
Journal of Physical Sciences, Vol. 12, 2008, 97-107 
 

97 

Edge Partition of the Boolean Graph BG1(G) 

T. N. Janakiraman1, M. Bhanumathi2 and S. Muthammai2 
1National Institute of Technology, Tiruchirapalli-620015, India. 

tnjraman2000@yahoo.com; janaki@nitt.edu  
2Government Arts College for Women, Pudukkottai-622001, India. 

Received February 28, 2008; accepted May 23, 2008 
 

ABSTRACT 

Let G be a simple (p, q) graph with vertex set V(G) and edge set E(G). BG, 

NINC,Kq(G) is a graph with vertex set V(G) ∪ E(G) and two vertices are adjacent if 
and only if they correspond to two adjacent vertices of G or to a vertex and an edge 
not incident to it in G. For simplicity, denote this graph by BG1(G), Boolean graph 
of G-first kind. In this paper, partitions of edges of BG1(G) are studied. 
 
Keywords:  Boolean graph BG1(G), Edge Partition. 

 
1. Introduction 
Let G be a finite, simple, undirected (p, q) graph with vertex set V(G) and edge set 
E(G). For graph theoretic terminology refer to Harary [11], Buckley and Harary 
[10].  

A graph G is called Hamiltonian if it has a spanning cycle.  Any spanning 
cycle of G is called Hamilton cycle. A Hamiltonian path in G is a path, which 
contains every vertex of G. Clearly, every Hamiltonian graph is 2-connected. 

A decomposition of a graph G is a collection of subgraphs of G, whose edge 
sets partition the edge set of G. The subgraphs of the decomposition are called the 
parts of the decomposition. 
 A graph G is said to be F-decomposable or F-packable if G has a 
decomposition in which all of its parts are isomorphic to the graph F. A graph G can 
be decomposed into Hamilton cycles (paths) if the edge set of G can be partitioned 
into Hamilton cycles (paths). 

Following theorem is used in the partition of BG1(G) 

Theorem 1.1 [9](Bermond) 
(i) If p is even, Kp can be decomposed into p/2 Hamiltonian paths. 
(ii) If p is odd, Kp can be decomposed into (p−1)/2 Hamiltonian cycles. 

If p is even, Kp can be decomposed into (p−2)/2 cycles of length n and 
(p/2)K2′s.    

A path (cycle) partition of a graph G is a collection of paths (cycles) in G 
such that every edge of G lies in exactly one path (cycle). 

 



T. N. Janakiraman, M. Bhanumathi  and S. Muthammai 

 

98 

Motivation: The Line graphs [7], Middle graphs [1,2], Total graphs [5,6] and 
Quasi-total graphs [18] are very much useful in the construction of various related 
networks from the underlying graph of networks. In analogous to line graph, total 
graph, middle graph and quasi-total graph, thirty two graphs can be defined using 
different adjacency relations. Out of these operations, eight were already studied. 
Among the remaining twenty-four graph operations, two are defined and analyzed in 
[13] and [14]. All the others have been defined and various structural properties are 
studied [4], [13], [14], [15] and [16]. This is illustrated below. 

Defining a new graph from a given graph by using the adjacency relation 
between two vertices or two edges and incident relationship between vertices and 
edges is known as Boolean operation. It defines new structure from the given graph 
either by adding extra information or extracting new information from the 
substructure or by mixing the above cases of the original graph. 

In Management and in social networks, the incident and non-incident 
relations of vertices and edges are used to define various networks. So these are very 
much applicable in socio-economical problems. In some cases, it is not possible to 
retrieve the original graph from the Boolean graphs in polynomial time. So these 
graph operations may be used in graph coding or coding of some grouped signal. 
Also, it is possible to study the structure of original graphs through these Boolean 
graph operations. This motivates the study for the exploration of various Boolean 
operations and study of their structural properties.  

In [4], the Boolean graph BG1(G) of a graph G is defined as follows. Let G 
be a simple (p, q) graph with vertex set V(G) and edge set E(G). BG, NINC,Kq(G) 
is a graph with vertex set V(G) ∪ E(G) and two vertices are adjacent if and only if 
they correspond to two adjacent vertices of G or to a vertex and an edge not incident 
to it in G. For simplicity, denote this graph by BG1(G), Boolean graph of G-first 
kind. 

 BG1(G) has p+q vertices, p point vertices with degree q and q line vertices 
with degree p−2. BG1(G) is always bi-regular and is regular if and only if q =   p−2; 
clearly, in this case G is disconnected. It is easy to determine that BG1(G) has q(p−1) 
edges andBG1(G) has (q(q+1)/2)+(p(p−1)/2) edges.  

In this paper, partitions of edges of BG1(G) are studied.  

2. Partition of edges of BG1(G) 

First, partition of edges of BG1(G) into edges of G and stars for a given graph G is 
studied. 

Proposition 2.1 Let G be a (p, q) graph. Then the edges of BG1(G) can be 
partitioned into E(G) and q times E(K1,p−2). 
Proof: In BG1(G), degree of a line vertex is p−2 and degree of a point vertex is q, 
each line vertex is adjacent to exactly (p−2) point vertices only. Therefore, 
corresponding to q line vertices there are q times K1,p−2 and the remaining edges are 
edges of G only. Hence the proposition is proved. 

 
G/G/Kp/Kp 

       Incident (INC)/ 
Non-incident (NINC) 

  
L(G)/L(G)/Kq/Kq 
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Next theorem gives the partition of edges of BG1(G) into edges of G, a 
regular graph and stars, when G is a m regular Hamiltonian graph. 

Theorem 2.1 Let G be a m regular Hamiltonian graph, with n vertices. Then the 
edges of BG1(G) can be partitioned into G, (n−2) regular graph on 2n vertices and 
((mn/2)−n) times    K1,n−2. 
Proof: Number of edges in G = mn/2. Therefore, BG1(G) has n point vertices and 
mn/2 line vertices. Degree of a line vertex in BG1(G) is n−2 and degree of a point 
vertex is mn/2. 
Consider the n point vertices and any n line vertices, which form a cycle in G.  
Let H be the induced subgraph of BG1(G) formed by these 2n vertices. In H, degree 
of a point vertex is m+(n−2) and degree of a line vertex is n−2.  Therefore, the edges 
of this induced subgraph can be partitioned into edges of G and a (n−2) regular 
graph on these 2n vertices. Number of remaining line vertices = (mn/2)−n, which are 
adjacent to exactly (n−2) point vertices.  Therefore, the edges of BG1(G) can be 
partitioned into edges of G and a (n−2)- regular graph on 2n vertices and ((mn/2)−n) 
times K1,n−2. 

Corollary 2.1 Let G be a cycle Cn. Then the edges of BG1(G) can be partitioned into 
G and a  (n−2) regular graph on 2n vertices. 
Proof: In Theorem 2.1, take m = 2. Number of edges of G = n. Number of vertices 
of BG1(G) is 2n and degree of a point vertex is n and degree of a line vertex is n−2.  
 Edges of BG1(G) can be partitioned into G = Cn, and (n−2) regular graph on 2n 
vertices. 

Next, we give the partition of edges of BG1(G), when G = Cn, Pn, Kn, Kn,n, K1,n, nK2. 

Proposition 2.2 H = BG1(G), where G = Kp. Edges of H can be partitioned into 
edges of Kp and p(p+1)/2 subgraphs K1,p−2, in such a way that, Kp and K1,p−2 have p−
2 common vertices. 
Proof: H has G as induced subgraph and each line vertex is adjacent to p−2 point 
vertices. Hence the result follows.  

Proposition 2.3 H = BG1(G), where G = K1,n. Edges of H can be partitioned into 
n+1 stars, n times K1,n−1 and one K1,n such that the center of all stars form a 
maximum independent set and any two stars of first type have n−2 common points 
and each K1,n−1 and K1,n have n−1 common points. 
Proof: In H, the central vertex of G is not adjacent to any line vertices and each line 
vertex is adjacent to exactly n-1 point vertices. Hence edges of H can be partitioned 
into n+1 stars, n times K1,n−1 and one K1,n.  
 Now consider point vertex of G, which is not the central vertex. In H, this 
vertex has degree n and exactly n such vertices. Hence taking these point vertices as 
center, edges of H can be partitioned into n stars K1,n. 

Following theorem deals with the partition of edges of BG1(Cn) into cycles 
of different lengths.  
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Theorem 2.2 When G = Cn, the edges of BG1(G) can be partitioned into (a) Cn, ((n−
3)/2) C2n and nK2, if n is odd. (b) Cn and ((n−2)/2)C2n, if n is even. 
Proof: Let G = Cn. BG1(G) has n point vertices with degree n and n line vertices 
with degree    n−2. 
 
Case 1: n is even. 
Let v1, v2, ..., vn be the point vertices, e12, e23, e34, …, en−1n be the line vertices.  In 
BG1(G), each vj is adjacent to (n−2) line vertices e12, e23, …, e(j−2)(j−1), e(j+1)(j+2), …, 
e(n−1)n, en1. Combine these line vertices in two's as n is even. There are (n−2)/2 such 
collections, which are adjacent to vj, j = 1, 2, …, n. 
 Consider the point vertex v1. v1 is adjacent to e23, e34, ..., en−1n. Now, 
combine these into  (e23, e34); (e45, e56); (e(n−2)(n+1), e(n−1)n). Get the (n−2)/2 cycles of 
length 2n in BG1(G) as follows: 
 
v1       v2         v3       v4        v5  … vn−2             vn−1       vn 
•         •          •         •          •      •                   •          • 
 

 
 
 
 
 

•         •         •               •          •      •           •             • 
e12     e23      e34              e45      e56    …        e(n−1)(n        en1 

                                                 
Fig: 2.1 

1. v1 e(n−1)n v2 en1 v3 e12 v4 … vn e(n−2)(n−1) v1       
2. v1 e(n−3)(n−2) v2 e(n−2)(n−1) v3 e(n−1)n v4 en1 v5 e12 … vn e(n−4)(n−3) v1       
3. v1 e(n−5)(n−4) v2 e(n−4)(n−3) v3 e(n−3)(n−2) v4 e(n−2)(n−1) … vn e(n−6)(n−5) v1       
. 
 (n−2)/2. v1 e34 v2 e45 v3 e56 v4 … e12vn e23 v1       

From this construction and from the definition of BG1(G), it follows that 
edges of BG1(G) are union of edges of G and these cycles. 

 
Case 2: n is odd. 
There are n point vertices v1, v2, …, vn and n line vertices e12, e23, …, en1. Combine 
(n−1) line vertices into two's. v1 is adjacent to e23, e34, …, e(n−1)n.  Leaving e(n−1)n, 
combine these into      (e23, e34); (e45, e56); (en−3 n−2, en−2 n−1). Similarly, v2 is adjacent 
to (e34, e45); (e56, e67); …;           (en−2 n−1, en−1 n), and en. As in case (1) there are ((n−
1)−2)/2 cycles of length 2n and nK2′s v1e(n−1)n; v2en1; v3e12; …;  vne(n−2)(n−1). 
Therefore, edges of BG1(G) can be partitioned into Cn, ((n−3)/2)C2n and nK2, when n 
is odd. Hence the proof of the theorem follows. 

In the following theorem, partition of edges of BG1(Pn) into paths of 
different lengths is studied. 
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Theorem 2.3 If G = Pn, then edges of BG1(G) can be partitioned into  
1. Pn, ((n−3)/2)P2n−1 and (n−1)K2, if n is odd. 
2. Pn and ((n−2)/2)P2n−1, if n is even. 
Proof:  Similar to Theorem 2.2. 

Next we give the partition of BG1(K1.n) into cycles and stars. 

Theorem 2.4 If G = K1,n, the edges of BG1(G) can be partitioned into  
1. K1,n; ((n−1)/2)C2n, if n is odd. 
2. K1,n, ((n−2)/2)C2n; nK2, if n is even. 
Proof: Let G = K1,n. Then BG1(G) has n+1 point vertices with degree n and n line 
vertices with degree n−1. Let v1, v2, …, vn, v be the point vertices, e1 = vv1, e2 = 
vv2,…, en = vvn ∈ E(G) be the n line vertices, where v is the central node of G. 
 
Case 1: n is odd. 
In BG1(G), each vj is adjacent to (n−1) line vertices e1, e2, …, ej−1, ej+1, …, en. 
Combine these vertices into two by two. Thus, there are (n−1)/2 such collections, 
which are adjacent to vj, j = 1, 2, …, n. Consider v1, combine the edges as (e2, e3); 
(e4, e5); …; (en−1, en). The n−1 cycles of length 2n in BG1(G) can  be obtained as 
follows: 
(1) v1 e3 v2 e4 v3 e5 v4 e6…en−1 vn−2 en vn−1 e1 vn e2 v1.  

(2) v1 e5 v2 e6 v3 e7 v4 e8… en vn−3 e1 vn−2 e2 vn−1 e3 vn e4 v1.  
 ((n−1)/2) v1 en v2 e1 v3 e2 v4 e3…  vn−2 en−3 vn−1 en−2 vn en−1 v1.  
From this construction and from the definition of BG1(G), it follows that edges of 
BG1(G) can be grouped into edges of G = K1,n and these (n−1)/2 cycles of length 2n. 
 
Case 2: n is even. 
There are n+1 point vertices, v1, v2, …, vn, v and n line vertices e1, e2, …, en in 
BG1(G), ej = vvj ∈ E(G). By the definition of BG1(G) each vj is adjacent to (n−1) 
line vertices, e1, e2, e3, …, ej−1, ej+1, …, en. Among this, (n−2) line vertices can be 
grouped into pairs. 
 Consider v1. v1 is adjacent to (n−1) line vertices, e2, e3,…, en−1, en; leaving 
en, get (n−2)/2 pairs (e2, e3), (e4, e5),…, (en−2, en−1). Similarly, v2 is adjacent to e1, e3, 
…, en−1, en. Leaving e1, get (n−2)/2 pairs (e3, e4), (e5, e6), …, (en+1, en), … 
 As in case1, there are ((n−1)−1)/2 cycles of length n and nK2′s given by 
v1en, v2e1, v3e2, …, vnen−1. Therefore, edges of BG1(G) can be partitioned into K1,n, 
((n−2)/2)C2n and  nK2 when G = K1,n,  where n is even. 

In the next two theorems, we give the partition of BG1(Kn) into cycles and stars or 
regular graphs. 

Theorem 2.5 If G = Kn, then edges of BG1(G) can be partitioned into  
(1) ((n−2)/2)C2n, ((n−2)2/4)C2n, (n/2)K1,n−2, (n/2)K2, when n is even. 
(2) ((n−1)/2)Cn, ((n−1)/2)((n−3)/2)C2n and (n(n−1)/2)K2, when n is odd. 
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Proof:G = Kn. BG1(G) has n point vertices and n(n−1)/2 line vertices. In BG1(G), 
degree of each point vertex is n(n−1)/2 and degree of each line vertex is n−2. 
 
Case 1: n is even. 
When n is even, edges of Kn can be partitioned into ((n−2)/2)Cn and (n/2)K2′s. 
Therefore, by Theorem 2.2 edges of BG1(Kn) can be partitioned into ((n−2)/2)Cn, 
((n−2)/2)((n−2)/2)C2n, (n/2)K1,n−2 and (n/2)K2′s. 
 
Case 2: n is odd. 
When n is odd, edges of Kn can be partitioned into ((n−2)/2)Cn. Hence, by Theorem 
2.2 edges of BG1(Kn) can be partitioned into ((n−1)/2)Cn, ((n−1)/2)((n−3)/2)C2n, ((n−
1)/2)nK2. 

Theorem 2.6 If G = Kn with n > 3, the edges of BG1(G) can be partitioned into (1) 
(n−1)/2 times (n−2) regular graph with 2n vertices and Kn when n is odd, such that 
the n point vertices are in all of these regular graphs. (2) (n−2)/2 times (n−2) regular 
graph with 2n vertices, Kn and (n/2)K1,n−2 when n is even such that the n point 
vertices are in all of these regular graphs and each of the point vertices are in exactly 
(n/2−1) K1,n−2′s. 
Proof: Let G = Kn. Then BG1(G) has n point vertices and n(n−1)/2 line vertices. In 
BG1(G), degree of each point vertex is n(n−1)/2 and degree of each line vertex is n−
2. 
 
Case 1: n is odd. 
In this case, edges of Kn can be partitioned into (n−1)/2 cycles of length n. In 
BG1(G), consider n line vertices which form a n-cycle in G and the n point vertices. 
In BG1(G), these 2n vertices form a (n−2) regular graph on 2n vertices and Kn. 
Corresponding to the (n−1)/2 cycles of length n in G, there exist (n−1)/2 times (n−2) 
regular graph on 2n vertices and Kn, but this Kn formed by n point vertices is 
common. Hence, when n is odd, edges of G can be partitioned into Kn and   (n−1)/2 
times (n−2) regular graph on 2n vertices such that the n point vertices are in all of 
these regular graphs. 
 
Case 2: n is even. 
Edges of Kn can be partitioned into (n−2)/2 times cycles of length n and (n/2)K2′s. In 
BG1(G), consider the n line vertices which form a n-cycle in G. These n line vertices 
with the n point vertices form a (n−2) regular graph on 2n vertices and Kn. 
Corresponding to the (n−2)/2 cycles of length n in G, there exist (n−2)/2 times (n−2) 
regular graph on 2n vertices and Kn and this Kn formed by point vertices is common. 
 Now, consider the (n/2)K2′s on G. In BG1(G), these n/2 line vertices are 
adjacent to exactly n−2 point vertices. Therefore, in BG1(G) there are (n/2)K1,n−2 and 
(n/2)K2, which is in Kn and each of the n point vertices are in exactly ((n/2)−1)K1,n−

2′s. This proves the theorem. 

Theorem 2.7 Edges of BG1(nK2) can be partitioned into n times K2+(n−1)K1. 



  
103                      Edge Pqartition of the Boolean Graph BG1(G) 

 

Proof: G = nK2, let V(G) = {v1, v2, v3, …, vn, u1, u2, …, un} and e1 = u1v1, …, en = 
unvn ∈ E(G). 
 Consider e1. In BG1(G), v1 is adjacent to e2, e3, ..., en and u1 is adjacent to e2, 
e3, …, en. Also, v1 and u1 are adjacent. Hence, they form K2+(n−1)K1. Similarly, for 
other e2, …, en.  
Hence, the edges of BG1(nK2) can be partitioned into n times K2+(n−1)K1. 

Theorem 2.8 If G = Kn,n, edges of BG1(G) can be partitioned into (1) (n/2)Cn, 
((n/2)(n−1))C4n, if n is even. (2) ((n−1)/2)C2n, ((n−1)2/2)C4n, nK1,n−2 and nK2, if n is 
odd. 
Proof: Case 1: n is even. 
The edges of Kn,n can be partitioned into (n/2)C2n, By Theorem 2.2, edges of 
BG1(C2n) can be partitioned into C2n, ((2n−2)/2)C4n. Therefore, BG1(Kn,n) can be 
partitioned into (n/2)C2n, ((n/2)(2n−2)/2)C4n.  
 
Case 2: n is odd. 
Edges of Kn,n can be partitioned into ((n−1)/2)C2n, nK2. Therefore, edges of 
BG1(Kn,n) can be partitioned into ((n−1)/2)C2n, (((n−1)/2)(2n−2)/2)C4n, nK1,2n−2 and 
nK2. That is, ((n−1)/2)C2n,  ((n−1)2/2)C4n, nK1,2n−2 and nK2. 

3. Path and cycle partition of edges of BG1(G)  

In this section, we study the partition of edges of BG1(G) into paths or cycles, when 
G = Cn, Pn, K1,n, Kn, Kn,n and nK2.  

First we study partition of BG1(Cn) into paths of length (n−1). 

Theorem 3.1 Let G = Cn. Then the edges of BG1(G) can be partitioned into n paths 
of length  (n−1), each path contains exactly one edge from G = Cn. That is BG1(G) is 
Pn-1- packable. 
Proof: Let v1, v2, ..., vn ∈ V(G). Let e12 = v1v2, e23 = v2v3, ..., e(n−1)n = vm−1vm, en1 = 
vnv1 ∈ E(G). 
 
Case 1: n is even. 
Edge set of BG1(G) can be partitioned as follows: 
(1) v2 v1 e23 v4 e12 v5 en1 v6 e(n−1)n v7 ... v(n/2)+1 e((n/2)+4)((n/2)+5) v(n/2)+2. 
(2) v3 v2 e34 v5 e23 v6... v(n/2)+2 e((n/2)+5)((n/2)+6) v(n/2)+3. 
(3) v4 v3 e45 v6 e34 v7... v(n/2)+3 e((n/2)+6)((n/2)+7) v(n/2)+4.. 
 (n/2) v(n/2)+1 vn/2 e((n/2)+1)((n/2)+2) v(n/2)+3 e(n/2)((n/2)+1) ...e34 v1.. 
 (n) v1 vn e12 v3 en1 v4 en−1n  ... e((n/2)+3)((n/2)+4) v(n/2)+1. 
Thus, the edges of BG1(G) can be partitioned into n paths of length n−1 when n is 
even. 
 
Case 2: n is odd. 
Here n/2 = (n+1)/2. Edges of BG1(G) can be partitioned as follows. 
(1) v2 v1 e23 v4 e12 v5 en1 v6 e(n−1)n v7 ... vn/2+1 e(n/2+3)(n/2+4).  
(2) v3 v2 e34 v5 e23 v6... vn/2+2 e(n/2+4)(n/2+5).  
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(3) v4 v3 e45 v6 e34 v7... vn/2+3 e(n/2+5)(n/2+6).. 
n/2 vn/2+1 vn/2 e(n/2+1)(n/2+2) vn/2+3 e(n/2 −1)n/2 ...v1 e34. . 
(n) v1 vn e12 v3 en1 v4 e(n−1)n  ... vn/2 e(n/2+2)(n/2+3).  
Here, the subscripts are all taken modulo n. This proves the theorem. 

Next, we prove the edges of BG1(K1,n) can be partitioned into paths of 
length n. 

Theorem 3.2 When G = K1,n, edges of BG1(G) can be partitioned into n paths of 
length n, each path containing exactly one edge from G = K1,n. That is BG1(G) is Pn-
packable. 
Proof: Case 1: n is even.  
Let v be the central node of G and v1, v2, ..., vn be other vertices of G and vvi = ei 
Now, the edges of BG1(G) can be partitioned as follows: 
(1) v v1 e2 v3 e1 v4 en v5 en−1 v6 ... v(n/2)+1 e(n/2)+3.  
(2) v v2 e3 v4 e2 v5 e1 v6 en v7 ... v(n/2)+2 e(n/2)+4. . 
(n/2) v vn/2 e(n/2)+1 v(n/2)+2  e(n/2)  v(n/2)+3 e(n/2)−1 ... vn e2. . 
(n) v vn e1 v2 en v3 en−1 v4 en−2 v5 ... v(n/2) e(n/2)+2.  
 
Case 2: n is odd. 
Edges of BG1(G) can be partitioned into, 
(1) v v1 e2 v3 e1 v4 en v5 en−1 v6 ... e(n−1/2)+4 v(n−1/2)+2. 
(2) v v2 e3 v4 e2 v5 e1 v6 en v7  ... e(n−1/2)+5 v(n−1/2)+3.. 
 (n) v vn e1 v2 en v3 en−1 v4 en−2 v5 ... e(n−1/2)+3 v (n−1/2)+1. 
This proves the theorem. 

In the next theorem, we partition edges of BG1(Kn) into paths of length n−1. 

Theorem 3.3 When G = Kn, edges of BG1(G) can be partitioned into n(n−1)/2 paths 
of length   n−1. That is BG1(G) is Pn-1 packable. 
Proof: Using Theorems 3.1 and 3.2, we can prove this theorem. Take G = Kn. Let 
v1, v2, ..., vn ∈ V(G). 
 
Case 1: n is odd.  
Clearly, when n is odd, edges of Kn can be partitioned into (n−1)/2 cycles of length 
n. By Theorem 3.1, for each cycle Cn, BG1(Cn) can be partitioned into n paths of 
length n−1. Hence, BG1(Kn) can be partitioned into n(n−1)/2 paths of length n−1. 
 
Case 2: n is even. 
Now, consider Kn as Kn−1+K1, where Kn−1 is the complete graph with vertices v1, v2, 
..., vn−1 and K1 is vn. Edges of BG1(Kn) are edges of BG1(Kn−1), edges of BG1(K1,n−1), 
and the edges joining the line vertices of BG1(Kn−1) to vn. 
 Now by case 1, edges of BG1(Kn−1) can be partitioned into (n−1)(n−2)/2 
paths of length n−2 and by Theorem 3.2, edges of BG1(K1,n−1) can be partitioned into 
(n−1) paths of length     (n−1). Now, consider the (n−1)(n−2)/2 paths of length (n−
2). To each of this path join one edge joining a line vertex to vn in BG1(G). Thus, 
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(n−1)(n−2)/2 paths of length (n−1) are obtained. So, totally there are (n−1)(n−
2)/2+(n−1) = n(n−1)/2 paths of length (n−1). This proves the theorem. 

Following are some important remarks in the path partition of Kn. 

Remark 3.1 These n(n−1)/2 paths has the following properties: 
(1) Each path contains exactly one edge from Kn. 
(2) If n is odd, each path starts from a point vertex and ends with a line vertex. 
(3) If n is even, each path starts with a point vertex and ends with a point vertex. 

In the next theorem, we study the path partition or cycle partition of BG1(G) 
when G = (n/2)K2. 

Theorem 3.4 If G = (n/2)K2, edges of BG1(G) can be partitioned into (n/2)Cn−1, if 
n/2 is even or (n/2)Pn, if n/2 is odd, such that each path or cycle contains exactly one 
edge from G. 
Proof: Let v1, v2, ..., vn ∈ V(G), e12 = v1v2, e34 = v3v4, ..., e(n−1)n = vn−1vn ∈ E(G). 
Case 1: n/2 is odd. 
Consider the following partitions: 
(1) v1 v2 e34 vn−1 e56 vn−3 ... e(n/2)(( n/2)+1) v((n/2)+2) e((n/2)+4)((n/2)+5) v(n/2)+1e((n/2)+6)((n/2)+7) v(n/2)−1... 
en−1n v6 e12 v4. 
(2) v3 v4 e56 v1... e((n/2)+2)((n/2)+3) v(n/2)+4 e((n/2)+6)((n/2)+7) v(n/2)+3 e((n/2)+8)((n/2)+9 v(n/2)+1 ...e12 v8  
e34 v6.. 
(n/2) vn−1 vn e12 vn−3 e34 vn−5 e56 ... e(n/2)−2)(n/2)−1 v(n/2) e((n/2)+2)((n/2)+3) v(n/2)−1  

e((n/2)+4) ((n/2)+5) v(n/2)−3 ... e(n−3)(n−2) v4 e(n−1)n v2.  
Thus, edges of BG1(G) can be partitioned into n/2 paths of length n−1, that is  
(n/2)Pn. 
 
Case 2: n/2 is even. 
Consider the following partitions: 
(1) v1 v2 e34 vn e56 vn−2 e78 vn−4 ... e((n/2)+1)(( n/2)+2) v((n/2)−1) e((n/2)+3)((n/2)+4) v((n/2)−3) ...v3  e(n−1)n 
v1.  
(2) v3 v4 e56 v2 e78 vn e9(10) vn−2.. e((n/2)+3)((n/2)+4) v(n/2)+1 e((n/2)+5)((n/2)+6) v(n/2)−1... e12 v3.  . 
 (n/2)  vn−1 vn e12 vn−2 e34 vn−4 e56 ... e((n/2)−1)(n/2) v(n/2)−3 e((n/2)+1)((n/2)+2) v(n/2)−1... e(n−3)(n−2)vn−1.  
Thus, edges of BG1(G) can be partitioned into n/2 cycle of length n−1. 

The following theorem gives the partition of BG1(Kn) into cycles when n is a 
multiple of four.  

Theorem 3.5 When n is a multiple of four, edges of BG1(Kn) can be partitioned into 
n(n−1)/2 cycles of length (n−1). That is BG1(Kn) is Cn-1 packable. 
Proof: n is a multiple of 4. Therefore, n is even and (n−2)/2 is odd. Edges of Kn can 
be partitioned into (n−2)/2 cycles of length n and (n/2)K2′s. Consider the cycle Cn 
formed by v1, v2, v3, ..., vn, let e12 = v1v2, e23 = v2v3,... , en1 = vnv1 ∈ E(G). Now, the 
edges of BG1(Cn) except the edges of the cycle Cn can be partitioned into 
(1) v1 e(n−1)n vn−2 en1 vn−3 e12 vn−4 e23 vn−5 ... e((n/2)−3)((n/2)−2) vn/2. 
(2) v2 en1 vn−1 e12 vn−2 e23 vn−3 e34  ... e((n/2)−2)((n/2)−1) v((n/2)+1).. 
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 (n) vn e(n−2)(n−1) vn−3 e(n−1)n vn−4 en1 vn−5  ... e((n/2)−4)((n/2)−3) v((n/2)−1). 
n-paths of length n−2. Now, add v1 at the last in (1), v2 at the last in (2), ..., vn in (n). 
The edges vn/2 v1, v(n/2)+1v2, ..., v((n/2)−1) vn are in some other cycles (which form Kn). 
Thus, there are n cycles of length n−1 corresponding to the cycle v1v2v3...vnv1 in G. 
Similarly, for the other cycles in Kn also, such partitions can be formed. Thus, there 
are n(n−2)/2 cycles of length (n−1). 
 Now, consider the (n/2)K2′s in Kn. As in the previous theorem, in BG1(G), 
there are n/2 cycles of length (n−1) corresponding to this (n/2)K2′s. Thus, totally 
there are (n(n−2)/2)+(n/2) = n(n−1)/2 cycles of length (n−1). 

Next, we study the path partition of BG1(Kn,n). 

Theorem 3.6 Edges of BG1(Kn,n) can be partitioned into n2 paths of length 2n−1, 
such that each path contains exactly one edge from G = Kn,n. That is BG1(Kn,n) is P2n-

1 packable. 
Proof: Case 1: n is even. 
Edges of Kn,n can be partitioned into n/2 cycles of length 2n. But it is already proved 
that BG1(Cn) can be partitioned into n paths of length n−1. Hence, BG1(Kn,n) can be 
partitioned into (n/2)2n paths of length 2n−1. 
 
Case 2: n is odd. 
In this case, edges of Kn,n can be partitioned into (n−1)/2 cycles of length 2n and 
nK2. It is proved that the edges of BG1(Cn) can be partitioned into n paths of length 
(n−1) and edges BG1(nK2) can be partitioned into n paths of length 2n−1. Therefore, 
edges of BG1(Kn,n) can be partitioned into ((n−1)/2)2n paths of length 2n−1 and n 
paths of length 2n−1, that is, n2 paths of length 2n−1. 

Now we pose a open problem in the partition of edges of BG1(G). 

Open Problem: Let G be a finite, simple, undirected (p, q) graph. Edges of BG1(G) 
can be partitioned into q paths of length p−1, each containing exactly one edge from 
G. That is BG1(G) is Pp-1 packable. 

Other properties of BG1(G) such as domination parameters of BG1(G) and 
graph equations connecting BG1(G), Total graphs and Line graphs are also studied 
and are submitted for publication. 

Acknowledgments: We thank the referee for his useful suggestions. 
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