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ABSTRACT 

Differential equations are important because for many physical systems, one can, subject 

to suitable idealizations, formulate a differential equation that describes how the system 

changes in time. Understanding the solutions of the differential equation is then of 

paramount interest.  Wavelet analysis is a new branch of mathematics widely applied in 

signal analysis, image processing, numerical analysis, etc. This paper presents the 

Galerkin method for the numerical solution of one-dimensional differential equations 

using weight functions are Gegenbauer wavelets (GWGM).  The performance of the 

proposed method is better than that of the existing ones in terms of convergence.  Some 

of the test problems are taken to demonstrate the validity and efficiency of the proposed 

method. 
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1. Introduction 

Differential equations play a crucial role in mathematics and the sciences as they are 

capable of representing a broad range of actual-life scenarios. The numerical approach 

enables the resolution of complex problems through relatively simple operations.   A 

significant advantage of numerical methods, in contrast to analytical methods, is their 

ease of implementation on modern computers, which allows for quicker solutions 

compared to those obtained through analytical techniques.  Galerkin’s method is part of a 

broader category of numerical techniques [1]. In the literature, these equations are solved 

by many researchers have attempted to obtain higher accuracy rapidly by using numerous 

methods. Some of  the methods are available in the literature concerning their numerical 

solution [2 – 4]. 

The applications of wavelet theory in numerical methods for solving differential 

equations are nearly 20 years old. In the early 90s, people were very optimistic because it 

seemed that many good properties of wavelets would automatically lead to competent 

numerical method for differential equations. The reason for this optimism was the fact 

that many differential equations have solutions containing local phenomena and 

interactions between several scales. Such solutions can be well represented in wavelet 
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bases because of their good properties such as compact support (locality in space) and 

vanishing moment (locality in scale) [5]. 

The Galerkin’s method is well-regarded in applied mathematics for its efficiency and 

practicality. Utilizing wavelets with the Galerkin method offers major advantages over 

traditional finite difference and finite element methods, resulting in wide applications 

across various fields of science and engineering.  The wavelet approach is a strong 

substitute for the finite element method to a certain extent. Additionally, the wavelet 

technique offers a useful substitute for solving differential equations numerically [6–7]. 

This study presents the development of the Galerkin method utilizing Gegenbauer 

wavelets (GWGM) for addressing one-dimensional differential equations numerically.  

Galerkin's approach and the characteristics of Gegenbauer wavelets allow us to identify 

the unknown coefficients, which in turn leads to solve the differential equations 

numerically. 

The following is an outline of the paper's structure: In section 2, An overview of 

Gegenbauer wavelets and function approximation is given. Section 3 focuses on the 

Galerkin method utilizing Gegenbauer wavelets. Section 4 includes a numerical 

illustration. Lastly, Section 5 presents a discussion regarding the conclusions derived 

from the research conducted. 

 

2. Gegenbauer wavelets and Function approximation 

Gegenbauer wavelets: 

Gegenbauer  wavelets
  

( ) = ( , , , ), t k n m tn m   involve four arguments: 

1= 1, 2, ..., 2 ,kn 
 m  is the degree of  Gegenbauer  polynomials and x  is the 

normalized time, k  is any positive integer. They are defined on the interval  0 , 1  , 

Gegenbauer wavelets are defined as [8–9] 

2 ˆ ˆ2 1 1
ˆ(2 ), < ,( ) =, 2 2

0, otherwise,
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(2.2) 

and  the Gegenbauer polynomials  1mG
  defined as  
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 The first few Gegenbauer wavelet bases for 1 , 3 & 2k M      are as 

follows:  

1,0

4
( )

3
t


    ,      1,1

2
( ) 4 1 2t t


      ,     

  1,2

28
( ) 5 24 24

15
t t t


    , 

 1,3

2 32
( ) 4 5 42 96 64

3
tt t t


     and so on. 

Function approximation: 

Suppose   2( ) 0 , 1y t L  is expanded in terms of Euler wavelets as: 

 ( ) , ,
1 0

y t c tn m n m
n m




  
 

                              (2.5) 

Truncating the above infinite series, we get  

 
1 12

( ) , ,
1 0

k M

y t c tn m n m
n m


 

  
 

                                 (2.6) 

 

3. Method of solution 

The one-dimensional equation is of the of the form, 

 
2

2

y y
y f t

tt
 

 
  


                                             (3.1) 

With boundary conditions           0 , 1u a u b 
                                  

(3.2) 

Here  f t  be a continuous function  t  and &   are constants. 

The residual of the Eq. (3.1) is  

   
2

2
( )

y y
R t y f t

tt
 

 
   


                  (3.3) 

The residual of the equation  R t  is found here. The boundary conditions will be 

satisfied and if   0R t   for the exact solution ( )y t .  

It is possible to expand the trial series solution ( )y t  to Eq. (3.1), defined over 0 , 1 , as 

modified Euler wavelets, meeting the specified boundary requirements. This involves the 

following unknown coefficients 
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 

                          (3.4) 

where  
, 'n mc s  are unidentified coefficients that need to be found. 

By selecting Euler wavelet polynomials of higher degree, the accuracy of the solution is 

improved.  

Now, differentiate Eq. (3.4) twice w.r.t. t  and in Eq. (3.4) put these values i.e.  

2

2
, ,

y y
y

t t

 

 
.  

To determine the values of 
, 'n mc s ,  by selecting the weight functions as assumed base 

elements and integrating the residual to zero together with the boundary values [10]. 

i.e.                 
1

0
1,

0
t R t d t

m
  , 0 , 1 , 2 , ........m 

 

A system of linear algebraic equations is derived from the equation above and solving 

this system, the unknown coefficients are obtained.  The numerical solution of Eq. (3.1) 

was then produced by substituting these unknowns in the trail solution i.e. Eq. (3.4). 

To determine the correctness of WRMEW for one-dimensional equations, utilize the 

error measure i.e. maximum absolute error and will be computed as 

max ( ) ( )max n eE y t y t  , 

where ( )ny t  and  ( )ey t are respectively the numerical and exact solutions. 

 

4. Numerical Illustration 

Problem 4.1. Consider the differential equation [11],          

2
, 0 1

2

y
y t t

t


    


                                      (4.1) 

BCs:     0 0 , 1 0y y                                                        (4.2) 

Now, Eq. (4.1) should be implemented according to the method described in section 3: 

Using Eq. (4.1), the residual is given as:   

 
2

2

y
R t y t

t


  



                                    (4.3) 

Then, the weight function    1w t t t   should be selected for Euler wavelet 

bases in order to meet the specified boundary conditions Eq. (4.2), 

        
4

( ) ( ) 1 1
1,01,0 3

t t t t t t


    ψ  

          
2

( ) ( ) 1 4 1 2 1
1,1 1,1

t t t t t t t


      ψ           

     28
( ) ( ) 1 5 24 24 1

1,2 1,2 15
t t t t t t t t


      ψ

Considering that Eq. (4.1)'s trail solution for 1 & 2k m  and is provided by 

     ( )
1 ,0 1,0 1,1 1,1 1,2 1, 2

y t c t c t c t  ψ ψ ψ               (4.4) 

Then the Eq. (4.4) becomes           
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         (4.5) 

Differentiating Eq. (4.5) twice with respect to variable t  and substituting the values 

2

2
,

y
y

t




 into Eq. (4.3), residual of Eq. (4.1) is found. Using the weighted residual 

approach to go to the subsequent considerations if the weight functions in the trial 

solution are equal to the basis functions: 

   
1

0, 0 , 1, 2
1,

0
t R t d t j

j
  ψ

                    (4.6) 

In Eq. (4.6),  put 0 , 1, 2j    

i.e.      

   

   

1
0

1, 0
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1
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1, 1
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1
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1, 2
0

t R t d t
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
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          (4.7) 

From Eq. (4.7), a system of algebraic equations is formed that includes unknown 

coefficients such as 
1,0

c , 
1,1

c and 
1,2

c .  By solving this system, then find the values 

for  
1,0

0.2134c  , 
1,1

0.0189c   and 
1,2

0.0008c   . Obtained the numerical 

solution on substituting the values  
1,0

c , 
1,1

c and 
1,2

c  in Eq. (4.5).  Table 1 shows a 

comparison between the numerical solution and the absolute errors, whereas Figure 1 

presents the numerical solution alongside the exact solution of Eq. (4.1)  
sin( )

( )
sin(1)

t
y t t  . 

Table 1: Comparison of exact, method [11] and GWGM the absolute errors of problem 

4.1 

t 
Numerical solution 

Exact 

solution 
Absolute error 

Ref [11] Ref [12] GWGM  Ref [11] Ref [12] GWGM 

0.1 0.0186708 0.0185968 0.018644 0.0186420 2.88e-05 4.50e-05 2.00e-06 

0.2 0.0361655 0.0360428 0.036125 0.0360977 6.78e-05 5.50e-05 2.70e-05 

0.3 0.0512714 0.0511785 0.051210 0.0511948 7.66e-05 1.60e-05 1.50e-05 

0.4 0.0628316 0.0627884 0.062787 0.0627829 4.87e-05 5.50e-06 4.10e-06 

0.5 0.0697452 0.0697454 0.069746 0.0697470 1.84e-06 1.60e-06 1.00e-06 

0.6 0.0709672 0.0710047 0.070999 0.0710184 5.12e-05 1.40e-05 1.90e-05 

0.7 0.0655087 0.0655570 0.065563 0.0655851 7.64e-05 2.80e-05 2.20e-05 

0.8 0.0524367 0.0524753 0.052504 0.0525025 6.58e-05 2.70e-05 2.00e-06 

0.9 0.0308742 0.0308913 0.030912 0.0309019 2.77e-05 1.10e-05 1.00e-05 
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Figure 1: Comparison of GWGM with the exact solution of problem 4.1. 

 

Problem 4.2. Next, a different differential equation [14],  

2
2 22 sin( ) , 0 1

2

y
y t t

t
  


   


       (4.8) 

BCs :     0 0, 1 0y y                                               (4.9) 

As detailed in section 3 and the preceding test problem, the values of  
1,0

2.9542c  , 

1,1
0.0c   and 

1,2
0.1264c   are determined.    The numerical solution was then 

derived by substituting the values of 
1,0

c , 
1,1

c and 
1,2

c in   Eq. (4.5).  Figure 2 

compares the numerical solution to the exact solution of Eq. (4.8)  ( ) siny t t , 

whereas Table 2 compares the numerical solution to the absolute errors. 

 

Table 2: Comparison of method [12] and GWGM with exact solution and the absolute 

errors for problem 4.2 

t 
Numerical solution Exact 

solution 

Absolute error 

Ref [13] GWGM Ref [13] GWGM 

0.1 0.3079992 0.3087720 0.309016 1.02e-03 2.44e-04 

0.2 0.5880739 0.5885235 0.588772 7.00e-04 2.49e-04 

0.3 0.8094184 0.8092579 0.809016 4.00e-04 2.40e-04 

0.4 0.9515192 0.9506633 0.951056 4.60e-04 3.93e-04 

0.5 1.0001543 0.9998625 1.000000 1.50e-04 1.40e-04 

0.6 0.9513935 0.9507633 0.951056 3.40e-04 2.93e-04 

0.7 0.8092985 0.8091698 0.809016 2.80e-04 1.50e-04 

0.8 0.5878225 0.5877638 0.587785 3.80e-05 2.10e-05 

0.9 0.3084107 0.3087720 0.309016 6.10e-04 2.44e-04 
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Figure 2: Comparison of GWGM with the exact solution for problem 4.2. 

 

Problem 4.3. Another differential equation [15],  

 
2

2
4 4cosh 1 , 0 1

y
y t

t


   


          (4.10) 

BCs:     0 0, 1 0y y                                                 (4.11) 

Section 3 and the earlier problems are followed in order to determine the values of the 

unknown coefficients i.e. 
1,0

1.6897c   , 
1,1

0.0c   and 
1,2

0.0252c   . To 

find the numerical solution, enter the values of 
1,0

c , 
1,1

c and 
1,2

c  in Eq. (4.5). Figure 

3 shows the numerical solution to the exact solution of Eq. (4.10) 

   ( ) cosh 2 1 cosh 1y t t    as well as a comparison of the numerical solution to 

the absolute errors in Table 3.    

 

Table 3: Comparison of  GWGM and absolute error with the exact solution for problem 

4.3. 

t 
Numerical solution Exact 

solution 

Absolute error 

Ref [12] GWGM Ref [12] GWGM 

0.1 -0.2056232 -0.2056484 -0.2056457 2.20e-05 2.70e-06 

0.2 -0.3576501 -0.3576031 -0.3576124 3.80e-05 9.30e-06 

0.3 -0.4620069 -0.4620072 -0.4620083 1.40e-06 1.10e-06 

0.4 -0.5229269 -0.5230220 -0.5230139 8.70e-05 8.10e-06 

0.5 -0.5429500 -0.5430525 -0.5430806 1.30e-04 2.81e-05 

0.6 -0.5229233 -0.5230220 -0.5230139 9.10e-05 8.10e-06 

0.7 -0.4620007 -0.4620146 -0.4620083 7.60e-06 6.30e-06 

0.8 -0.3576430 -0.3576031 -0.3576124 3.10e-05 9.30e-06 

0.9 -0.2056179 -0.2056484 -0.2056457 2.80e-05 2.70e-06 
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Figure 3: Comparison of GWGM and the exact solution for problem 4.3. 

 

Problem 4.4. Finally, the non-linear differential equation [16], 

   
2

2 2 4
2

2 cos 2 sin 2 , 0 1
y

y t t t
t

  


    


 

     (4.12) 

BCs:          0 0, 1 0y y                                                              (4.13) 

The exact solution of Eq. (4.11)   2( ) siny t t  is shown in table 3 and figure 3 

together with the numerical solution, which was derived as described in section 3. 

 

Table 4: Comparison of  GWGM and absolute error with the exact solution for problem 

4.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

t 
Numerical solution Exact 

solution 

Absolute error 

Ref [13] GWGM Ref [13] GWGM 

0.1 0.096728 0.096566 0.0954920 1.24E-03 1.07E-03 

0.2 0.359769 0.351027 0.3454920 1.43E-02 5.53E-03 

0.3 0.659432 0.657536 0.6545082 4.92E-03 3.03E-03 

0.4 0.909876 0.906723 0.9045082 5.37E-03 2.21E-03 

0.5 0.998784 0.999895 1 1.22E-03 1.05E-03 

0.6 0.910518 0.910439 0.9045082 6.01E-03 5.93E-03 

0.7 0.657385 0.654694 0.6545082 2.88E-03 1.86E-03 

0.8 0.348918 0.347936 0.3454920 3.43E-03 2.44E-03 

0.9 0.099824 0.097774 0.0954920 4.33E-03 2.28E-03 
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Figure 4: Comparison of GWGM and the exact solution for problem 4.4. 

 

5. Conclusion  

The Galerkin method using Gegenbauer wavelets (GWGM) for the numerical solution of 

one-dimensional differential equations was presented in this study. The results derived 

from this method, along with the associated data, tables, and figures, indicate that the 

numerical solutions achieved through this approach do better than those generated by the 

previously recognized methods (Ref [11], Ref [12] & Ref [13]) and show a closer 

connection to the exact solution.  Moreover, the absolute error associated with this 

technique is significantly lower in comparison to the existing methods (Ref [11], Ref [12] 

& Ref [13]). Consequently, the Galerkin method that incorporates Gegenbauer wavelets 

has been confirmed to be highly efficient in solving one-dimensional differential 

equations. 
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