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ABSTRACT 
 

In this paper we have developed an algorithm that converts a given k-ary tree, for 
any k ≥ 3, to its equivalent binary tree structure. The binary tree is generated in O(n) 
time, for a k-ary tree with a total of n nodes. The algorithm is designed aiming at 
reducing the height of the constructed binary tree. The constructed tree does not 
contain any free links in the non-leaf nodes. That means the constructed tree is like a 
complete binary tree, where only leaves have no children, and nodes other than leaf 
nodes contain child (children) and some other valid information of the given k-ary 
tree. 
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1. Introduction 
A binary tree is the simplest non-linear data structure. It gives us the same time 
complexity O(log2n) that is given by other k-ary trees, O(logk n), for any k ≥ 3. For a 
binary tree k = 2. For other trees k varies. However, O(log2n) ≡ O(logkn) for any 
constant k ≥ 3! By the Big-Oh notation the trees are equivalent. So the performance 
of any k-ary tree with respect to Big-Oh is the same. Hence we like to develop an 
algorithm that converts a given k-ary tree to its equivalent binary tree structure. 

From a different perspective of representing a tree structure using a 
computer, we can say that the binary tree representation is closer to the machine 
representation. This is best explained when we implement a binary tree using arrays. 
Let us assume that, in the array representation of a binary tree, we have the left child 
at 2*i position and the right child at 2*i+1 position, where i is the address of the 
current node. Thus to lead us to a child we require a left shift followed by an 
addition, if necessary. Thus we can say that we can implement a binary tree in 
primary memory without much effort. 
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At the same time, if we represent a k-ary tree using an array, then it leads us 
to a sparse array, as in general, most of the nodes contain much less than k children. 
So, representation of any k-ary tree is usually a costly process as a huge memory 
space is left unused. However, the algorithm proposed in this paper is much more 
efficient in utilizing the computer memory for the representation of the given k-ary 
tree. 

In this paper we have developed a new algorithm that converts a given k-ary 
tree (or a forest) to its equivalent binary tree such that any information in the given 
tree is not lost. We can say that property preservation of the existing tree is 
mandatory when it is converted to a binary tree. It is generated in such a way that 
neither any new restrictions are imposed on the tree nor any new undesirable 
property is added to it. 

The rest of the paper is organized as follows. In Section 2, we make a brief 
survey on the existing literature. The proposed algorithm is included in Section 3, 
along with the necessary data structures. We briefly discuss the performance of the 
proposed algorithm in Section 4, and conclude the paper with a few remarks in 
Section 5. 
 
2. Literature Survey 
Natural correspondence between forests (or k-ary trees) and binary trees: As it 
is defined in [4], there is a natural way to represent any forest as a binary tree. The 
binary tree obtained here has a one-to-one correspondence with the original tree. 
However, after converting a single tree (other than a binary tree) to its equivalent 
binary tree structure, the computed binary tree’s root node has no right subtree. The 
method of conversion is as follows [3, 4]. 

• Link the child nodes for a parent node that are at the same level.  
• Then from the links of the original tree, the link from the parent to the first 

(or the leftmost) child is preserved and the subsequent links to the children 
are discarded.  

• Then keeping the root as the center, the tree is rotated by 45º clockwise. The 
tree obtained is the desired binary tree. 

To illustrate the method stated above, let us consider a k-ary tree as shown in Figure 
1. 
 

 

A

B C D E F G

H I J K L M

N O P Q

Figure 1. A sample k-ary tree, where k = 6. 
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In the first step we connect all the child nodes for a parent node that are in 

the same level as shown in Figure 2. The children of each family are linked together. 
As for example, B, C, D, E, F, and G are the children to A; hence, they belong to the 
same family. Similarly as H, I, and J belong to one family, and K and L to another. 
However, P and Q do not belong to the same family. 

 
 

Now, from this representation shown in Figure 2, we remove the links from 
the vertical links except the ones that connect the parent to the first child. For 
example, B is the first child for A. Similarly H is the first child for B, and so on. The 
next obtained tree is shown in Figure 3. 

 

 
 

This tree is rotated keeping the root as the center clockwise, giving the 
desired tree as shown in Figure 4(a). In general, if two or more k-ary trees are 
considered in a forest for following the same algorithm, then the right child of the 
root of the final tree would contain the root of the second tree in the given forest. 
 

A

B C D E F G

H I J K L M

N O P Q

Figure 3. Preserve only the parent to the first child 
and the first child to its sibling relationships. 

A

B C D E F G

H I J K L M

N O P Q

Figure 2. Connect all the child nodes at the same 
level for the same parent. 
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Threaded binary trees: As defined in [3, 4] this is an extrapolation of the existing 
method using the empty links of the computed binary tree. The threading concept is 
similar to a threaded binary tree [1, 2, 3, 4]. Here the right thread of the rightmost 
child, of a family, goes to the parent; this has been shown in Figure 4(b). This may 
help in obtaining some desired sequence while traversing the given tree, at a lesser 
cost. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3. The Proposed Algorithm 
Our aim is to convert a k-ary tree or a forest to a binary tree such that any 
information stored in the tree, is not lost. Alternatively, we can say that property 
preservation of the existing tree is mandatory when it is converted to a binary tree. It 
is generated in such a way that neither any new restrictions are imposed on the tree 
nor any new undesirable property is added to it. Now let us take a tree, other than 

A 

B 

C 

D 

E

F

G

H 

I 

J 

K 

L

M

N 

O 

P 

Q

(a) 

Figure 4. (a) The equivalent binary tree 
representation of the given k-ary tree in Figure 1. 

A

B C D E F G

H I J K L M

N O P Q

(b) 

Figure 4. (b) Threaded binary tree, as an extrapolation. 
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binary tree, for which we generate an equivalent binary tree structure. Let us 
consider the same k-ary tree as shown in Figure 1. 

If we perform a level order traversal or breadth first search (BFS) 
procedure on the given tree, then we get the following sequence: A B C D E F G H I 
J K L M N O P Q. In this order we generate a tree in which all the nodes are stored 
serially, however, as soon as the parent (of a node in the given tree) changes the next 
available link of the node in succession is used as a thread to the new parent node. 

 

 
 

Before glancing through the algorithm, let us illustrate this procedure on a 
tree shown in Figure 1. 

 

• On processing A, the root node of the given tree, we have only node A; see 
Figure 5(a). 

 

A 

(a) 

A

(b)

B

A

 

B

C D

E F G (c) 

A

B

C D

E F G

H 

Figure 5. (d) Parent changes when node H is under 
consideration to insert into the new tree; so, a thread 
is introduced from the immediate nil link of node D 
to B as H is the leftmost child of B. 

Figure 5. (a) The tree obtained after processing 
node A. (b) At the time of processing node B a 
thread is generated as A is the parent of B in the 
given tree. (c) Nodes C through G are inserted 
into the tree in the form of a (complete) binary 
tree structure without inserting any thread as 
parent does not change, for each of these nodes 
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• When we move to B, which is the first child of A, the parent changes; so there is 
a thread generated from the left link position of A to point to A. At the same 
time B is linked as the right child of A; see Figure 5(b). 

 

• Now for the nodes C through G the parent remains the same (as it is for node B). 
So, no thread is inserted and the tree under construction grows naturally in the 
form of a (complete) binary tree structure, as shown in Figure 5(c). 

 

• When H is considered for its insertion into the constructed tree, the parent 
changes from A to B; see Figure 1. Before inserting H into the tree, a thread is 
introduced from the immediate next available free link (i.e., the right link of D) 
to B (see Figure 5(d)), as H is the leftmost child of B in the given k-ary tree. 
This is how we preserve the parent-child relationship among the nodes in the 
given k-ary tree. 

 

• The same procedure is followed for inserting nodes up to J into the new tree. 
Here it is worthwhile to note that C and D have no child, so there are no threads 
from any node of the constructed tree to any of them. While processing nodes K 
and L, again a new parent is found, which is E. So, before inserting K and L into 
the new tree, a thread is introduced, from the immediate next free link, which is 
available as the right child of F, to point to E (i.e., the parent of K and L). Figure 
5(e) shows it as the constructed tree up to the insertion of node L. 

 

 
 

• The finally constructed tree for the given k-ary tree (in Figure 1) using the 
proposed algorithm in this paper, is shown in Figure 5(f). 

 

A

B

C D

E F G

H I J LK

Figure 5. (e) Nodes considered for their 
insertion into the new tree up to node L. C and 
D have no child; hence no thread is pointing to 
any of them. 
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Now, if we have a forest (see Figure 6) then the corresponding binary tree is 
what we see in Figure 7(a) obtained by using the proposed algorithm, whereas 
Figure 7(b) shows the binary tree obtained using the existing algorithm [4]. 
 
Assumption: 
 

• All the children of a node in the given k-ary tree are assumed to be ordered 
from left to right as siblings, and no nil links (or null branches) are there in 
between any pair of siblings. This helps us in uniquely regenerating the k-
ary tree as and when required. 

 

 

 
 

A CB

D E F

G

Figure 6. A sample forest. 

Figure 5. (f) The final binary tree computed using the algorithm proposed in this paper. 

A

B

C D

E F G

H I J LK

M N O QP
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Algorithm at a glance:  
Input: A k-ary tree. 
Output: An equivalent binary tree structure. 

1. [Initialization] Insert the root node(s) in a queue and in the binary tree. 
2. [Form the structure] Pick a node from the queue.  

If it has no child then  
a. [Discard it] Jump to Step 3 {If a node has no child nodes then we do not 

need any thread for that node. When we keep threads then a sequence of 
threads one after the other is obtained. This is of no use for regeneration 
of the tree. Furthermore, this is a redundant information to process.} 

Else {It has a child}  
a. [Initiate the family] Assign the “next in sequence” pointer to the parent 

node {picked from the queue} and make it a thread. {Set the thread to 
identify the parent.} 

b. [Process the family] Assign all the children to the binary tree in 
sequence using the “next in sequence” pointer; also add them to the 
queue in sequence. 

3. [Loop/Exit] Is the queue empty? If yes then stop processing, else perform 
Step 2 onwards. 

 
The algorithm that is stated above at a glance considers a data structure 

queue and with the help of this data structure it computes the desired binary tree 
structure of a given k-ary tree. A thread is introduced in the next available link of the 
binary tree structure under construction when the parent changes and the children of 
the new parent are to be introduced in the binary tree. When the queue is updated by 
inserting a new node of the given k-ary tree, the “next in sequence” pointer 
information is also updated by inserting two link fields (left link and right link) of 
the node; as soon as a new parent of a child in the given k-ary tree is under 
consideration, the “next in sequence” pointer is linked to that parent node in the 
constructed binary tree structure with the help of a thread. Subsequently, the family 
of that parent node is also updated using the available “next in sequence” pointer in 

B C

F G

D E

A 

(a) 

D B

F

E

G C

A

(b) 

Figure 7. (a) Binary tree generated by the new algorithm. 
(b) Binary tree generated by natural correspondence (i.e., 
the existing algorithm). 
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the form of the desired binary tree structure. The necessary data structures used are 
explained as follows. 
  
Data structures: 

• k-ary tree 
1. It is created using a structure in which we have a node and k links; see 

Figure 8(a). 
2. In case of a forest the root nodes are set up in an initial array. 
 

 
 

• Binary tree structure 
It is a threaded binary tree, in which we have an info part and two 

links as left child and right child. Along with this we have two 1 bit 
variables left thread and right thread, which are used as indicators. A left 
thread = 1 indicates that the left child is a thread and it points to a parent 
node, otherwise, if it is 0 then the left child is a pointer to a child node; see 
Figure 8(b). 

 
 

 
 

• The queue 
It is a FIFO list in which each entry comprises of two pointers (see 

Figure 8(c)). 
o A k-ary tree pointer: It is used to obtain the subsequent k-ary tree node to 

be processed from the queue. 
o A binary tree pointer: It is used to obtain the binary tree node 

corresponding to the k-ary tree node. 
 
 

 
 

Binary tree 
pointer 

k-ary tree 
pointer  

Figure 8. (c) The queue.

Right Thread 
Right Child 

Left Thread 
Left Child 

Figure 8. (b) Binary tree structure. 

Children 
Info 

K-Links for a K–ary tree
 

Figure 8. (a) K-ary tree structure. 

Info



Sumit Kumar Ghosh, Joydeb Ghosh and Rajat Kumar Pal 262

• The “next in sequence” pointer {NIS( )} 
 

o It is a FIFO list that is a queue of binary tree pointers; see Figure 
8(d). 

 

 
 

o Related functions for the “next in sequence” pointer: 
o NIS(ptr): When this function is called it adds a binary tree 

pointer to the queue rear. It is called twice, every time a 
node is introduced into the binary tree under construction 
for inserting the left and the right links of the node in 
succession that may be used as a thread or a link. 

o NIS( ): It returns a binary tree pointer from the front of 
queue. It is called before a node is added to the binary tree 
to get the position of insertion. 

 
Improvement on the data structures: 

The queue and the “next in sequence” pointer store the same data at 
some point of time. If we can merge it we can save some space on redundant 
information being stored at the cost of a few flag variables. Here only the binary 
tree pointer is used. The “next in sequence” pointer is to be the left link of the 
node pointed by the binary tree pointer and subsequently the right link of that 
node. The pointers, the binary tree pointer and the k-ary tree pointer, remain 
same as described above. 

 

The queue is modified a bit to handle the improvement. It has two 
indicators:  

o One for node being processed in the k-ary tree. The k-ary tree 
flag. 

o Second the node being used in the binary tree. The binary tree 
flag. 

 
The k-ary tree flag: 

It is a 1-bit variable which shows that the node is visited or not. A 1 
indicates that the node is processed while a 0 shows it is not. When a node is 
first inserted in this queue (as a child or as the root) this flag is set to 0. Once we 
visit its children we set the flag to 1. 

 
The binary tree flag: 

It is a 2-bit variable that shows the binary tree, – whether the node’s 
right and left child being empty (or not). 
o A value 0 shows both child being unused. 
o A value 1 shows left child is used and right child being unused. 
o A value 2 shows both children being used. 

 

Binary tree 
pointer 

Figure 8. (d) “Next in sequence” pointer. 

Next in 
sequence  
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A node can be deleted from the front of the queue when the k-ary tree flag = 
1 and the binary tree flag = 2. 
 

 
 
4. Performance of the Algorithm 
Advantages over the existing method: 
• Simpler to implement. 
 

• No wastage: Produces a binary tree wasting no links. Issue of a tree being 
skewed is resolved. However, when the conversion is done for a single tree the 
tree is right heavy. When we handle only one tree then it is evident that the left 
child of the root is a thread. Hence it can be discarded, and the child node for the 
root starts without any thread. However, if the scenario is a mixed one (when 
either a tree or a forest is given), then to avoid this skewed nature we can use an 
extra global flag that differentiates whether the given structure is a tree or a 
forest (only for the root node of the constructed binary tree structure). In case of 
a tree there are no threads to the root, however, in case of a forest the structure 
remains uniform throughout, and implicitly the skewed nature is avoided.  

 

• Tree Levels: We assume that the number of levels of the existing k-ary tree is L. 
The depth of the binary tree generated by the existing method is described 
below. 
a. Best case: L + k – 1   
b. Worst case: (L – 1) * k + 1 
The depth of the binary tree generated by the proposed algorithm in this paper is 
log2(number of nodes in the given k-ary tree + number of non-leaf nodes in the 
given k-ary tree). 

 
Comparison of the existing method to our algorithm: 
• Running time: Both the methods need to do a level order traversal or a BFS to 

generate the computed binary tree. Hence both run on O(n) time, where n is the 
number of nodes of the given k-ary tree. 

 

• Structural information: Preserves structural information of the original tree. 
Hence the original tree can be obtained from the derived tree. So, we can say 
that there is a one-to-one mapping of the binary tree obtained with the original 
tree. 

 

Binary tree 
pointer 

k-ary tree 
pointer  

Figure 9. The improved queue. 

k-ary tree 
flag  

Binary tree 
flag 
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• Space required: In both the cases the trees have the same number of nodes as in 
the original tree, hence the space required for the nodes and links in both the 
cases remain same. However, the threaded binary tree requires two bytes extra 
in both the representations. Hence the overall space requirement increases 
linearly but this is true even for the existing method’s threaded approach; see 
Figure 4(b). 

 

• Traversals: If the existing tree traversal algorithms like Inorder, Preorder, 
Postorder, DFS, and BFS algorithm [1, 2, 3, 4] cannot be applied to the tree 
formed using the new process; however, these algorithms can be directly applied 
to the binary tree using the existing process. The existing tree traversal 
algorithms, if they need to understand the parent child relationship of the 
original tree, then they also require some modification. However, this is equally 
true for the existing approach of converting a given k-ary tree to its equivalent 
binary tree structure. 

 

• Accessing the child nodes: The existing approach can locate a child of a parent 
node in O(1) time. The tree generated using the proposed algorithm can also do 
it in constant time. To reach a child node from a parent node we need to sum up 
the number of child nodes from the root node as we come down to the parent 
node. Nodes those are visited can be subtracted from this number to get the 
exact position of the child node. 

 
5. Conclusion 
Binary tree is the simplest non-linear data structure. Other than binary tree data 
structures k-ary tree structures are as good as binary tree structures in terms of any 
sort of computation involving this kind of trees, but they use more memory space. In 
this paper we have proposed a new algorithm for converting a given k-ary tree into 
its equivalent binary tree that takes time linear to the number of nodes belonging to 
the given tree. This newly constructed tree is more balanced like a complete binary 
tree by the way how it is being constructed. This tree is also having the height less 
than the height of the equivalent binary tree computed using the existing method. 
This is obtained by using all links that are available in all non-leaf nodes. 
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