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ABSTRACT

Non-isothermal flow through a curved rectangular duct of differentially heated
vertical sidewalls is investigated numerically by using the spectral method, and
covering a wide range of the Dean number, Dn, 0 < Dn <1000, and the Grashof
number, Gr, 1000 < Gr < 2000. After a comprehensive survey over the parametric
ranges, five branches of asymmetric steady solutions are obtained with two- and
multi-vortex solutions by using the Newton-Raphson iteration method. Linear
stability of the steady solutions is then investigated. When there is no stable steady
solution, time evolution calculations are performed, and it is found that for any Gr in
the range, the steady flow turns into chaos through various flow instabilities, if Dn is
increased.

Keywords: Curved duct, secondary flow, steady solutions, linear stability, time-
evolution.

1. Introduction

The study of flows through a curved duct is of fundamental importance because
of its numerous applications in fluids engineering, such as in heat exchangers,
ventilators, gas turbines, aircraft intakes and centrifugal pumps. The flow through a
curved duct shows physically interesting features under the action of the centrifugal
force caused by the curvature of the duct. The earliest studies on curved pipes to
predict the onset of secondary flows and its characteristics were began by Dean [2],
who first formulated the problem in mathematical terms under the fully developed
flow condition. Since then, there have been a lot of theoretical and experimental
works concerning this flow.

One of the interesting phenomena of the flow through a curved duct is the
bifurcation of the flow because generally there exist many steady solutions due to
channel curvature. Studies of the flow through a curved duct have been made,
experimentally or numerically, for various shapes of the cross section. However, an
extensive treatment of the bifurcation structure of the flow through a curved duct of
rectangular cross section was presented by Winters [9], Daskopoulos and Lenhoff
[1] and Mondal [5].

Time dependent behavior of the fully developed curved duct flows was initiated
by Yanase et al. [10] for a rectangular cross section in connection with the

109



110 Rabindra Nath Mondal, Md. Sharif Uddin and Ariful Islam

bifurcation diagram of steady solutions. In the study they investigated unsteady
solutions for the case where dual solutions exist. Wang and Yang [8] performed
numerical as well as experimental investigations of periodic oscillations for the fully
developed flow in a curved square duct. They showed that a temporal oscillation
takes place between symmetric/asymmetric 2-cell and 4-cell flows when there are no
stable steady solutions. Very recently, Mondal et al. [7] performed numerical
prediction of the unsteady solutions by time-evolution calculations and showed that
the steady flow turns into chaos through periodic or multi-periodic flows if the Dean
number is increased. They also showed that the periodic or the chaotic state is
retarded with an increase of curvature.

A remarkable characteristic of the flow through a curved duct is to enhance heat
transfer from the heated wall to the fluid. Recently, Yanase et al. [11] performed
numerical prediction of isothermal and non-isothermal flows through a curved
rectangular duct of aspect ratio 2, where they found multiple branches of steady
solutions and discussed transitional behavior of the unsteady solutions. In the
succeeding paper, Yanase et al. [12] extended their work for moderate Grashof
numbers and studied the effects of secondary flows on convective heat transfer.
Very recently, Mondal et al. [6] performed numerical investigation of non-
isothermal flow through a curved square duct for the Grashof number Gr = 100,
where they showed that secondary flow enhances heat transfer from the heated wall
to the fluid. From the scientific as well as engineering point of view, it is quite
interesting to study curved duct flows with differentially heated vertical sidewalls
for the large Grashof number, because this type of flow is often encountered in
engineering applications.

In the present paper, a numerical study is presented for the fully developed
two-dimensional flow of viscous incompressible fluid through a curved rectangular
duct with differentially heated vertical sidewalls. Flow characteristics are studied
over a wide range of the Dean number and the Grashof number by finding the steady
solutions, investigating their linear stability and analyzing nonlinear behavior of the
unsteady solutions by time evolution calculations.

2. Governing Equations

Consider an incompressible viscous fluid streaming through a curved duct of
constant curvature. The cross section of the duct is a rectangle with width 24 and
height 24. It is assumed that the outer wall of the duct is heated while the inner one

is cooled. The temperature of the outer wall is 7, + AT and that of the inner wall

isT, — AT, where AT > 0. Thex, y and z axes are taken to be in the horizontal,

vertical, and axial directions, respectively. It is assumed that the flow is uniform in
the z-direction and that it is driven by a constant pressure gradient G along center-
line of the duct, i.e., the main flow in the z-direction as shown in Fig. 1.

The variables are non-dimensionalized by using of the representative length d,

the representative velocityU, =v/d, where v is the kinematic viscosity of the

fluid. We introduce the non-dimensional variables defined as
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where #, v and w are the non-dimensional velocity components in the x, y and

z directions, respectively; ¢ is the non-dimensional time, P the non-dimensional
pressure, and O is the non-dimensional curvature. Temperature is non-
dimensionalized by AT . Henceforth all the variables are non-dimensionalized if not
specified.
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Fig. 1. Coordinate system of the curved rectangular duct

Since the flow field is uniform in the z-direction, the sectional stream function
Y is introduced as follows:

ho Loy 1 oy
1+6x oy 1+ox oOx

A new coordinate variable y/is introduced in the y-direction asy = ly/,

(1)

h . . .
where [ :; is the aspect ratio of the duct cross section. From now on, y

denotes y/ for the sake of simplicity. Then the basic equations for w, ¥ and T are

derived from the Navier-Stokes equations and the energy equation with the
Boussinesq approximation as,
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The Dean number, Dn, the Grashof number, Gr, and the Prandtl number Pr, which
appear in Egs. (2) - (4), are defined as

3 3
Dn=ﬂ %, Grznggd , Pr=X. (6)
w VL v K

where u, y, xandg are the viscosity, the coefficient of thermal expansion, the

A, =

coefficient of thermal diffusivity and the gravitational acceleration, respectively.
The rigid boundary conditions for w and  are

L) =l )=yl ) =ple )= )= L s t)=0 0
and the conducting boundary conditions for 7 are assumed as
T(Ly)=1, T(-1,y)=—-1, T(x, £1)=x. (8)

In the present study, Dn and Gr are varied, while d , Pr and [ are fixed as
0=0.1, Pr=7.0 (water)and [ =2.

3. Method of Numerical Calculation

The method adopted in the present numerical calculation is the spectral method.
By this method the variables are expanded in the series of functions consisting of
Chebyshev polynomials. Details of this method are discussed by Mondal [5]. By this

method, the expansion functions @, (x) and ¥, (x) are expressed as

q)n (X) = (1 - ‘x2 k‘n (X), \Pn (x) = (1 - x2 )2 Cn (X), (9)
where C, (x) = cos(n cos™ (x)) is the n-th order Chebyshev polynomial.
W(x, y,z), w(x, y,t) and T (x, y,t) are expanded in terms of the functions (Dn(x)

and ¥, (x) as
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where M and N are the truncation numbers in the x- and y-directions, respectively.
The collocation points are taken to be

_ L _ )
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where i=1,...,M +1 and j=1,...,N+1. In the present numerical calculations,

M =20and N = 40 have been used for sufficient accuracy of the solutions. To
obtain the steady solutions, we use Newton-Raphson iteration method and to
calculate the unsteady solutions, we use the Crank-Nicolson and Adams-Bashforth
methods together with the function expansion (10) and the collocation method.

4. Resistance Coefficient

In the present study, the resistance coefficient A is used as the representative
quantity of the flow state. It is also called the hydraulic resistance coefficient, and is
generally used in fluid engineering, defined as

F-P A1 <w*>2,

(12)

5 - * _p
Az dh 2

where quantities with an asterisk denote the dimensional ones, < > stands for the

mean over the cross section of the rectangular duct, o the density, and

d;, =4(2d x4d)/(4d x8d) is the hydraulic diameter. The mean axial velocity
<w*> is calculated by

1

1
<w*> = 4\/;_5d jde.w(x,y,t)dy (13)

-1

Since (P1* - P, )/ Az =G, A isrelated to the mean non-dimensional axial
velocity <W> as
P 81x/25 Dn
(1+1 )<w>2 ,
where <W> = \/ﬁd<w*>/v. In this paper, A is used to discriminate the steady

solution branches and to pursue the time evolution of the unsteady solutions.

(14)
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5. Results and Discussion

We obtain steady solutions, investigate their linear stability and perform
nonlinear behavior of the unsteady solutions by time-evolution calculations. Though
the present study covers a wide range of Gr (1000 < Gr <2000), in the present
paper, however, a single the case of the Grashof numbers, Gr = 2000, is discussed in
detail, and a schematic diagram for the distribution of the steady and unsteady
solutions, obtained by the time evolution calculations, is presented in the Dean
number vs. Grashof number plane for 0 < Dn <1000 and 1000 < Gr < 2000.

5.1. Steady solutions

With the present numerical calculations, five branches of asymmetric steady
solutions are obtained by the path continuation technique with various initial guesses
as discussed by Mondal [5]. Figure 2(a) shows bifurcation diagram of the steady
solutions for Gr = 2000 and100 < Dn <1000. The steady solution branches are
named the first steady solution branch (first branch, thick solid line), the second
steady solution branch (second branch, thin solid line), the third steady solution
branch (third branch, dash dotdot line), the fourth steady solution branch (fourth
branch, dashed line) and the fifth steady solution branch (fifth branch, dash dotted
line), respectively. In order to see the intricate branch structure and to distinguish the
steady solution branches from each other, an enlargement of Fig. 2(a) is shown in
Fig. 2(b) at larger Dn, where it is observed that the steady solution branches are
independent and there exists no bifurcating relationship among the branches in the
parameter range investigated in this paper. It is found that the first branch is
composed of one- and two-vortex solutions. The second branch consists of two- and
four- vortex solutions. The third branch is characterized by two- and four-vortex
solutions, but different from the second branch in the form of vortices generated
near the outer wall. The fourth branch contains two-, four- and six-vortex solutions
and the fifth branch two-, four-, six- and eight-vortex solutions.
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Fig. 2. (a) Steady solution branches for Gr = 2000 and 100 < Dn <1000 (thick
solid line: first branch, thin solid line: second branch, dash dotdot line: third
branch, dashed line: fourth branch, dash dotted line: fifth branch). (b)

Enlargement of (a) at larger Dean numbers (695 <Dn< IOOO).
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Fig. 3. (a) First steady solution branch (10 < Dn <1000) with the region of linear
stability (bold line), (b) contours of secondary flow (top) and temperature
profile (bottom) for the first steady solution branch for Gr = 2000 and
0<Dn<1000.

The first steady solution branch is exclusively depicted in Fig. 3(a)
for10 < Dn <1000. Among five branches of steady solutions, this is the only
branch exists throughout the whole range of the Dean numbers investigated in this
paper. To observe the change of the flow patterns and temperature distributions,
contours of typical secondary flow and temperature profile at several Dn's are shown
in Fig. 3(b), where the contours of ¥ and T are drawn with the increments

Ay =0.6 and AT = 0.2, respectively. The same increments of  and T are used

for all the figures in this paper, if not specified. As seen in Fig. 3(b), the first steady
solution branch contains one- and two-vortex solutions which are asymmetric with
respect to the horizontal centre plane y = 0. Heating the outer wall causes
deformation of the secondary flow and yields asymmetry of the flow.

5.2 Linear stability of the steady solutions

In the present study, linear stability of the steady solutions is investigated
against only two-dimensional perturbations. To do this, the eigenvalue problem is
solved which is constructed by the application of the function expansion method
together with the collocation method to the perturbation equations obtained from
Egs. (2), (3) and (4). It is assumed that the time dependence of the perturbation

ise’”, where o = o, +0;is the eigenvalue with o, the real part, o, the imaginary

part andi = +/—1. If all the real parts of the eigenvalue o are negative, the steady
solution is linearly stable, but if there exists at least one positive real part of the
eigenvalue, it is linearly unstable. In the unstable region, the perturbation grows

monotonically for o; = 0 and oscillatory for o, # 0.
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Table 1. Linear stability of the first steady solution branch for Gr = 2000.

Dn A o, o,

0 0.000000 -9.6536x 107" 0

50 0.962074 -1.0095x 107" 0

100 0.535108 -1.0010x 10" 0

115 0.481988 -3.2498x 1072 +1.087x10
116 0.478959 1.5081x 107" +1.096x 10
300 0.269664 8.2333 +1.060x 10
500 0.210999 2.3734x 10 +3.844
1000 0.143630 5.8754x 10 +4.508x10

On the basis of the above-mentioned criterion, linear stability of the steady
solutions is studied. It is found that among five branches of steady solutions; only
the first branch is linearly stable while the other branches are linearly unstable.
Eigenvalues of the first steady solution branch are shown in Table 1, where the
eigenvalues with the maximum real part of o are presented. Those for the linearly
stable solutions are printed in bold letters. As seen in Table 1, the stability region
exists for0 < Dn <115. Linearly stable steady solution region is shown with thick
solid line in Fig. 3(a). It is found that the Hopf bifurcation occurs at Dn = 115.

5.3 Time evolution

In order to study the nonlinear behavior of the unsteady solutions, time
evolution calculations of the velocity and temperature fields are performed for Gr =
2000 at Dn = 100, 200, 400, 450, 500, 600 and 1000. It is found that the flow
approaches a steady state solution for Dn = 100, no matter what the initial condition
we use. A single contour of the secondary flow and temperature profile for Drn = 100
at time ¢ = 8 is shown in Fig. 4, where it is observed that the flow is a single-vortex
solution which closely agrees with the steady solution on the first branch at Dn =
100, which is linearly stable.

Fig. 4. Contours of secondary flow (left) and temperature profile (right) for Gr =
2000 at time ¢ = 8.

Time evolution of A together with the value of A for the first steady solution
branch, indicated by straight line, is shown in Fig. 5(a) for Dn = 200. Figure 5(a)
shows that the flow is periodic, which takes place above the first steady solution
branch. To observe the periodic change of the flow pattern, contours of typical
secondary flow and temperature profile are shown in Fig. 5(b) for Dn = 200 which
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shows that the periodic oscillation at Dn = 200 is a two-vortex solution. Time
evolution of A for Dn = 400 is shown in Fig. 6(a). This figure shows that the flow
oscillates irregularly which suggests that the flow is chaotic. As seen in Fig. 6(a), the
chaotic solution at Dn = 400 fluctuates around A =0.24 above the first steady
solution branch and this branch seems to be an envelope of this chaotic solution.
Contours of secondary flow and temperature distribution for Dn = 400 are shown in
Fig. 6(b) for15 <t <17.5. Time evolution of A is then performed for Dn = 450 as
shown in Fig. 7(a). It is found that the flow again turns into time periodic. To
explore the relationship between the periodic solution and the steady states, steady
values of A on the steady solution branches at Dn = 450 are also shown with
straight lines, and it is seen that the periodic solution at Dn = 450 drifts in the region
between the upper and lower parts of the second steady solution branch. Contours of
typical secondary flow and temperature profile are shown in Fig. 7(b) for Dn = 450.
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Fig. 5. The results for Gr = 2000 and Dn = 200. (a) Time evolution of 4 and the
value of A for the first steady solution for20 <¢ <30, (b) contours of
secondary flow (top) and temperature profile (bottom) for one period of
oscillation at 28.00 < ¢ <28.34 .
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Fig. 6. The results for Gr = 2000 and Dn = 400. (a) Time evolution of 4 and the
value of A for the first steady solution forO <z <20, (b) contours of
secondary flow (top) and temperature profile (bottom) for one period of
oscillation at15.0 <¢ <17.5.
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Fig. 7. The results for Gr = 2000 and Dn = 450. (a) Time evolution of 4 and the
value of A for the first steady solution for22 <t <30, (b) contours of

secondary flow (top) and temperature profile (bottom) for one period of
oscillation at 28.50 < ¢ < 28.66 .

0.24F
0.23F l
1 "
022
: T
.2 -.;__,' j
4] 5 10 15 fEv] 25 t 200 205

(a) (b)

Fig. 8. The results for Gr = 2000 and Dn = 500. (a) Time evolution of 4 and the
value of A for the first steady solution forO <¢ <25, (b) contours of

secondary flow (top) and temperature profile (bottom) for one period of
oscillation at20.0 < ¢ < 22.5.

Next, time evolution of A for Dn = 500 is conducted as shown in Fig. 8(a).
Figure 8(a) shows that the flow again turns into chaotic. To comprehend the
relationship between the chaotic solution and the steady states, steady values of A4
on the steady solution branches at Dn = 500 are also shown which are indicated by
straight lines using the same kind of lines as were used in the bifurcation diagram in
Fig. 2. It is found that the chaotic solution at Dn = 500 oscillates in the region
between the second and third steady solution branch. To observe the change of the
flow characteristics, as time proceeds, contours of typical secondary flow and
temperature profile for Dn = 500 are shown in Fig. 8(b). Time evolution of A is then
performed for Dn = 1000 as shown in Fig. 9(a). In this figure, the steady values
of A for the steady solution branches at Dn = 1000 are also shown. Figure 9(a) shows
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that the unsteady flow at Dn = 1000 is also chaotic, which moves around
A =0.1655 above all the steady solution branches and the steady solution branch
having the maximum A (A = 0.1607 , upper part of the fifth steady solution branch)
looks like an envelope of this chaotic solution. The chaotic solution for Dn = 500 is
called a ‘weak chaos’ but that for Dn = 1000 a ‘strong chaos’ (Mondal et al. [7]),
because the chaotic solution at Dn = 500 is still trapped by the steady solution
branches but that for Dr = 1000 tends to get away from them. Thus it is suggested
that occurrence of the chaotic state is related with destabilization of the steady
solutions, which reminds us the case of Lorenz chaos [3]. In this regard, it is worth
mentioning that irregular oscillation of isothermal flows through a curved
rectangular duct has been observed experimentally by Ligrani and Niver [4] for the
large aspect ratio. To observe the change of the flow patterns, contours of typical
secondary flow and temperature profile are shown in Fig. 9(b) for Dn = 1000
at6.0 <t < 8.0, where the increments Ay =1.2 and AT = 0.4 have been used for

Dn=1000.
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Fig. 9. The results for Gr = 2000 and Dn = 1000. (a) Time evolution of A and the
value of A for the first steady solution forO <7 <10, (b) contours of

secondary flow (top) and temperature profile (bottom) for one period of
oscillation at 6.0 < ¢ <8.0.

5.4 Phase diagram in the Dn-Gr plane

Finally, the distribution of the time-dependent solutions, obtained by the time
evolution calculations of the flow, is shown in Fig. 10 in the Dean number vs.
Grashof number plane ( Dn — Gr plane) for 0 < Dn <1000 and1000 < Gr < 2000.
In this picture, the circles indicate the steady-state solution, the crosses periodic
solutions and the triangles chaotic solution. As seen in Fig. 10, the steady flow turns
into chaos through various flow instabilities, if Dn is increased keeping Gr fixed. At
some Gr (1 000<Gr < 2000), however, sometimes there exist three or two
exclusive regions of Dn where the solution is time periodic, and at Gr = 2000 the
flow undergoes in the scenario steady—> periodic—> chaotic—> periodic—>
chaotic, if Dn is increased. It is also found that, if Gr is increased further
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(Gr > 2000), the regions of periodic solutions shrink and consequently the regions
of chaotic solutions expand.
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Fig. 10. Distribution of the time-dependent solutions in the Dean number vs.
Grashof number (Dn-Gr) plane
for0 < Dn <1000 and1000 < Gr <2000 (O steady-stable solution, X :

periodic solution, A : chaotic solution).

6. Conclusions

In this paper, a detailed numerical study of the non-isothermal flow through
a curved rectangular duct of aspect ratio 2 has been presented by using the spectral
method over a wide range of the Dean number( < Dn <1000 and the Grashof
number 1000 < Gr <2000 for the curvature o = 0.1.

After a comprehensive survey over range of the parameters, five branches of
asymmetric steady solutions are obtained. Linear stability analysis shows that among
five branches of steady solutions, only the first branch is linearly stable, while the
other branches are linearly unstable. It is found that the Hopf bifurcation occurs at
the Dean numbers on the boundary where stability disappears. Time evolutions of
the flow show that, the steady flow turns into chaos through various flow
instabilities, if Dn is increased keeping Gr fixed. It is found that, there exist three or
two exclusive regions of Dn where the solution is time periodic. If Gr is increased
further (Gr > 2000), the region of chaotic solution expands and consequently the
regions of periodic solutions merge into a single region of periodic solution.
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