M.Sc. 4th Semester Examination, 2024 CHEMISTRY

(Spectroscopy)

PAPER-CEM-401

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

Answer any four questions:

 2×4

1. What is Karplus equation? Show the plot and explain.

- 2. What are the full forms of DEPT, HMBC?
- 3. Which reference compound is used for NMR in D_2O as a solvent? Write its structure.
- **4.** Discuss on "nuclear decay scheme for ⁵⁷Fe Mössbauer resonance".
- 5. Write down the expression for specific and molar ellipticity.
- 6. What is NMR shift reagent? Give an example and explain the mechanism of its activity.

GROUP - B

Answer any four questions: 4×4

7. A compound C₉H₁₀O₂ has the following spectral characteristics:
FTIR: 1723 cm⁻¹(s),

¹H NMR (90 MHz, CDCl₃) δ (ppm): 8.05 (2H), 7.52 (1H), 7.41 (2H), 4.35 (q, 2H), 1.38 (t, 3H) ¹³C NMR is given below:

Suggest a structure of this compound.

Write short note on "quadrupole splitting" inMössbauer spectroscopy.

- Derive the expression for "recoil energy".
 Explain why recoilless emission and absorption of γ-ray is essential for Mössbauer spectroscopic study.
 3 + 1
- 10. A compound having molecular formula $C_9H_8O_2$ has the following spectral characteristics:

FTIR (cm⁻¹): 1686(s), 1631(s), 1678(m), 1496(m), 1450(s)

¹H NMR (90 MHz, CDCl₃) δ(ppm): 11.2 (1H), 7.8 (d, 1H, 16.1 Hz), 7.56 (2H), 7.42 (1H), 7.40 (2H), 6.47 (1H).

¹³C NMR is given below. Suggest the structure of the compound.

11. Compound A having molecular formula $C_6H_{10}O_2$ show the following spectral data:

FTIR (cm⁻¹): 1695

¹H-NMR (δ): 6.95 (1H, dq, J_1 = 16 Hz and J_2 = 6.8 Hz), 5.81 (1H, dq, J_1 = 16 Hz, and J_2 = 1.7 Hz), 1.88 (3H, dd, J_1 = 6.8 Hz and J_2 = 1.7 Hz), 4.13 (2H, q, J = 7 Hz), and 1.24 (3H, t, J = 7 Hz).

Mass Spectra (important peaks, m/z): 114 (M+), 69 (base peak) and 41 (w) Suggest a probable structure.

12. An organic compound having molecular formula C₅H₈O shows following spectral data:

UV-VIS- λ_{max} (ETOH) = 277 nm, ϵ_{max} = 4600 IR (cm⁻¹) 3020, 1685,

¹H-NMR δ (ppm): 6.2 (d, J = 17 Hz, 1H), 5.4(m, J = 17 Hz, 1H), 2.3 (s, 3H), 1.9 (d, 3H).

Draw the structure of the compound.

GROUP - C

Answer any two questions:

13. (i) How mass spectral analysis can be used to distinguish the structural isomers. Explain with the help of suitable examples. (ii) Prove that in the benzylic

 8×2

system the mass spectral fragmentation is not straight forward rather it passes through stable tropylium cation intermediate. (iii) Differentiate the following compounds with the help of mass spectroscopy?

- 14. (a) An organic compound having molecular formula C₄H₆O₂ shows a very strong IR band at 1720 cm⁻¹ and only one singlet signal in its ¹H nmr spectra. Draw the structure of the compound.
 - (b) An organic compound having molecular formula C₁₀H₁₂O₂ shows following spectral data
 ¹H-NMR-δ (8.0, 2H, m); δ (7.2, 3H, m);

 δ (5.2, 1H, m); δ (1.3, 6H, d), IR-1730 cm⁻¹, 3050 cm⁻¹ and 2950 cm⁻¹. Draw the structure of the compound. 4+ 4

- **15.** (a) Write down the differences between plane polarized and circularly polarized light.
 - (b) Write down the ethanol effect on the structure of the CD band of B-DNA conformation. 4+4

16. (a) Compound C (C₈H₁₂O₄) shows the following ¹H NMR spectral data:

¹H-NMR (δ): 6.80 (s, 2H), 4.25 (q, J = 7 Hz, 4H), 1.30 (t, J = 7 Hz, 6H). Suggest a possible structure.

(b) An organic compound exhibited the following ¹H NMR spectral data (δ):
7.80 (2H, d, 8 Hz), 6.80 (2H, d, 8 Hz),
4.10 (2H, q, J = 7.2 Hz), 2.4 (3H, s),
1.25 (3H, t, J = 7.2 Hz). Write the structure of the compound among the choices given below:

(10)

[Internal Assessment - 10 Marks]