Total Pages-7 PG/IVS/MTM/402(U-1&2)/24 (Old)

M.Sc. 4th Semester Examination, 2024 APPLIED MATHEMATICS

PAPER - MTM-402(U-1&2)(Old)

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their

own words as far as practicable

MTM- 402(Unit-1)

(Fuzzy Mathematics with Applications)

[Marks : 20]

GROUP - A

1. Answer any two questions:

 2×2

- (a) What is the difference between random uncertainty and non-random uncertainty?
- (b) Define the height of a fuzzy set, convex fuzzy set and fuzzy number.
- (c) Suppose(10, 14, 19) is a triangular fuzzy number. Write its membership function and draw its diagram.
- (d) Simplify the following expression 2(5, 6, 8, 12) + 3(-1, 3, 4) 5[-3, 2] + 8.

GROUP - B

- 2. Answer any two questions:
 - (a) For the following three interval numbers [1, 4], [2, 5] and [3, 8] show by Zadeh's extension principle that the distributive law does not hold.
 - (b) Using α -cut method, show that 2(-1, 5, 7) + 3(0, 3, 4) = (-2, 19, 26)

 4×2

- (c) State and illustrate the Bellman and Zadeh's principle for fuzzy LPP.
- (d) Prove De Morgan's laws for fuzzy sets.

GROUP - C

3. Answer any one question:

 8×1

- (a) State Zadeh's extension principle. Using Zadeh's extension principle, prove that [1,3] + [5,8] = [6,11].
 - (b) Conver the following fuzzy LPPs to equivalent crisp LPP by Verdegay's approach.

Maximum
$$z = x_1 + 3x_2$$

subject to $2x_1 + 4x_2 \le 4$ to 8
 $2x_1 + 3x_2 \le 1$ to 3
 $0.2x_1 + 2x_2 \le 9$ to 11
 $x_j \ge 0, j = 1, 2$.

8

MTM- 402(Unit-2)

(Soft Computing)

[Marks : 20]

GROUP - A

1. Answer any two questions:

 2×2

- (a) What do you mean by hybrid computing?
- (b) Differentiate between crisp and fuzzy logic.
- (c) The training set is given by the following input/output pairs

x_1	x_2	$x_1 \vee x_2$
0	0	0
0	1.	1
1	0	1
1	1	1

The problem is to find the weights w_1 and w_2 , threshold value θ such that the computed output is equal to the desired output for all training pairs.

(d) Write the limitations of binary coded GA.

GROUP - B

2. Answer any two questions:

- 4×2
- (a) Let $X = \{1,2,3,4\}$ and $Y = \{a,b,c\}$ be two universes of discourses. Also, let $\tilde{A} = \{(1,0.2), (2,0.5), (3,0.7), (4,1.0)\}, \tilde{B} = \{(1,0.3), (2,0.4), (3,0.8), (4,0.7)\}$ and $\tilde{C} = \{(a,0.1), (b,0.6), (c,0.9)\}$. Determine the fuzzy relation of the following fuzzy rule "IF x is \tilde{A} AND x is \tilde{B} THEN y is \tilde{C} ".
- (b) Describe different learning process of artificial neural network.

- (c) Show that Hebb net does not implement the logical AND gate for binary input and output patterns.
- (d) Explain the necessity of cross-over and mutation in Genetic Algorithm.

GROUP - C

3. Answer any one question:

 8×1

(a) Maximize $f(x) = \sqrt{x}, 1 \le x \le 20$ using binary coded GA (one iteration only). Given that population size N=6, initial population $x_1 = 100110$, $x_2 = 101011$, $x_3 = 101101$, $x_4 = 111000$, $x_5 = 101010$, $x_6 = 011110$. Random numbers to be used for selection: 0.19, 0.63, 0.97, 0.11, 0.70, 0.51. Cross-over probability, $P_c = 0.65$ and random numbers for cross-over: 0.60, 0.85, 0.57, 0.37, 0.70, 0.32. Mutation probability, $P_m = 0.05$ and random numbers for mutation: 0.21, 0.37, 0.02,

0.52, 0.07, 0.97, 0.04, 0.61, 0.17, 0.09, 0.14, 0.82, 0.08, 0.21, 0.37, 0.20, 0.25, 0.72, 0.24, 0.16, 0.47, 0.58, 0.49, 0.01, 0.18, 0.09, 0.82, 0.26, 0.43, 0.08, 0.76, 0.56, 0.26, 0.65, 0.54, 0.03.

(b) Using the perceptron learning rule, find the weights required to perform the following classifications {[(1, 1), 0], [(-1, 1), 1], [(-1, -1), 1]}.

[Internal Assessment — 10 Marks]

