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ABSTRACT 
Based on the individual and moving range control charts, the maximum 
likelihood estimation model is proposed to estimate the time of a step 
change in process variance. It is manifested by Monte Carlo simulation 
that the estimator coming from this model approaches the actual time 
very well. We compare the estimator with the first signal time, and come 
to the conclusion that the estimator detects the process variation more 
quickly and exactly. So the proposed change point estimator can be 
easily implemented to improve production efficiency. 
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1. Introduction 

Control charts are used to determine whether or not a process is in control. In many 
industrial applications, engineers should search for the special cause immediately when a 
control chart issues a signal. Knowing when a process changed would simplify the search 
for the special cause. If the time of the change could be determined, process engineers 
would have a smaller search window within which to look for the special cause. 
Consequently, the special cause could be identified more quickly, and appropriate actions 
needed to improve quality could be implemented sooner. So identifying the time of the 
process change has received considerable attention. Samuel [1] identified the time of a step 
change in the mean of a normal process using an X chart based on MLE method. Similarly, 
Samuel [2] discussed the time of a step change in process variance of a normal distribution 
with R chart and S chart, and the correlative characteristics about C chart and P chart have 
been studied by Pignatiello [3,4]. However, there are many situations in which the sample 
used for process monitoring is an individual unit. At the same time, it is necessary to 
monitor the process variance. So here we apply MLE method to estimate the actual time of 
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a step change in process variance with the X-MR charts. Then the performance of the 
estimator is analyzed by Monte Carlo simulation. At the end of this paper, a numerical 
example shows that this method is effective and provides process engineers with an 
estimator of the time of the process change. 

 
2.  Individual and Moving Range Control Charts 

During the application of control chart in the production process, there are many 
situations in which the sample size used for process monitoring is n = 1; that is, the sample 
consists of an individual unit. Some examples of these situations are as follows: 
 (1) Automated inspection and measurement technology is used, and every unit 

manufactured is analyzed. So there is no basis for rational sub grouping. 
  (2) The production rate is very slow, and it is inconvenient to allow sample sizes of n > 

1 to accumulate before analysis. The long interval between observations will cause 
problems with rational sub grouping. 
In such situations, the control chart of individual units is useful. Furthermore, in 

many applications of the individuals control chart we use the moving range of two 
successive observations as the basis of estimating the process variance. The moving range 
is defined as 

1−−= iii xxMR  

Under circumstances in which individual measurements are taken, a combination 
of a chart for individual measurements and a moving range chart based on two consecutive 
observations can be used to simultaneously monitor a process mean and standard deviation. 
That is to say, the X-MR charts can monitor both process mean and variance. 

The control limits of the X -MR charts are as follows: 
(i) X chart :   ,σ+µ= MUCLx  

     σ−µ= MLCLx  

(ii) MR chart :   ,σ= RUCLMR  

where µ and σ are process mean and variance, respectively, and both M and R are constants. 
The different selections of M and R will get corresponding different average run length 
(ARL). The data should be plotted in turn when the X-MR charts are used to monitor 
process. If any observation is beyond the limits, we consider the process is out of control. 
 
3. Maximum Likelihood Estimation Model for the Step Change Time 
3.1. Establishment of the Model 
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Suppose that the process is initially in control and observations follow a normal 

distribution ( )2
00,σµN  with known mean µ0 and known variance 2

0σ . We assume that the 

process is initially in control. After an unknown point in time τ, the process variance 

changes from 2
0σ  to 2

0
22

1 σδ=σ  , where δ is the unknown magnitude of the shift. We also 

assume that once this step change in the process variance occurs, the variance remains at 

the new level of 2
1σ  until the special cause has been removed. τ̂  is the MLE of the change 

point τ . 

Here we take independent observations 1 2 1, ,..., , ,..., TX X X X Xτ τ + , which follow 

a normal distribution. Concretely, 1 2, ,....,X X Xτ  come from the in control process with 

mean µ0  and variance 2
0σ . After an unknown point in time τ , the following observations 

1 2, ,..., TX X Xτ τ+ +  come from the changed process with mean µ0 and variance 2
1σ . Let T 

be the time point which issues the out of control signal. The estimator τ̂  is the value of t 
that maximizes the logarithm likelihood function. The likelihood function is defined as 
follows : 
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The logarithm of the likelihood function is 
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Then    
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it follows that  
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For any given τ = t, the logarithm likelihood function (1) is maximized by 
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Replacing 2
1σ  with 2

1σ̂  and setting τ = t, simultaneously, we get 
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Thus, the MLE of τ is the value of t that maximizes the logarithm likelihood function 
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If At represents the value of logarithm likelihood function at time t, that is 
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3.2. Performance Analysis 
Here, we use Matlab programs to analyze the performance of the estimator by 

Monte Carlo simulation. Observations are generated randomly in subgroups of size n = 1 

from a normal distribution with mean µ0 = 5 and variance 2
0σ =1, i.e., N (5, 12 ). For 

subgroups 1, 2, …, 100, observations were generated with 2
0σ . However, there is a step 

change in process variance from observation 101. Observations are generated randomly 
from a normal distribution with the same mean µ0=5 , but the process variance has shifted 

from 2
0σ  to 2

1σ  = δ2 2
0σ  = δ2x12.i.e., N (5, δ2). We assume the variance remains at the new 

level of 2
1σ  until actions have been taken to identify and remove the special cause. Thus, 

X1,X2,…,Xl00 are the observations from in control process, whereas X101,X102,…,XT are the 
observations from the changed process. T denotes the time point where the first out of 

control signal is detected. The estimator τ̂ , which we are concerned about, is actually close 
to the real change time τ. 

We now study the performance of our estimator for both increases and decreases in 
the process variance. Table 1 summarizes the performance of the estimator when there is an 

increase in the process variance. It includes the situations of δ = ( 01 σσ )∈{1.10, 1.20, 

1.30, 1.40, 1.50, 2.00, 2.50}. Table 2 shows the performance for identifying the time of the 
change when there has been a decrease in the process variance. We consider the situation of  
∈δ {0.80, 0.60, 0.50, 0.40, 0.30, 0.20, 0.10}. Here the constants M and R should be chosen 

such that M = 3 ,R = 3. From [5], the ARL of different magnitude of shifts for the X-MR 
charts can be determined in the case of M = 3 , R = 3. 

The data used in these analysis are in table 1 and table 2, where E(T) and τ̂  are the 
expected run length and the average estimated time of the process change, respectively. We 
should notice that E(T) is the expected time at which the control chart signals a change in 
process variance that actually occurred following subgroup 100. Thus, E(T) = ARL + 100. 
Since the actual process change is at time 100 by simulation, the average estimator of 

change point τ̂ should approach to 100. By the way, the average estimator τ̂  for each size 
of change comes from 5,000 simulation runs. 
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Table 1: Expected Run Length and the Average Change Point Estimator for 
Different Magnitudes of Shift (δ > 1) 

δ 1.10 1.20 1.30 1.40 1.50 2.00 2.50 
E(T) 120.21 119.60 116.58 114.72 113.39 106.43 103.34 

τ̂  119.09 116.42 103.05 102.76 101.80 100.33 100.21 
 

Table 2: Expected Run Length and the Average Change Point Estimator for 
Different Magnitudes of Shift ( δ < 1) 

δ 0.80 0.60 0.50 0.40 0.30 0.20 0.10 
E(T) 126.01 130.20 131.92 131.98 132.76 133.54 133.90 

τ̂  101.70 97.36 99.12 99.33 99.57 99.71 99.89 
 

From table 1, we can see that τ̂  is relatively close to the actual change point of 100 
with δ increasing from 1.10 to 2.50. For example, for a step change in the process variance 
of magnitude δ = 1.30, the control chart issues a signal at time 116.58 on average. In this 
case, the average estimated time of process change is 103.05, which is relatively close to 
the actual change point of 100. 

Similarly, in table 2, τ̂  is also close to 100 with δ decreasing from 0.80 to 0.10. On 
average, our proposed MLE of the time of the process change is fairly close to the actual 
time of the change. It is not difficult to see that the average estimator of change point has 
become exact results in the case of 1.50≥δ  or 0.50≤δ . 

The observed frequency with which the proposed estimator of the time is within m 

subgroups of the actual time of the change, for { }10...,,1,0∈m , is summarized in table 3. 

This information illustrates the precision of the proposed estimator from MLE model. With 
the increase of the magnitude of shift in the case of δ > 1, or decrease in the case of δ < 1, 
the probability of identifying the process change within m subgroups increases. For 

example, in the case of m=1 and ( ) { }00.2,75.1,50.1,25.1/ 01 ∈σσ=δ , the probability 

increases from 0.26 to 0.53. Likewise, for a fixed δ, the probability of identifying the 
process change within m subgroups increases with m as well. For example, if δ = 1.75 and 

{ }10...,,1,0∈m , the probability also increases from 0.24 to 0.98. The data show that the 

estimators coming from this proposed model have better precision. 
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Table 3: Simulation Results for Different Magnitudes of Shift When τ = 100 
δ     

0.25 0.50 0.75 1.25 1.50 1.75 2.00 
( )τ=τ̂p̂  0.42 0.33 0.12 0.18 0.21 0.24 0.29 
( )1ˆˆ ≤τ=τp  0.51 0.46 0.21 0.26 0.29 0.45 0.53 

( )2ˆˆ ≤τ=τp  0.64 0.60 0.33 0.37 0.41 0.55 0.61 
( )3ˆˆ ≤τ=τp  0.75 0.69 0.38 0.46 0.50 0.64 0.67 

( )4ˆˆ ≤τ=τp  0.79 0.71 0.49 0.53 0.59 0.67 0.72 
( )5ˆˆ ≤τ=τp  0.89 0.82 0.60 0.59 0.64 0.70 0.74 
( )6ˆˆ ≤τ=τp  0.91 0.89 0.67 0.66 0.69 0.73 0.79 
( )7ˆˆ ≤τ=τp  0.95 0.93 0.74 0.74 0.78 0.85 0.88 
( )8ˆˆ ≤τ=τp  0.98 0.97 0.79 0.79 0.84 0.97 0.98 
( )9ˆˆ ≤τ=τp  0.99 0.98 0.85 0.85 0.90 0.98 0.98 

( )10ˆˆ ≤τ=τp  0.99 0.98 0.92 0.89 0.96 0.98 0.99 

4.  A Numeral Example 
In the end, an example is presented to show that the proposed MLE model is 

effective. First, suppose that the process is subject to a N (5, l2) distribution for the first 10 
observations, but between observation 10 and 11 an assignable cause occurs that results in 

a sustained shift in process variance to a new level 2
1σ = 1.502. The variance remains at this 

new level for the remaining 15 observations. Then we denote these observations as xi, i =l, 
…, 25, and compute the corresponding MRi, where 1−−= iii xxMR . If α = 0.0027, M = 

3.40 and R = 4.29 are the ideal choice in literature [6]. Finally, the control limits of the 
X–MR charts are as follows: the control limits of the X chart are UCLx = 8.40 and LCLx = 
1.60, and the control limit of the MR chart is UCLMR = 4.29 . Our study focuses on 
estimating τ, which is the last subgroup from the in control process. Thus, the estimator τ̂  
should be close to 10. 

Table 4 shows that the MR chart issues an out of control signal at sample 19 
because of MR19 > UCL , unlike the individual X chart, which does not signal as would be 
expected. To apply the MLE model, we should find the value of i ( 191 ≤≤ i ), which 
maximizes At in (4). It is easy to see that At reaches maximum when t = 10. Since the 
maximum At corresponds to observation 11, the MLE model identifies observation 11 as 
the first observation from the changed process. So engineers could investigate the cause of 
step change between observation 10 and 11. This example confirms that the application of 
the MLE model exactly estimates the step change time of process variance in X -MR charts. 
Therefore, the results are quite satisfactory. 
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Table 4: Application of MLE Model in Identifying the Time of a Step Change in 
Process Variance 

i th Observation xi MRi t tA  
1 3.9806  0 -33.0485 
2 6.0338 2.0532 1 -32.9711 
3 6.0008 0.0330 2 -32.8951 
4 5.0706 0.9302 3 -32.7955 
5 3.5178 1.5528 4 -32.4196 
6 5.9012 2.3834 5 -32.6246 
7 3.9142 1.9870 6 -32.4449 
8 4.0720 0.1578 7 -32.3564 
9 5.9126 1.8406 8 -32.1612 
10 5.6555 0.2571 9 -31.9374 
11 3.2463 2.4092 10 -31.5565 
12 7.3597 4.1134 11 -32.0324 
13 3.5443 3.8154 12 -33.2997 
14 6.3689 2.8246 13 -33.4737 
15 6.3900 0.0211 14 -33.5659 
16 6.1889 0.2011 15 -33.6664 
17 6.1226 0.0663 16 -33.5657 
18 3.0435 3.0791 17 -33.3416 
19 7.3599 4.3164 18 -34.0669 
20 5.0070 2.3529   
21 3.7296 1.2774   
22 3.8916 0.1620   
23 4.7424 0.8508   
24 3.8814 0.8610   
25 4.4795 0.5981   

 
5. Conclusion 

Generally, given a signal from a control chart, process engineers do not generally 
know what caused the change nor when the process changed. Knowing the time of the 
process change would simplify the search for the special cause. If the process engineers 
know when the process has changed, the search would simply reduce to discovering the 
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aspect of the process that changed at that time. Thus, process engineers would increase 
their chances of identifying correctly the special cause quickly. This would allow them to 
take appropriate actions for improving quality. 

On the basis of X–MR charts, this paper suggests the MLE model which is applied 
to estimate the actual time when a step change is taken place in process variance. The 
results indicate that it helps engineers to identify the special cause in time and enables the 
production process to return to normal. Our proposed change point estimator can be easily 
implemented using a spreadsheet. The estimator of the time of the process dispersion 
change will be useful to process engineers who will be able to identify variables that might 
cause a change in process variance more easily. It has been tested that the model is simple 
and practical. 
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