M.Sc. 4th Semester Examination, 2024

ELECTRONICS

(Digital Signal Processing)

PAPER - ELC-402

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

GROUP-A

Answer any four questions:

 2×4

1. What do you mean by energy and power signals? 1+1

2. Test if the system given by y(n) = x(n+1) + 3x(n) + 4x(n-1)is causal or not.

3. What are the properties of region of convergence? 2

4. What do you mean by time-invariant

5. What do you mean by radix-2 FFT?

algorithm with 16-point sequence.

2

GROUP-B

6. Calculate the number of multiplications

needed in the calculation of DFT using FFT

Answer any four questions:

7. Find the input signal x(n) that will generate

the output sequence $y(n) = \{1, 1, 2, 0, 1, 2\}$ for a system with impulse response

 4×4

 $h(n) = \{1, -1, 1\}.$ PG/IVS/ELC/402/24

system?

(Continued)

8. Find the z-transform and region of convergence of the following discrete-time signal.

$$x(n) = \left(-\frac{1}{3}\right)^n u(n) + 3\left(\frac{1}{2}\right)^{-n} u(-n-1)$$

- What do you mean by zero-padding?
 Mention its uses.
- 10. Find the circular convolution of two finite duration sequences $x_1(n) = \{1, -1, -2, 3, -1\}$ and $x_2(n) = \{1, 2, 3\}$.
- 11. Write down the magnitude function of Butterworth filter. What is the effect of varying order on magnitude and phase response? 2 + 2
- 12. Write a short note on RADAR signal processing.

GROUP-C

Answer any two questions:

 8×2

13. Find the total response of the system described by difference equation y(n) - 2y(n-1) + 2y(n-2) = x(n) - x(n-1) when the input is $x(n) = (-1)^n u(n)$ with the initial conditions y(-1) = y(-2) = 1.

8

14. Determine the 8-point DFT of the sequence

$$x(n) = \{1, 1, 1, 1, 1, 0, 0, 0\}.$$

8

15. How one can design digital filters from analog filter? For the given specifications design an analog Butterworth filter:

$$0.8 \le |H(j\Omega)| \le 1$$
 for $0 \le \Omega \le 0.2\pi$,
 $|H(j\Omega)| \le 0.2$ for $0.4 \pi \le \Omega \le \pi$. $3 + 5$

16. Discuss the important factors that influence the selection of a digital signal processor for any application.

8

[Internal Assessment - 10 Marks]