2

n

n

C S S C n ng
l S C n M K

αη α αη α π πη
α α π

∞− −
−

Ω + + +
∑  

 ( ) ( )2 2 2
2 2 2 2 2 2cos sin ,

n M
K K n M K e

π τ
τ π τ

− +
+ + ×   (27) 

 where  ( ) ( ) ( ) ( ) ( ) ( )= sinh cos , = cosh sinS Cαη αη αη αη αη αη , 

( ) ( ) ( ) ( ) ( ) ( )= sinh cos , = cosh sin .S Cα α α α α α  (28) 

 If 2 = 0M , then the equations (26) and (27) coincide with equations (3.5) and (3.6) 
of the Erdogan [2]. 

For small time ( )<< 1τ  which correspond to large s , the equation (22) can 
be rewritten as  

( ) ( ) ( ) ( )
2 2

1 2 1 2
1

=0 =0

, =
n

m s m s
n

n m

M iK
H s e e

s
η ηη

∞ ∞
− + − − + +

+

+
− 

 ∑∑  (29) 

 The inverse transform of the above equation (24) and on using (16), yields  

( ) ( ) ( ) ( ){2 2
2 2

1
=0 =0

, = 4
M iK n n

n m

F e M iK
τ

η τ τ
∞ ∞− +

+∑∑  

 2 22 1 2 1
erfc erfc ,

2 2
n nm m

i i
η η

τ τ

+ − + +
× −

    
        

 (30) 

 where  ( ) ( )1erfc = erfc ,n n

x
i x i dξ ξ

∞ −∫  
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 ( )
21 2

erfc = xi x e
π

− − ,  ( ) ( )0erfc = erfc .i x x  (31) 

 If 2 = 0M , then the equation (24) coincides with the equation (26) of Erdogan [2]. 
On the use of (11) and (13) and separating into a real and imaginary parts, 

equation (30) yields  

( ) ( )
2 2 2= , cos , sin ,Mf

e A K B K
l

τ η τ τ η τ τ− +
Ω

    

( ) ( )
2 2 2= , cos , sin ,Mg

e B K A K
l

τ η τ τ η τ τ− −
Ω

    (32) 

 where  ( ) ( ) ( )( )22 4 4
0 2 4, = 4 4A T M T M K Tη τ τ τ+ + −  

 ( )( )36 2 4
63 4 ,M M K Tτ+ − +L  (33) 

( ) ( ) ( )22 2 2
2 4, = 4 2 4B K T M K Tη τ τ τ+ ( )( )32 2 6

63 4 ,M K K Tτ+ − +L  (34) 

 with 
=0

2 1 2 1
= erfc erfc , = 0, 2, 4, 6, .

2 2
r r

r
m

m m
T i i r

η η

τ τ

∞ + − + +
−

    
        

∑ L  (35) 

 
3.  Results and discussion 
To study the effect of rotation parameter 2K  and the magnetic parameter 2M , the 
stream wise velocity profiles for the primary velocity /f lΩ  and secondary velocity 

/g lΩ  are depicted graphically against η  for different values of 2K , τ  and 2M  in 
the Figs.2-6. Fig.2 shows that both the primary velocity and the secondary velocity 
increase on the left of the axis of rotation with increase in rotation parameter 2K  and 
the result is reversed on the right of the axis of rotation. It is observed from Fig.3 
that the primary velocity increases whereas the magnitudes of the secondary velocity 
decreases on the left of the axis of rotation with increase in 2M  and the reversed 
result observed on the right of the axis of rotation. 
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 Fig.3 Variations of /f lΩ  and /g lΩ  

for 2

= 3, = 0.2M τ  

Fig.2 Variations of /f lΩ  and /g lΩ  

for 2

= 5, = 0.2M τ . 
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It is seen from Fig.4 that the primary velocity decreases whereas the secondary 
velocity increases on the left of the axis of rotation with increase in time τ . On the 
other hand on the left of the axis of rotation of the disk the primary velocity 
increases while the secondary velocity decreases with increases in τ . For small 
times, the velocity distributions are shown in the Figs.5 and 6. It is observed from 
Fig.5 that the primary velocity /f lΩ  increases whereas the secondary velocity /g lΩ  
decreases on the left of the axis of rotation with increase in magnetic parameter 2M  
and the result is reversed on the right of the axis of rotation. Fig.6 shows that the 
primary velocity /f lΩ  decreases whereas the secondary velocity /g lΩ  increases on 
the left of the axis of rotation with increase in time τ  and the reversed result shows 
on the right of the axis of rotation. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The non-dimensional shear stress components, for general solution, at the 
disks = 1η ±  are given by  
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Fig.6 Variations of /f lΩ  and /g lΩ  
for the small time solution with 

2 2

= 5, = 3M K . 
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)
( )

2 2

2= 1 2 2 2 4
=1

sinh 2 sin 2
= 2

cosh 2 cos 2x
n

n

n M K
η

α α β β π
τ

α β π

∞

±

+
+

− + +
∑  

 ( ) ( )2 2 2
2 2 2 2 2 2cos sin ,

n M
n M K K K e

π τ
π τ τ

− +
+ − ×   (36) 

)
( )

2 2

2= 1 2 2 2 4
=1

sinh 2 sin 2
= 2

cosh 2 cos 2y
n

n

n M Kη

β α α β π
τ

α β π

∞

±

−
−

− + +
∑  

 ( ) ( )2 2 2
2 2 2 2 2 2cos sin ,

n M
K K n M K e

π τ
τ π τ

− +
+ + ×   (37) 

 
  For small times, the non-dimensional shear stresses at the disks = 1η  and 

= 1η −  are given by  

( ) ( )
2

2 2= 1, cos 1, sin ,
2

M

x

e
C K D K

τ

τ τ τ τ τ
τ

± + ±    (38) 

( ) ( )
2

2 2= 1, cos 1, sin ,
2

M

y

e
D K C K

τ

τ τ τ τ τ
τ

± − ±    (39) 

where ( ) ( ) ( )( )22 4 4
1 1 3, = 4 4C Y M Y M K Yη τ τ τ− − + −   

 ( )( )36 2 4
53 4 ,M M K Yτ+ − +L  (40) 

( ) ( ) ( ) ( )( )3 52 2 4 4
1 3 5, = 4 2 4 3 4 ,D K Y M Y M K Yη τ τ τ τ+ + − +  L  (41) 

with 1 1
1

=0

2 1 2 1
= erfc erfc ,

2 2
r r

r
m

m m
Y i i

η η

τ τ

∞
− −

−

+ − + +
+

    
        

∑  

   = 0, 2, 4, 6, .r L  (42) 
 
 

Table-I 
Shear stress due to primary flow for 2 = 5M  

 

 xτ−  
(For General  solution) 

 xτ−  
(Solution for small times)   

2 \K τ  0.005  0.010 0.015  0.005  0.010  0.015   
0 
4 
8 

12 

5.896093 
6.032860 
6.290388 
6.515985 

3.644242 
3.765285 
3.998794 
4.208713 

2.673381 
2.782767 
2.998242 
3.196242 

5.896093 
6.032872 
6.290404 
6.515995 

3.644238 
3.765358 
3.998886 
4.208762 

2.673358 
2.782959 
2.998493 
3.196378 
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Table-II 
Shear stress due to secondary flow for 2 = 5M  

 

 yτ  
(For  General  Solution)  

 yτ  
(Solution for small times) 

2 \K τ  0.005  0.010 0.015  0.005 0.010 0.015 
0 
4 
8 

12 

0.000000 
0.393570 
0.595888 
0.660252 

0.000000 
0.361540 
0.555407 
0.622620 

0.000000 
0.337486 
0.524776 
0.594005 

0.000000 
0.393615 
0.595908 
0.660258 

0.000000 
0.361790 
0.555517 
0.622650 

0.000000 
0.338174 
0.525087 
0.594089 

   

 The numerical values of the shear stress components calculated from 
equations (36), (37), (38) and (39) are given in Tables-I and -II for different values 
of 2K  and τ . It is observed that for small times the shear stresses calculated from 
the equations (38) and (39) give better result than that calculated from equations (36) 
and (37). Hence, we conclude for small times shear stress components should be 
evaluated from equations (38) and (39) instead of equations (36) and (37). 
 
Conclusion 
Unsteady MHD flow of a viscous incompressible electrically conducting fluid 
between two disks, rotating with same angular velocity about two different axes for 
small as well as large times τ  is studied. It is found that both the primary and 
secondary velocities increase on the left of the axis of rotation with increase in 
rotation parameter 2K  and the result is reversed on the right of the axis of rotation. It 
is also found that with increase in Hartman number, the primary velocity increases 
whereas the secondary velocity decreases on the left of the axis of rotation, while the 
reversed result observed on the right of the axis of rotation. 
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