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ABSTRACT

Based on the masked data, the reliability of » non-independent and non-identical
series system subjected to n+1sources of fatal shocks is investigated. We get the
parameter estimations as well as reliability estimations by adopting Bayes approach.
Also, a numerical simulation example is given to illustrate how one can utilize the
method to tackle the practical problem
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1. Introduction

In reliability analysis, estimations of components reliabilities are often obtained
through the analysis of system life data. Under ideal circumstances, this system life
data contains the failure time along with information on the exact component causing
the system failure. However, in some cases, the exact component responsible for the
system failure can not be identified due to the cost of failure diagnosis and test, time
constraints, the destructive nature of some component and so on. Instead, it is
assumed that the component causes the system failure belongs to some subset of the
components which considered potentially responsible for the failure. In this case, the
cause of failure is masked.

Various studies used masked data to estimate the unknown parameters in a
system. A. M. Sarhan ! considered the maximum likelihood estimations(MLE) and
Bayes estimations of exponential components, and he presented MLE of unknown
parameters of Weibull failure rate components for the cases of two-component and
three-component series systems”. A. M. Sarhan and Ahmed H. El-Bassiouny
dicussed the case of parallel systems of complementary exponential components !,
Most authors assumed that components in a system must be independent in order to
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construct models. However, in some cases, it is difficult to determine the
independence. Moreover there exists some dependent and constrained relation
between units very often. Thus, it is important and meaningful to discuss the
reliability of non-independent series system using masked data.

Recently, several authors used shock model to estimate the parameters in
non-independent series system. Such as, Grabski and Sarhan'™ and Sarhan “lobtained
estimations of some reliability measures for series and parallel systems with two
non-independent and non-identical components; Awad El-Gohary'”? and Awad
El-Gohary and Sarhan ' deduced Bayes estimators for the parameters included in a
two and three non-independent and non-identical component series system.

1% presented a Bayesian approach for estimating

Hongping Wu and Guofen Zhang
the unknown parameters in a n non-independent and non-identical series system
subjected to n+1sources of fatal shocks. However, there is very little statistical
analysis of non-independent system under masked data at present.

In this paper, we discuss how to use the masked data of systems to analyze the
system and component reliabilities of n non-independent and non-identical series
system subjected to n+1 sources of fatal shocks which was proposed in M.
Simulation studies are also done in order to explain how one can utilize the

theoretical results obtained.
2. Likelihood function

Hongping Wu and Guofen Zhang """ constructed the mathematical model of n
non-independent and non-identical series system. The model is described as
followings: The system consists of 7n components connected in series. There are
n+1 independent sources of fatal shocks directed to the system. A shock from the
ith source destroys the ith component,i=1,2,...,n, while the shock from source

n+1 destroys all the components of the system. A shock from source ioccurs at a
random time, say U, . The distribution function of U, is the following form:

P(UiSt)zl—exp{—(ait+%ﬂit2)}, 120, a,B,>0, i=12,.,n+1.

Assuming 7. denotes the lifetime of component i, then 7, =min(U;,U,,,),

1 1

i=12,..,n. According to the independence of the shocks, the reliability function of
component i is the following form:
R;(#;0,4,B1,011,By41) = P(T; > 1) = P(min(U;, U, 1) > 1) = PU; > t,U,, 4 > 1)

= P(U; > )P(Uysy > 1) = expl-[(ct; + 0ty )t +%<B,- B}
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where 120,0,,B,,0,,,B8,,; >0.

n+l»
The system lifetime, say 7, , satisfies 7, =min(7},75,...,7,) . Let

a=(a,0,5%,11)s B =P, Pu)» then the survival function of the system is

given by

n+l
R, (t;a,p)=P(T, >t)=exp{- Z(a t+— ﬂt ), t20,0;,,5,>0, i=12,...,n+1
Assuming that m identical systems of the described type are put on the life

test, and the test is terminated if all the systems have failed. Let S, denote the set of

components that possibly cause the system i to fail, and lets, denote the realized
set for S, then the observed data is (¢;,s,),...,(¢,,,5,,) - It is explicit of the true cause
of failure of system i whenS;={;}, j=12,.,n+1, whereS;, ={n+1} represents

the all components are failure. On the other hand, the true cause of failure is masked
when S; ={1,2,...,n+1} £S5 . Let K, denote the index of the component actually

causing the ith system to fail. As for the ith system, the likelihood function
of (t,,s,) is: P(t;,s,) =2 P(t,,K, = ))P(s, |1,,K, = j) , where P(s,|,,K,=j) is the
masking probability and it becomes 0 if ;¢ s,. Here we suppose that the masking
probability is independent with the cause of failure, that is, for the fixed jes,,

P(S;=s;|T, =t,,K; = ))=P(S; =s;|T. =t;,,K, = j') for all j'es,. Therefore, we get
the simplified likelihood function:

m n+l
L(6,data) = H[ S P(tpspl=TI[ 3% P@.K; = )],
i=1 jes; i=1 jes; j=1

where 6 denotes the unknown parameters and data denotes the observed data.

Let Xxp1,X 505X, e the observed system time to failure when S, = {k} . It

S

means that 7, is the number of the observations when S, = {k}. Let y,,y,,..., ¥ be

the observed system time to failure when the causing system failure is masked. That
is, N denotes the number of the observations when S; = S . The likelihood function in
this case reduces to

n+l Mg

= I\H{HP(I”K =0 H PR =D 4+ P, K =n+ 1))
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n+l

Noted that m= X n,+ N and

i=1
n+l 1 5
Pl Ky =1) = Pltpty <Uy <1+ dt,Us > 10U > 1) = (0 + B expl= 2 (@t +— Bt}
J=1

n+l

Similarly, P(t, K, =k)= (e + i) expi- 2 (a1, +% BN, k=12..n+1.
=
The likelihood function in this case becomes
n+l ny n+l 1

N N 1
L=l + By Jexpl= X (@, + = Bpx] DI+ By)expl= 2 (a3, +5 B3]
n+l ny N , , n+l ~
= [Ty + fxy )L + By expl= X (@, T+ B,T)].

m ~ m
wherea' =, +..+a,,,, f =P+ +P, T=2t,T=% tiz/2.
i=1 i=1

nj
Applying the binomial expansion, TIl(e;+f;x,;;,) can be written as:
P ix i,

n; N
Lk n—k; ok .
XCla/ VBt ,wheret, = X x;.-x;; . I(a'+pY;) canbe written as:
k=0 " i T ey 1 ki =1
i1¢i2¢...¢ikl
N N-n 5 e v -1 )
¥ X323 ¥ X,CF

r=0 n=0 n=0 1=0,4=0,=0 [,=0
il (N=r—n)8,,+(1i—1,) 8,5 ++(r,_1—1,)8,,+1,0
—I=1) 0yt =73 )0y p T 1775 ) Oy F10y (1)
xITa,

v=l

n+l N
x [T B(r—ll)Svl+(ll_ll)6v2+'"+(ln71 ~1,)8,, + 1,8y (i1
v=l' "V

1 v=j
where 7, = X ViV, 6,= .
050y yensly 0 V# ]

e

N!
(N =r =)W1y =)y = = IDN — ), =DV

Thus, the likelihood function can be written as in the following form:

and CI(\,”” =

brl n+l 4 n+l B n+l ~
Lt f) =230 Cr T T B expl- X (a,T+ B;T)]-
- v= v= J=b

m My N N-r 1 L ro b -
where 2= Xr ¥ XX 2o X X X- X R T=7, ..T T,
=0  k,;;=0r=075=071=0 r,=04=0,=0 1,=0 ! il

n

Cyrl = cpmey!
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Ay =N-r—-n+m—k, A=r—r+n—k (=2,..n), A =r+n,.—k,,

1

and B =r—-lL+k, B=Il_ -1l +k (i=2,..n), B, =1, +k,,.
3. Bayes analysis

In this section, we will use Bayesian approach to estimate the unknown
parameters and the reliability functions of components and system. The following
assumptions will be considered.

Al. «a,, v=12,.,n+1 are independent with each other.
A2. a,,pB,,v=12,..,n+1 have gamma prior distributions with known parameters
g,.h, and c,.d,. It means that «,|t~T(g,.h,), B,|t~T(c,,d,).

Vo

A3. The loss incurred when the vector of unknown parameters «,f are estimated

are a quadraticc That is , the loss function is

>

by @,

n+l

R n+l n
L@ B;.B) = k(& —a,)" + T ks, (B, = B,)".
Using the assumption 1 and 2, the joint prior probability density function (pdf)

of a,p,sayg(a,p), takes the following form:

n+l 8y n+l dCV L
g(a,p)= H;aé{v—le—hvav m-y vcv le d.p, )
- Al(g) v=1T(c,)

Now we are ready to present a theorem that gives the joint posterior pdf of

(a.,B) given the observed data.

Theorem 1 Given the observed data and under assumptions 1 and 2, the joint
posterior pdf of a,p is

B 1 k) n+l A, +g, -1 n+l B, +c, -1 n+l ~ B —
g(g,/_ﬂdata)—mZmErCm Hlav Hlﬂv Hlexp[ av(hv+T)]eXp[ ﬂv(dv+T)]

n+l T (A n+l T(B
where ®(0)=2---X7-C%mD 11 ( V+Agv) I N( V+BCV) '
v=I1 (T+hv) vT8y y=1 (T +dv) L +e,

Proof Using the Bayes theorem, the joint posterior of (a.,f) given the observed data

is related to the following relation, g(a, f | data) = g(a, f)L(data | a, B)/ D(0),
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where

*O=fo, o, Jo, o,  LdataleBgeBMo - dotyidy - dyey

Ap+1

n+l 1o n+l 1o ~
=3.-3r.ckrh I .[0+ al & Vexpl-a, (h, + T)lda, T1 J‘o+ B expl—p.(d, + TYIdB,
v=1 =1
:Z...ZT.C(ksVJ) ”Iiil F(Av+gv) ’ﬁl I(BV-FCV) ]
m v=1 (T+hv)Av+gv v=1 (T + dV)B"+C“

Corollary 1 The marginal posterior pdf of «,,f,,v=12,...n+1, given the observed

data is

T'(A o T(B
800, [ data) =3 meCr0 xa s exploa, (h, + ) L8 TR 20
(D(O) leL, (T+hl) 1+81 =1 (T +dV)B"+C”

~ n+l
OB, | data) = oox e I el + P TS (AED

v=L (T + h,)* "8 teL, (T + d)) P
where L,={12,...n+1}/{v}.
Proof The proof of this corollary can be reached by integrating the joint posterior pdf

of (a,f) given the observed data over all variables «;,f,, /€L, respectively. [J

Lemma 1. The rth moment, r=12,.., of the marginal posterior pdf of
a,,pB,,v=L12,.,n+1, are given in the following form:

uy) =@y, (N/D0),  uf) =g 1)/ D(0),

I'(4,+g,+r) (4, +g) ™ T(B,+c,)
vV~ x I1 SLT]
(T+hV)A"+gV+’ leL, (T+hl) i+81 =1 (T +dv) .+,
[(B, +c, +1) (T LA+ g) o LBite)
(T+dV)B"+C"+r =1 (T+hv)A"+g" leL, (T +d[)BZ+C’

where @, (r)=2---27-C¥ x

and @, (r)=3%---Ir- Clkrd)

Proof . The proof of this lemma can be reached as follows:
The rth posterior moment of «,,f, are defined as the posterior expectation

of a,p,, that is u) = J.avrg(av |Hde, , y;’) = fﬁ{g(ﬂv |)dp, . Substituting the

posterior pdf of «,, S, into these formulas and making some calculus arrangements,

one can easily reach the proof. [l

Theorem 2 Under the assumption A1- A3:

B1. The Bayes estimators of «,,f, are respectively «, = yg) , B, = y(ﬁl’).
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~

B2. The minimum posterior risk associated with the Bayes estimators a.,,[3, are
Ry(a, | data) = B, (2)/D(0)= (@ 1)/ DO)F :

Ry (B, | data) = By (2)/ D(0) [y (1)/D(O)f .
Proof The proof of this theorem depends on the assumption A3 .The Bayes
estimators of o ,B, and the associated minimum posterior risk are defined

respectively as the posterior expectation and posterior variance of «,, 3, . Namely,

&, = E(a, |data) =", B, = E(B, |data) = u,
R,(a, | data) = Var(a, | data) = u$ - (u))? :

R (B, | data) =Var(f, | data) = ug? = (pag))*

Substituting the rth moment, r=1,2, of the posterior pdf of «,,5,, one can

complete the proof of theorem. [
The following theorems give the Bayes estimators and the associated minimum
posterior risk for the value of reliability functions of components and system at a

specified mission timef?,, .

Theorem 3 Under the assumptions A1-A3:

C1. The Bayes estimator for the reliability function of ith component, i=12,...,n, is
Ri(ty) = E(R(ty) | data) = D)) / d(0) .

C2. The minimum posterior risk associated with the Bayes estimator l%i(to) ,i=12,...n,
. 2 1 2

is ¥ ., =0 /OO~ [DF /DO,

where
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F(A +g,) TI(B +¢)
/eM (T+h )A[+gl ‘(T +d )Bz+c,
I"(AV + gv) F(BV + Cv) M; ={1,2,..,n}\{i} ,w=1,2.
v=i,v=n+1 (T + hv 4 WtO)Av"'gv '

(w) _ (k,r,l)
Y =%---27-C!

X

(T +d, + ; wel)Bre

Proof (1) Under the assumption A3, the Bayes estimator for the value of reliability of
ith component defined as the expectation of R, (¢,) , where

Ri(to30,By, 0y 1B rs1) = expi=T(; + oty to1+ By +Ben)td 12} .
Thus,

R(t,) = E(R,(t,)| data)

= .[().[()Rl(to |a’i’ i’a‘n+l’Bn+1)g(aia i’a’nﬂ’Bnﬂ)d(x‘idﬁidanﬂdﬁnﬂ

1 +o0
=—3...37.CR D[ g8 expl-a,; (h + T +1,)da
@(0) '[

I “ ot explaty (hyy + T+ 1)ty X jo“” BT expl-fi(d; +T + %tg )P,

T4 +g) T'B+¢)

<[y Bl expl-Bu(dy + T +—’0)]d/3"+1 i Ty TP

ZLZ 3T C(kfl) F(Al+gl) . E(Bl+cl)
q)(O) leM; (T + hl)Aﬁgt (T + d[)B/JrC/
T4, +g,) (B, +c.) @)

v=i,v=n+ 4,+g, ~ X
1(T+hv +t0) (T+dv +;t5)3‘,+é‘,

The minimum posterior risk associated with R,(7,), say Pi) is defined as the

posterior variance of R.(f,). Namely, ¥ E[R?(ty) | data] - [E(R,(ty) | data)]’ .

Ri(t9) -
Similar to E(R;(¢,)|data) , we can easily obtain E[Rl_2 (ty) | data] . Thus, one can easily

complete the proof. [l

Theorem 4 Under the assumptions A1-A3:
D1. The Bayes estimator for the reliability function of system is
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R, (ty) = E(R,(ty) | data) = DY / (0) .

D2. The minimum posterior risk associated with the Bayes estimator R, (¢,) is
—o® ) 2

Wi ) =P 1 D(0) = [ /D),

where
n+l n+l ~
) =320 "D T (A, +g,) (T +hy +r1g)*8 T T(B, +¢,) (T +d, +%rt§)3v+cv ;
a y=1 v=1

r=12.
Proof The proof is similar to that of theorem 3. [l
4. Numerical Simulation

We show in this section how one can apply the previous theoretical results
obtained. This section is devoted to present numerical results based on a large
simulation study. We make simulation of a two components connected in series

system. It is assumed in the simulation thata, =0.15,a,=0.2,0,=0.25,p,=1.5,

B,=2,PB,=2.5and the prior distributions of «,, 4 are I'(L10) and I(5,2)

respectively.

It is assumed in this simulation that 10 systems were put on the life test. The
masking level is 25%. Then the lifetime of each system and the set of components
that may cause the system failure were observed. The simulated data are presented in
Table 1. Based on the simulation data given in Table 1, the Bayes estimators of the
parameters are computed. The specified mission time is z, =0.5 while considering

the reliability. Further, the percentage error associated with the estimators is

computed. The percentage error associated with the estimator # of @is given by

PE; =| 0—6|/6x100% .The obtained results are presented in Table 2.

Table 1 Simulated system lifetime data (2=10)
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System Observation | |Systeml  Observation
1 ] Si 1 L Si
1 0.5339 | 1,23 6 | 0.7050
2 0.5470 3 7 | 0.7936
3 0.3325 1 8 | 0.8583
4 0.4146 | 1,23 9 | 0.6276| 1,2.3,
5 0.7191 | 1,2,3 10 | 0.8375

Table 2 Bayes estimators with percentage error

Parameter oy (o) Ol3 B B Bs R, R, R,

True value| 0.15 0.2 0.25 1.5 2 2.5 [0.4966| 0.4550( 0.3499

Estimation| 0.1520] 0.1572| 0.1772| 1.8344| 2.0840| 2.2753| 0.5774| 0.5585| 0.4385

PE 0.0134( 0.2142| 0.2913] 0.2229] 0.0420] 0.0899| 0.1627| 0.2274| 0.2530
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