M.Sc. 4th Semester Examination, 2024 APPLIED MATHEMATICS

(Functional Analysis)

PAPER - MTM-401

Full Marks: 50

Time: 2 hours

Answer all questions

The figures in the right hand margin indicate marks

Candidates are required to give their answers in their own words as far as practicable

GROUP - A

1. Answer any four questions:

- 2×4
- (a) Show that the norm function is continuous.
- (b) What do you mean by best approximation in an inner product space?

- (c) If in an inner product space, $\langle x, u \rangle = \langle x, v \rangle$ for all x, show that u = v.
- (d) Give an example of an unbounded linear operator.
- (e) Let $T \in BL(H)$ and $T \ge 0$ where H is a Hilbert space. Show that $||Tx||^2 \le ||T|| < Tx$, x >for all H.
- (f) Let X, Y, Z be Banach spaces and F, $F_n \in BL(X, Y)$ and G, $G_n \in BL(Z, X)$. Let $F_n(x) \to F(x)$, $x \in X$ and $G_n(z) \to G(z)$, $z \in Z$, as $n \to \infty$. Show that $(F_nG_n)(z) \to (FG)(z)$, when $n \to \infty$.

GROUP - B

- 2. Answer any four questions:
- 4×4
- (a) Show that every finite dimensional subspace of a normed space is closed.
- (b) Let V be an infinite dimensional normed space and W be a non-zero normed space. Then show that there exists a linear operator which is not continuous.

- (c) If $T \in BL(H,Y)$ where H and Y are simply inner product spaces, then show that T may not have an adjoint.
- (d) Let H be a Hilbert space and $E \subset H$. Prove that $\overline{span(E)} = E^{\perp \perp}$
- (e) State and prove Riesz-Fischer theorem.
- (f) Let $S \in BL(H)$, where H is a Hilbert space. Prove that for all $x, y \in H$,

$$< Sx, y> = \frac{1}{4} \sum_{n=0}^{3} i^{n} < S(x+i^{n}y), (x+i^{n}y) > .$$

GROUP - C

3. Answer any two questions:

- 8×2
- (a) (i) Let X be a normed space and M be a subspace of X. If $\phi \in M^*$ then show that there exists $\psi \in X^*$ such that $\psi|_{M} = \phi$ and $||\psi|| = ||\phi||$.

- (ii) Define positive and strictly positive operators.
- (b) (i) Let H be a Hilbert space and $A \in BL(H)$. If A is self-adjoint, then prove that $||A|| = \sup\{|\langle Ax, x \rangle|: x \in H, ||x|| = 1\}.$
 - (ii) Let X and Y be normed spaces and $\psi: X \to Y$ be linear. Show that ψ is continuous if and only if for every Cauchy sequence $\{x_n\}$ in X, the sequence $\{\psi(x_n)\}$ is Cauchy in Y.
- (c) (i) Let X and Y be Banach spaces and $F: X \rightarrow Y$ be linear. Let $\{g_s\} \subset Y^*$ be such that for every nonzero y in Y, there is some s with $g_s(y) \neq 0$. Prove that F is continuous if and only if $g_s \circ F$ is continuous for every s.
 - (ii) Let $P \in BL(\mathcal{H})$ be a nonzero projection on a Hilbert space \mathcal{H} and ||P|| = 1.

Then show that P is an orthogonal projection

projection. 4

(d) (i) Let $T: l^2 \to l^2$ be given by $T(x_1, x_2, ..., x_n, ...) = (x_1, \frac{1}{2} x_2, ..., \frac{1}{n} x_n, ...).$ Is T bounded?

(ii) State and prove the Uniform Boundedness Principle.

[Internal Assessment - 10 Marks]