
Journal of Physical Sciences, Vol. 11, 2007, 199-210

199

A Mimetic Algorithm for Computing a Nontrivial Lower
Bound on Number of Tracks in Two-Layer Channel

Routing

Rajat K. Pal, Debasri Saha, and Samar Sen Sarma

Department of Computer Science and Engineering
University of Calcutta

92, A. P. C. Road, Kolkata – 700 009, India

Received November 27, 2007; accepted December 10, 2007

ABSTRACT

Study of algorithms and its design can be progressed in various
dimensions. In this paper, we have a definite refinement of lower bound
on the number of tracks required to route a channel. The attack is from a
complementary viewpoint. Our algorithm succeeds to avoid all kinds of
approximation. The approach performs exact mapping of the problem
into graphical presentation and analyzes the graph taking help of mimetic
algorithm, which uses combination of sequential and GA based vertex
coloring. Performance of the algorithm depends on how effectively
mimetic approach can be applied selecting appropriate values for the
parameters to evaluate the graphical presentation of the problem. This
viewpoint has immense contribution against sticking at local minima for
this optimization problem. The finer result clearly exemplifies instances,
which give better or at least the same lower bound in VLSI channel
routing problem.

Key words : Manhattan routing model, Channel routing problem, Constraint graphs, Maximum
independent set, Mimetic algorithm.

1. Introduction
1.1. Channel Routing Problem

 The channel routing problem (CRP) of area minimization is NP-hard in nature
[6]. Extensive effort and attention has been attempted to tackle it. With the advancement
of VLSI technology, as millions of gates have been accommodated in a tiny chip area,
wiring the terminals of logic blocks altogether using minimum possible area has become
a tedious task. If electrically equivalent pins are wired using rectangular routing region
with terminals only on opposite sides, this strategy is termed as channel routing.

200 Rajat K. Pal, Debasri Saha, and Samar Sen Sarma

CRP is a constrained optimization problem, where horizontal span of nets are
assigned to horizontal tracks, avoiding conflicts so that track requirement is minimized.
As CRP is NP-hard [3, 7, 8], to design an algorithm with much lower complexity, we
have taken heuristic support. As practical lower bound deviates much from the trivial
one, our algorithm focuses on the computation of nontrivial lower bound on the number
of tracks. The evolutionary techniques of mimetic algorithm, which efficiently handles
hybrid optimization problems, are effectively incorporated here to find a better nontrivial
solution. It generates near-optimal results for a number of well-known benchmark
channels in reasonable time.

Here we consider grid based reserved layer Manhattan routing model, which is
rectilinear in nature and each layer is restricted to accommodate a certain type (horizontal
or vertical) of wire segments.

1.2. Constraints of CRP and their Significance

 Routing of wires should satisfy both kind of constraints, horizontal constraints
and vertical constraints. Two nets ni and nj are said to have horizontal constraints, if their
horizontal spans have at least one column common. Two nets ni and nj are said to have
vertical constraints, if there exists a column such that the terminal on the top of the
column belongs to net ni and the terminal at the bottom of the column belongs to net nj, or
vice versa.
 These constraints can be well visualized by two constraint graphs, horizontal
constraint graph (HCG) and vertical constraint graph (VCG) [6, 10].
 HCG, G=(V,E) is an undirected graph where each vertex vi ∈ V represents a net
ni and each edge (vi,vj) ∈ E represents horizontal constraint between net ni and net nj. It
signifies that if there is an edge between vertices vi and vj, then nets ni and nj cannot be
placed in the same track.
 Horizontal constraint can have a complementary representation through
horizontal non-constraint graph (HNCG). HNCG, G=(V,E′) is an undirected graph where
each vertex vi ∈ V represents a net ni and each edge (vi,vj) ∈ E′ indicates that net ni and
net nj are horizontal constraint-free, i.e., horizontal spans of nets ni and nj have no
common column. It implies that if there is an edge between vertices vi and vj, then nets ni
and nj can be placed in the same track if only horizontal constraint is taken into account.
 VCG, G=(V,A) is a directed graph where each vertex vi ∈ V represents a net ni
and each directed edge <vi,vj> ∈ A represents vertical constraint between net ni and net nj
such that there exists a column for which the top terminal belongs to net ni and the bottom
terminal belongs to net nj. Interpretation of VCG is that if there is a directed edge from
vertices vi to vj, then net ni must be placed in a track above the track where net nj is

 A Mimetic Algorithm for Computing a Nontrivial Lower Bound on ……… 201

placed. That means it emphasizes the ordering of net assignments in the channel.
 The maximum number of nets that cross a column gives the knowledge of
channel density, dmax. If we neglect vertical constraint, minimum number of track
requirement is equal to dmax. This information is extracted either from HCG or from
HNCG. In case of HCG, computation of clique number generates the value of channel
density whereas if HNCG is considered, we have to calculate independence number. Here
we introduce the definitions of clique number and independence number of a graph.

Definition 1: Clique number of a graph is the size of maximum complete subgraph of the
graph.
Definition 2: A set of vertices in a graph is said to be an independent set of vertices or
simply independent set if no two vertices in the set are adjacent.
Definition 3: A maximal independent set is an independent set to which no other vertex
can be added without destroying its independence property.
Definition 4: The number of vertices in the largest independent set of a graph is called
the independence number of the graph.

On the other hand, VCG contributes the value of vmax, which is nothing but the
length of longest chain in VCG. It indicates that, if we consider only vertical constraints,
at least vmax-number of tracks is required.

The rest of the paper is organized as follows. Section 2 discusses the motivation
of the work. Section 3 discusses the proposed algorithm and Section 4 throws light on the
time complexity of the algorithm. Section 5 illustrates the execution of the algorithm by
an example. Section 6 focuses on the definite refinement on minimum number of tracks
to route a channel and discusses the empirical observations on some randomly generated
instances. Section 7 extends our proposed algorithm for two-layer restricted dogleg
routing model. Section 8 concludes the paper and discusses scope for future work.

2. Motivation of the Work

Our work is motivated, as we have analyzed a lot of practical instances of
channel, which cannot be routed using either dmax- or vmax-number of tracks. Apparently
max(dmax,vmax) is formulated as an estimate of trivial lower bound. But simultaneous
consideration of both the constraints generates a practical situation where a greater
number of tracks are necessary to route a channel. It encourages us to combine the
information from two constraint graphs into a single one, so that the resulted composite
constraint graph can conjointly helps us to find a nontrivial lower bound.

HCG is an interval graph, whereas its complement graph is a comparability graph
[2]. The common feature of them is that they are both perfect in nature. A graph is said to
be perfect, if it has no induced subgraph with odd cycle of length greater than or equal to

202 Rajat K. Pal, Debasri Saha, and Samar Sen Sarma

five.
But VCG can be any directed acyclic graph (if we take a channel only with cycle-

free VCG). If we proceed by extracting constraint based information from VCG and
incorporating those into HNCG, it results into a modified HNCG, which may not still
remain perfect in nature. Although clique number or independence number of perfect
graph is polynomial time computable, the possibility for modified HNCG of being non-
perfect restricts us guaranteeing a deterministic polynomial time algorithm for
independence number computation.

Success of mimetic algorithm in handling NP-hard optimization problems
inspired us to introduce it in our problem solving [4, 5]. In our paper, mimetic algorithm
optimally colors the vertices of the composite graph. The result is equivalent to finding a
maximal independent set of maximum cardinality.

In paper [9], it is deliberately kept the composite constraint graph (modified
HCG) chordal, as clique number of chordal graph is polynomial time computable. But to
do so, some vertical constraint based information is lost, which is treated as
approximation. Hence there the modified HCG reflects only approximated lower bound,
not the exact one. Here we preserve all constraint related information in modified HNCG
and this information is processed using GA operators to produce practical lower bound.

3. The Proposed Algorithm
3.1. Construction of Composite Graph

We propose a hybrid GA based heuristic algorithm to determine a nontrivial
lower bound on number of tracks required to route a channel in polynomial time. An edge
between vertices vi and vj in HNCG signifies that, nets ni and nj have no horizontal
overlapping. That does not mean the nets can be placed in the same track, as vertical
constraint may impose ordering on their tracks. In VCG, if directed edges <vi,vj> and
<vj,vk> are present, that indicates net ni has to be placed above net nj and net nj above net
nk. Hence net ni has to be placed above net nk. This transitive closure property is strictly
followed by vertical constraints. So net ni cannot be accommodated with net nk, even if
those are horizontal constraint-free. It is focused that none of the constraint graphs can
alone cover all constraint information. So we extract this vertical constraint based
information from VCG and incorporate those into HNCG to highlight all constraint
information through a single graph.

We find out all possible directed paths between each pair of source (indegree
zero) and sink (outdegree zero) vertices in VCG, then apply transitive closure property (if
a→b and b→c, then a→c) to construct an edge list E, which contains edges between all
pairs of vertices having a directed path between them in VCG, but without only the
(directed) edges between them. The directed edges already present in VCG reflect direct

 A Mimetic Algorithm for Computing a Nontrivial Lower Bound on ……… 203

vertical constraints; hence those are automatically covered by horizontal constraint
consideration. Hence E contains only those path information that reflect indirect or
derived vertical constraints.

An edge (vi,vj) of edge list E, if present in HNCG, indicates that the
corresponding nets ni and nj are not horizontally constrained but only vertically. Our
strategy is to delete all such edges from HNCG. The modified HNCG, thus obtained, is
termed as composite graph as it focuses combined effect of all constraints.

Definition 5: For composite graph G=(V,E), each vertex vi ∈ V represents a net ni and
each edge (vi,vj) ∈ E implies that the corresponding nets ni and nj are constraint-free and
can be placed in same track.

Conversely we can say, two disconnected vertices vi and vj reflect the fact that
corresponding nets ni and nj are mutually constrained, hence occupy separate tracks.
Independence number I, i.e., the maximum number of mutually disconnected vertices of
the composite graph gives an estimate of lower bound (Lbound) on the number of tracks
required to route a channel.

3.2. Computation of Independence Number using Mimetic Algorithm

The problem of finding independence number I of a composite graph is mapped
into the problem of proper coloring of vertices, where connected vertices are colored with
distinct colors. Our algorithm proceeds with proper coloring of composite graph
satisfying the objective that as many vertices as possible are colored by each color
applied. That means, if each color is assigned to as many vertices as possible obeying
proper coloring, the maximum number of vertices colored with identical color specifies
independence number I.

In this context, the order of sequential coloring of vertices is of great significance.
The vertices of composite graph are arranged in increasing order of their degree and
considered for proper coloring in this sequence. We stack for use as many colors as the
number of vertices in composite graph. Each color is encoded as an integer. GA works by
evolving a population of strings over generations. We use random selection of a color,
consider vertices in minimum degree sequence, and continue assigning the color till the
violation of proper coloring, followed by selection of another color. Fitness value of a
string is evaluated as the maximum occurrences of a single color (integer) in the string.
GA attempts to optimize this fitness function through effective application of GA
parameters reproduction, crossover and mutation [1] with appropriate probability.
Reproduction emphasizes survival of highly fit strings. Crossover provides encouraging
results against sticking to local optima. Random selection of mutation location also helps
to reach global minima.

204 Rajat K. Pal, Debasri Saha, and Samar Sen Sarma

3.3. Detection of Obstruction Condition
Let us consider the following two channel specifications.

TOP: 3 1 2 0 2 0 TOP: 1 1 4 0 2 0
BOTTOM: 0 3 0 1 4 4 BOTTOM: 0 3 0 3 4 2

Figure 1: The HNCG. Figure 2: The VCG. Figure 3: The HNCG. Figure 4: The VCG.

In both cases, composite graph is same as HNCG. Independence number I is 2
but track requirement is 3, as net 1 and net 2 cannot be placed in same track for the first
channel, and net 3 and net 4 cannot be placed in same track for the second channel. So, at
least three tracks are required to route each of the channels.

Lemma 1: For a pair of directed paths (chain) from source to sink vertices, with length
difference less than or equal to one and at least one with length vmax, if source vertices, or
sink vertices, or both pairs are disconnected in HNCG, then at least one extra track is
essentially required to route the channel.

Our proposed algorithm searches for the presence of obstruction condition (as
stated in Lemma 1), and if found, at least one extra track is needed. Hence minimum
increment in number of track requirement, INCR is 1.

3.4. Algorithms
Algorithm MIMETIC_LBOUND
Input: Channel specification.
Output: Lbound, a nontrivial lower bound on the number of tracks.
Step 1: Construct HNCG and VCG from channel specification.
Step 2: Using the transitive closure property, compute the list of edges, E between all

possible pairs of vertices having shortest directed path length two or more
between them in VCG.

Step 3: If E is empty, consider HNCG as composite graph (or modified HNCG). Go to
Step 5.

Step 4: Delete each edge e ∈ E from HNCG, if e is present in HNCG. Finally resulted
graph is denoted as composite graph (or modified HNCG).

Step 5: If the composite graph does not contain any edge (having only isolated vertices),

1

4

2

3

1

3 4

2 1 2

3 4

1 2

34

 A Mimetic Algorithm for Computing a Nontrivial Lower Bound on ……… 205

then Lbound is same as the number of vertices in composite graph, else compute
independence number, I of the composite graph using mimetic algorithm.

Step 6: Check for the presence of obstruction condition.
 If present, compute increment in lower bound, INCR due to that, else INCR = 0.

Finally, Lbound = I + INCR.

 Following are the steps of mimetic algorithm to compute the independence
number of a graph.

Mimetic Algorithm I_number

Input: Composite graph, size of initial population, number of iteration n, crossover
probability pcross, mutation probability pmutate.

Output: I, the independence number of the composite graph.

Step 1: Generate initial population containing valid and unique strings of colors using
sequential vertex coloring.

Step 2: Compute maximum fitness value, max_fitness, of strings in current population.
 Repeat up to Step 6 for n times.
Step 3: Select strings of high fitness value to generate population for crossover

(reproduction). Repeat Step 4 for ncross# times.
Step 4: Select parents and crossover site; perform crossover.
 Check validity of new strings; if valid, replace previous one by it.
 Repeat Step 5 for nmutate# times.
Step 5: Select string for mutation, site and replacing color; perform mutation.
 Check validity of new strings; if valid, replace previous one by it.
Step 6: Compute maximum fitness value, new_max_fitness, of the new generation

population.
 If new_max_fitness > max_fitness, max_fitness ← new_max_fitness; replace

current population with new generation population.
Step 7: I ← max_fitness.
(Compute ncross (number of crossover) from pcross and nmutate (number of mutation)
from pmutate.)

4. Complexity Analysis of MIMETIC_LBOUND

Complexity calculation in mimetic algorithm based design is not straightforward.
This paper emphasizes on finding a better nontrivial lower bound than the earlier
deterministic algorithm [9]. Let us try to give some highlights of time complexity of our
algorithm. Sequential vertex coloring requires Ο(n2) time, where n is the number of nets.
The initial population of genetic algorithm is thus obtained in Ο(n2) time complexity.

For mimetic algorithm based heuristic search, we know that it is suitable for

206 Rajat K. Pal, Debasri Saha, and Samar Sen Sarma

MIMD parallel computing and distributed computing environment as these are composed
by network of workstations. However, we have seen that CPU time required for
executing our algorithm using single Pentium4 processor is reasonable for all practical
purposes.

5. Illustration with an Example
 0 2 1 7 2 3 4 5 6 5
 0 2 1 7 2 3 4 5 6 5

 1 0 4 0 3 6 5 7 0 0
 1 0 4 0 3 6 5 7 0 0

Figure 5: A channel instance and its routing solution.

 Figure 6: The HNCG. Figure 7: The VCG. Figure 8: The composite graph.

Using transitive closure property, the final edge list E is constructed; E = {(1,5),
(1,7), (4,7), (2,6)}. Edges in this list indicate derived or indirect vertical constraints
between corresponding nets. Among these edges (1,5), (1,7), and (2,6) are present in
HNCG, and those have to be eliminated from HNCG. Deletion of those edges generates
composite graph. The maximum independent set is {2, 3, 4, 6, 7}. That is, independence
number, I = 5. Analyzing VCG, it is revealed that there are two directed paths from
source to sink vertices of lengths 4 (= vmax) and 3. The paths are (1 → 4 → 5 → 7) and (2
→ 3 → 6). The source vertices 1 and 2 are horizontally constrained, and the edge (1,2) is
absent in HNCG. Thus obstruction condition is satisfied for this channel instance. So,
INCR = 1. Hence minimum number of track requirement by our algorithm
MIMETIC_LBOUND is 5+1 or 6. Practical solution shows that, the minimum number of
tracks requirement is also 6. Hence the result obtained by MIMETIC_LBOUND tallies
with practical solution.

4

6

1 3

5

2
7

1

5
3

2

67

4

7

1 3

4

5 6
2

 A Mimetic Algorithm for Computing a Nontrivial Lower Bound on ……… 207

6. Refinement of Lower Bound using Our Algorithm

Theorem 1: MIMETIC_LBOUND computes exact lower bound on the number of track
requirement to route a channel, and result is better or at least equal to that found using
LOWER_BOUND algorithm [9].

We demonstrate the refinement in results achieved by MIMETIC_LBOUND in
comparison to other algorithms, in Table 1 below.

Table 1: Lower bound using MIMETIC_LBOUND and comparison with other
algorithms.

Channel
instance dmax vmax

max(dmax,
vmax)

Lbound by
our algorithm CPU time Best solution

known [9]
CH1 4 4 4 6 0.002s 5

CH2 3 5 5 6 0.0023s 5

CH3 4 4 4 6 0.0025s 5

CH4 4 4 4 6 0.0024s 5

CH5 5 5 5 7 0.0034s 6

RKPC1 3 3 3 4 0.002s 4

RKPC6 4 5 5 7 0.11s 7

RKPC8 5 5 5 7 0.06s 7

RKPC9 6 6 6 10 0.16s 10

DDE 19 23 23 28 1min 54.16s 28

Table 2: Suitable values of GA parameters to obtain optimum solutions for some channel
instances using MIMETIC_LBOUND.

GA related parameters for optimum Lbound
Channel
instance Initial

population
Number of
iteration

Crossover
probability

Mutation
probability

CH1 10 2 .4 .001
CH2 10 2 .4 .001
CH3 10 2 .4 .001
CH4 10 2 .4 .001
CH5 20 6 .8 .001

RKPC1 16 6 .8 .001
RKPC6 14 4 .6 .001
RKPC8 12 2 .4 .001
RKPC9 30 4 .8 .001

DDE 140 12 .8 .001

The result is achieved implementing MIMETIC_LBOUND in MATLAB using
Pentium4 machine with clock frequency 1.5 GHz. Channel instances CH1 through CH5

208 Rajat K. Pal, Debasri Saha, and Samar Sen Sarma

(see Appendix) clearly demonstrate refinement in results. For next four channel instances
RKPC1, RKPC6, RKPC8, and RKPC9 [6], MIMETIC_LBOUND results tally with
previous results. MIMETIC_LBOUND also provides result as good as earlier computed
lower bound for Deutsch’s difficult example (DDE) [9]. Column CPU time shows that the
time required in computing the number of tracks necessary to route a channel is
negligible for most of the instances; even for DDE it is not very large.

Table 2 shows some GA related parameters in order to compute optimum
Lbound. Size of initial population is increased, in general, with the number of nets of the
channel instances. For the channel instances, for which computation of independence
number of the corresponding composite graphs has greater probability of sticking at local
maxima, higher value for both crossover probability and number of iterations help us to
achieve optimum solution.

7. Two-Layer Restricted Dogleg Routing
 For channels with multi-terminal nets, restricted doglegging often removes cycles
from VCG and can route such channels. It sometimes produces better routing solution in
terms of channel area or number of tracks required. Our algorithm can invariantly be
applied for multi-terminal nets, if horizontal wire segment of such net is split into set of
two-terminal subnets and HCG (or HNCG) and VCG are constructed as follows.

For both HCG, GHC = (V,EHC) and VCG, GVC = (V,EVC), V is the set of vertices
corresponding to two-terminal subnets of nets. If epi and eqj are two subnets of two
different nets ni and nj, respectively, then (epi,eqj) ∈ EHC, when epi and eqj overlap. HNCG,
GHNC is obtained by complementing GHC. For constructing edges of VCG, if nets ni (with
a terminal on the top) and nj (with a terminal at the bottom) both cross through some
column c, where li and ri are subnets of net ni, and lj and rj are subnets of net nj to the left
and right of column c, then directed edges <li,lj>, <li,rj>, <ri,lj>, and <ri,rj> have to be
introduced in VCG. Construction of HNCG and VCG, and hence lower bound on number
of tracks for channels with multi-terminal nets can be demonstrated with the help of an
example, as shown below.

 12 12

 11 2 11 3 4 11 2 11 3 4

 2 3 0 4 12

 2 3 0 4 12

Figure 9: A channel instance and its dogleg routing solution.

 A Mimetic Algorithm for Computing a Nontrivial Lower Bound on ……… 209

Here the VCG of the example channel forms a cycle. So we dogleg net 1 and
obtain two subnets 11 and 12 for their assignment to different tracks, as shown in Figure 9.

 Figure 10: The HNCG, GHNC. Figure 11: The VCG, GVC. Figure 12: The composite graph.

The HNCG and the VCG based on two-terminal subnets of the nets belonging to
this example channel are shown in Figures 10 and 11, respectively. As a result, the
composite graph for this channel instance is a graph that contains only five isolated
vertices; see Figure 12. Hence, the independence number I is same as 5, and the lower
bound on number of track requirement is also 5 that tallies with the practical solution for
routing the nets, as shown in Figure 9.

8. Conclusion
 Heuristic algorithms, in general, outperform approximation algorithms. In this
paper, we have developed an algorithm to compute a nontrivial lower bound on the
number of tracks required to route a two-layer (VH) channel. The algorithm presented is
GA based and exhaustive in nature as the problem of computing minimum area routing
solution is NP-hard. The deterministic version of computing a nontrivial lower bound is
presented in [9], that took time Ο(n4) for a channel of n nets. Here we have considered the
exact problem of computation of lower bound and solved the problem by a mimetic
algorithm that computes almost optimal number of tracks required for most of the
practical channel instances under consideration. The result is encouraging, as it shows
better lower bounds on number of tracks in many instances but never worse.
 The extension of the work in multi-layer environment is our next projected
extension of the work.

11 12

4
3

2

11
12

4

3

2

2

4

12

3

11

210 Rajat K. Pal, Debasri Saha, and Samar Sen Sarma

Appendix :

CH1: TOP: 0 2 1 7 2 3 4 5 6 5

BOTTOM: 1 0 4 0 3 6 5 7 0 0

CH2: TOP: 9 8 7 5 6 1 0 0 2 4 3
 BOTTOM: 0 0 9 8 7 6 2 1 4 3 5

CH3: TOP: 0 2 1 9 2 4 0 3 5 6 7 0
 BOTTOM: 1 0 3 0 4 6 9 5 7 8 0 8

CH4: TOP: 0 4 1 4 2 0 3 5 9 6 7 0
 BOTTOM: 1 0 3 2 6 9 5 7 0 8 0 8

CH5: TOP: 0 4 1 11 4 2 3 5 6 7 8 0 9 0
 BOTTOM: 1 0 3 0 2 6 5 7 8 9 10 11 0 10

REFERENCES

 [1] Deb K., Optimization for Engineering Design, Prentice-Hall of India, 1995.
 [2] Golumbic M. C., Algorithmic Graph Theory and Perfect Graphs, Academic Press, New

York, 1980.
 [3] LaPaugh A. S., Algorithms for Integrated Circuit Layout: An Analytic Approach, Ph.D.

thesis, Lab. for Computer Sc., MIT, Cambridge, 1980.
 [4] Mazumder P. and E. M. Rudnick, Genetic Algorithms for VLSI Design, Layout and Test

Automation, Prentice-Hall of India, 1999.
 [5] Merz P., On the Performance of Mimetic Algorithms in Combinational Optimizations,

Second Workshop on Mimetic Algorithms, San Francisco, USA, 2001.
 [6] Pal R. K., Multi-Layer Channel Routing: Complexity and Algorithms, Narosa Publishing

House, New Delhi (Also published from CRC Press, Boca Raton, USA and Alpha
Science International Ltd., UK), 2000.

 [7] Pal R. K., S. P. Pal, A. K. Datta, and A. Pal, NP-Completeness of Multi-Layer No-Dogleg
Channel Routing and an Efficient Heuristic, Proc. of Sixth VSI/IEEE International
Conference on VLSI Design, Bombay, India, pp. 80-83, 1993.

 [8] Pal R. K., S. P. Pal, and A. Pal, On the Computational Complexity of Multi-Layer
Channel Routing, Technical Report No.: TR/IIT/CSE/92/02, Dept. of Computer Sc. &
Engg., I.I.T., Kharagpur, 1992.

 [9] Pal R. K., S. P. Pal, and A. Pal, An Algorithm for Finding a Non-Trivial Lower Bound
for Channel Routing, INTEGRATION: the VLSI Journal, Vol. 25, No. 1, pp. 71-84,
1998.

 [10] Schaper G. A., Multi-Layer Channel Routing, Ph.D. thesis, Dept. of Computer Sc., Univ.
of Central Florida, Orlando, 1989.

