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ABSTRACT 
 

An analytical solution is obtained for the flow of a viscous incompressible fluid due 
to an oscillating plate in a rotating system. An exact solution of the governing 
equations has been obtained by using Laplace transform technique. The velocity 
distribution and the shear stresses at the plate have been obtained for cosine as well 
as sine oscillations of the plate. The steady-state solution as well as the transient 
solution have also been derived. It is observed that for large time the transient 
solution tends to zero. It is also found that the steady-state solution does not exist 
when the rotation parameter is equal to the frequency parameter. 
 
1.  Introduction 
The unsteady flow of the viscous incompressible fluid due to an oscillation of plane 
wall was studied by Erdogan[1] . He provides the steady-state solution as well as 
transient solution for both cosine and sine oscillations of the plate. Penton [2]  has 
discussed the transient solution for the flow due to an oscillating plate. He has 
assumed that for large times steady-state flow is set-up with the same frequency as 
the velocity of the plane boundary. Tokuda [3] has studied the impulsive motion of 
a flat plate in a viscous fluid. Zeng and Weinbaum[4] has investigated the Stokes' 
problem for moving plane. There is another class of problem where both the fluid 
and the plate rotate in unison with uniform angular velocity. It has many 
applications in cosmical and geophysical fluid dynamics. Other possible applications 
of this problem are in acoustics and optics. The unsteady flow of a viscous 
incompressible fluid in a rotating system have been studied by Thornley [5], Pop 
and Soundalgekar[6], Puri [7], Gupta and Gupta[8], Deka et al. [9] and many other 
researchers. Flow in the Ekman layer on a oscillating plate have been studied by 
Gupta et al. [10]. On the other hand, hydromagnetic flow in the Ekman layer on an 
oscillating porous plate have been studied by Guria and Jana [11]. 

In this paper, we have considered the unsteady flow of a viscous incompressible 
fluid due to an oscilletion of a plate in a rotating system where both the fluid and the 
plate rotate in unison with uniform angular velocity as well as the plate oscillates 
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non-torsionally. The fluid and the plate rotate in unison with uniform angular 
velocity Ω  about an axis perpendicular to the plate. It is found that for large times 
the starting solution tends to the steady-state solution. The steady-state solution does 
not exist when the frequency parameter is equal to the two times rotation parameter. 
It is also found that for large time the transient solution vanishes.  

 
2.  Mathematical formulation and its solution 

  Consider the unsteady flow of a viscous incompressible fluid, occupying the 
region 0>z , rotating with uniform angular velocity Ω  about the z -axis normal to 
the plate. The plate is oscillating in its own plane with the velocity )(tU . At time 

0=t , the fluid is at rest. At time 0>t , the plate starts to oscillate in its own plane 
with sinusoidal variation of velocity. The velocity components are ),,( wvu  relative 
to a rotating frame of reference. Since the plate is infinitely long, all physical 
quantities will be function of z  and t  only. The equation of continuity 0=.qG∇  

gives 0=
z
w
∂
∂

 which on integration yields =w constant 0= , everywhere in the 

flow. The Navier- Stokes' equations of motion in a rotating frame of reference yields  

 ,2= 2

2

v
z
u

t
u

Ω+
∂
∂

∂
∂ ν  (1) 

 ,2= 2

2

u
z
v

t
v

Ω−
∂
∂

∂
∂ ν     (2) 

 where ν  is the kinematic coefficient of viscosity. 
 
The initial and the boundary conditions for u  and v  are  

0,>for0=at0== ztvu      (3) 

( )= , = 0 at = 0 for > 0;u U t v z t     (4) 

0, 0 as for > 0u v z t→ → →∞  
 Introduce the non-dimensional variables  

( ) ( )
2

0 0
1 1 0

0 0
= , = , = , = , = ,U z U t u vu v U t U G

U U
η τ τ

ν ν
  (5) 

 where 0U  being a constant mean velocity in the x -direction and ( )G τ  the non-
dimensional oscillatory velocity of the plate. 

 
On the use of  (5), equations (1) and (2) become  

 ,2= 1
2

2
1

2
1 vKuu

+
∂
∂

∂
∂

ητ
    (6) 

 ,2= 1
2

2
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2
1 uKvv

−
∂
∂

∂
∂

ητ
    (7) 

 where 2
2
0

=K
U
νΩ

 is the rotation parameter. 
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The initial and boundary conditions (3) and (4) become  
0,>for0=at0== 11 ητvu      (8) 

( )1 1= , = 0 at = 0 for > 0;u G vτ η τ  

1 10, 0 as for > 0,u v η τ→ → →∞     (9) 
Equations (6) and (7) can be written in combined form as  

 ,2= 2
2

2

FiKFF
−

∂
∂

∂
∂

ητ
             (10) 

 where  
 .1=,= 11 −+ iivuF             (11) 

 Assuming  
 ( ) = ,i iG ae beστ σττ −+              (12) 

 the corresponding initial and the boundary conditions (8) and (9) become  
 ( ) ( ) ( ),0 = 0, 0, = , , = 0,i iF F ae be Fστ στη τ τ−+ ∞             (13) 

 where a  and b  are complex constants and 2
0

=
U
ωνσ , is the non-dimensional 

frequency of the oscillation. 
 

          To solve the equation (10), we assume  

 ( ) ( ) 22, = , .iKF H e τη τ η τ −             (14) 
 On the use of (14), equation (10) becomes  

 ,= 2

2

ητ ∂
∂

∂
∂ HH

              (15) 

 with the initial and the boundary conditions  

( ) ( ) ( ) ( )
2 22 2

( ,0) = 0, 0, = , , = 0.
i K i K

H H ae be H
σ τ σ τ

η τ τ
+ − −

+ ∞        (16) 
 Taking Laplace transform of (15) and using initial condition (16), we get  

 Hp
d

Hd =2

2

η
,              (17) 

 where  

 ∫
∞

−

0

),(= ττη τ deHH p                           (18) 

 The boundary conditions (16) become  

( ) ( ) ( ) ( )2 2
0, = , , = 0.

2 2
a bH H

p i K p i K
τ τ

σ σ
+ ∞

− + + −
          (19) 

 The solution of (17) subject to the boundary conditions (19) is  

 ( ) 2 2, = .
( 2 ) ( 2 )

pa bH e
p i K p i K

ηη τ
σ σ

− 
+ − + + − 

           (20) 

The inverse transform of the equation (20) gives  
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( ) 22 1 1
1 1

1, =
2 2 2

r riK iH e ae e erfc r e erfc rη ητ στ η ηη τ τ τ
τ τ

−     + + −     
    

 

2,3 2,3
2,3 2,32 2

r ribe e erfc r e erfc rη ηστ η ητ τ
τ τ

−−     + + + −    
    

,  (21) 

 where  
 2 2

1,2 3= (2 ), = ( 2 ).r i K r i Kσ σ± − −              (22) 

 Substituting the value of ),( τηH  in the equation (14), we get  

 ( ) ( )(1 ) 1
1

1, = 1
2 2

iiF ae e erfc iα ηστ ηη τ α τ
τ

+  + +  
 

 

 ( ) ( )1 1
11

2
ie erfc iα η η α τ

τ
− +  + − +  

 
 

 ( ) ( )2,31
2,3

1 1
2 2

iibe e erfc iα ηστ η α τ
τ

±−   + + ±  
 

 

 ( ) ( )2,31
2,31

2
ie erfc iα η η α τ

τ
− ±  + − ±  

 
,           (23) 

 where  
 

( ) ( ) ( )1/2 1/2 1/22 2 2
1 2 3

1 1 1= 2 , = 2 , = 2 .
2 2 2

K K Kα σ α σ α σ+ − −        (24) 

 
In the equation (23),  we use positive sign and 2  for σ>2 2K  and negative sign 
and 3  for σ<2 2K . For 22 =K σ , we have  

 ( ) ( ) ( )11
1

1, = 1
2 2

iiF ae e erfc iα ησ τ ηη τ α τ
τ

+  + +  
 

 

  

( ) ( )11
11

2 2
i ie erfc i be erfcα η στη ηα τ

τ τ
− + −   + − + +   

   
          (25) 

 where 1α  is given by (24). When 
2
1== ba   (for cosine oscillations of the plate) 

with 0=2K  then 0=1v  and the equation (23) coincides with equation (8) of 

Erdogan [1] with slight change of notation. Further, if 
i

b
i

a
2
1=,

2
1= −  (for sine 

oscillations of the plate) with 0=2K  then 0=1v  and the equation (23) reduces to 
the equation (15) of Erdogan [1].  

As ∞→τ ,  
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( ) ( )1 11 0, 1 2
2 2

erfc i erfc iη ηα τ α τ
τ τ

   + + → − + →   
   

 

( ) ( )2,3 2,31 0, 1 2
2 2

erfc i erfc iη ηα τ α τ
τ τ

   + ± → − ± →   
   

  (26) 

 and using these results (23) becomes  
 ( ) ( ) ( ) 2,31 11, = ,i ii i

sF a e be στ α ησ τ α ηη τ − − ±− + +                       (27) 

 where sF  is the steady -state solution. Hence for large times the starting solution 
tends to the steady-state solution. It is found that the steady-state solution exists for 
large values of time only, it is independent of the initial conditions given by equation 
(3). For σ=2 2K  no steady state solution exists. The transient solution is obtained 
by the substraction of equation (27) from equation (23) as  

 ( ) ( )11
1

1( , ) = 1
2 2

iiF ae e erfc iα ηστ
τ

ηη τ α τ
τ

+  + +  
 

 

 ( ) ( )1 1
11

2
ie erfc iα η ηα τ

τ
− +  − + −  

 
 

 ( ) ( )2,31
2,3

1 1
2 2

iibe e erfc iα ηστ ηα τ
τ

±−   + ± +  
 

 

 ( ) ( )2,31
2,31

2
ie erfc iα η ηα τ

τ
− ±  − ± −  

 
,          (28) 

 where τF  denotes the transient solution. It is observed that for large time the 
transient solution given by (28) vanishes. The plate oscillates with velocities στcos  

and στsin  according as 
2
1== ba  and 

i
b

i
a

2
1=,

2
1= −  respectively. If 

0σ = and 
1
2

a b= =  then the  plate starts with the uniform velocity 0U  

impulsively. 
 
3.  Shear stresses  

 The shear stresses at the plate 0=η  due to the primary and the secondary 
flows are given by  

1 1

=0

( )=x y
u ivi

η

τ τ
η

 ∂ +
+  ∂ 

 

 ( ) ( ) 2
12

1 1
2= 1 1 iiae i erfc i e α τσ τ α α τ
πτ

−  − + + + 
 

 

 ( ) ( )
2
2,32

2,3 2,3
21 1 iib e i erfc i e α τσ τ α α τ
πτ

−  + ± ± + 
 

∓ .     (29) 
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 In the equation (29), we use positive sign and 2  for σ>2 2K  and negative sign 
and 3  for σ<2 2K . For σ=2 2K , the shear stresses at the plate 0=η  due to the 
primary and the secondary flows are given by  

1 1

=0

( )=x y
u ivi

η

τ τ
η

 ∂ +
+  ∂ 

 

22 1
1 1

2= (1 ) (1 ) ii ibae i erfc i e eα τστ στα α τ
πτ πτ

− −   − + + + +    
.     (30) 

 Substituting 
2
1== ba  in the equations (29) and (30), we obtain shear stress 

components when the plate oscillates with velocity ωτcos . Similarly, for the sine 

oscillation ωτsin  of the plate we take 
i

a
2
1=  and 

i
b

2
1= −  in the equations (29) 

and (30). 
 

4.  Results and discussion  
Now, we discuss the following cases: 

Case I: For cosine oscillation of the plate, we substitute 
2
1== ba  in the equation 

(23). The numerical values of the velocity components due to cosine oscillation of 
the plate in a rotating system for different values of rotation parameter 2K , 
frequency parameter σ , phase angle στ  and time τ , are plotted against η  in 
Figs.1-4. The primary velocity profile 1u  and the secondary velocity profile 1v  are 

shown in Fig.1 for several values of 2K  with 2=σ , 
2

= πστ  and 0.2=τ . It is 

observed that the primary velocity decreases and the magnitude of secondary 
velocity increases with increase in 2K . In Fig.2 the velocity profiles are shown for 

different values of frequency parameter σ  with 3=2K , 0.2=τ  and 
2

= πστ . It 

is seen that both the primary velocity and the secondary velocity increases with 
increase in σ . Fig.3 indicates the variations of phase angle στ  on the primary and 
the secondary flows with 0.2=3,=2 τK  and 2=σ . It is found that both the 
primary velocity and the secondary velocity decrease with increase in στ . Fig.4 
shows the effect of time τ  on the primary and the secondary flows for 2 = 3K , 

= 2σ  and 
2

= πστ . It is seen that both the primary velocity and the magnitude of 

the secondary velocity increase with increase in time τ . 
In Figs.5-6 the non-dimensional shear stresses xτ  and yτ  due to the primary 

and the secondary flows at the plate 0=η  are drawn for different values of the 
phase angle στ  and the rotation parameter 2K  against frequency parameter σ  on 
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taking 
2
1== ba . Fig.5 shows that for fixed values of στ  and τ , with increase in 

σ  the shear stress xτ  increases while the magnitude of  yτ  decreases. It is also 

shows that both xτ  and the magnitude of  yτ  decrease with increse in 2K . On the 

other hand, it is found from Fig.6 that for fixed values of 2K  and στ  the magnitude 
of  both xτ  and yτ  decrease with increase in στ . 

 

Case II: For sine oscillation of the plate, we substitute 
1=
2

a
i

, 
1=
2

b
i

−  in the 

equation (23). The numerical values of the velocity components due to sine 
oscillation of the plate in a rotating system for different values of rotation parameter 

2K , frequency parameter σ , phase angle στ  and time τ  are depicted graphically 
against η  in Figs.7-10.  The primary velocity 1u  and the secondary velocity 1v  are 

shown in Fig.7 for several values of 2K  with = 2σ , =
2
πστ  and 0.2=τ . It is 

observed that both the primary velocity and the magnitude of the secondary velocity 
decrease with increase in 2K . In Fig.8 the velocity components are shown for 

different values of frequency parameter σ  with 0.2=3,=2 τK  and 
2

= πστ . It is 

seen that the primary velocity 1u  decreases whereas the secondary velocity increases 
with increase in σ . Fig.9 indicates the variations of phase angle στ  on the primary 
and secondary velocities for 2 = 3K , = 0.2τ  and 2=σ . It is found that the 
primary velocity increases but the secondary velocity decreases with increase in στ . 
Fig.10 shows the effect of time τ  on the velocity components for 2=3,=2 σK  

and 
2

= πστ . It is seen that both the primary and secondary velocities decrease with 

increase in time τ . 
In figs.11-12 the non-dimensional shear stresses xτ  and yτ  due to the primary 

and the secondary flows at the plate 0=η  are drawn for different values of the 
phase angle στ  and the rotation parameter 2K  against frequency parameter σ . 
Fig.11 shows that for fixed values of στ  and τ , both xτ  and yτ  decreases with 

increase in 2K . It is also shows that  xτ  decreases while yτ  increases with increase 

in σ . and increases with increase in στ  for fixed value of 2K  and τ . On the other 
hand, It is observed from Fig.12 that both the shear stress components decrease with 
increase in στ  when 2K , σ  and τ  are fixed. 
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Fig.1: Variations of 1u  and 1v  against η  for 2.0=σ , 
2

= πστ , 0.2=τ . 

 

 

Fig.2:  Variations of 1u  and 1v   against η  for 3.0=2K , 
2

= πστ , 0.2=τ .   
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Fig.3:  Variations of 1u  and 1v  against η  for 3.0=2K , 2.0=σ , 0.2=τ   

 
 

 
 

Fig.4:  Variations of 1u  and 1v   against η  for 3.0=2K , 2.0=σ , 
2

= πστ .     
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Fig.5:  Variations of xτ   and yτ  for  
2

= πστ  and 0.2=τ .   

 

 
Fig.6:  Variations of xτ   and yτ  for  3.0=2K  and 0.2=τ . 
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Fig.7:  Variations of 1u  and 1v  against η  for 2.0=σ ,
2

= πστ , 0.2=τ . 

 
 

 

Fig.8: Variations of 1u  and 1v  against η  for 3.0=2K ,
2

= πστ , 0.2=τ . 
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Fig.9: Variations of 1u  and 1v  against η  for 3.0=2K , 2.0=σ , 0.2=τ . 

 
 

 

Fig.10: Variations of 1u  and 1v  against η  for 3.0=2K , 2.0=σ , 
2

= πστ . 
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Fig.11: Variations of xτ   and yτ  for  
2

= πστ  and 0.2=τ . 

 
 

 
Fig.12: Variations of xτ   and yτ  for  3.0=2K  and 0.2=τ . 

 


