2024

M.Sc. 2nd Semester Examination

APPLIED MATHEMATICS

PAPER : MTM-206

(General Topology)

Full Marks : 20 *Time* : 1 hour

- **A.** Answer any **two** questions : $2 \times 2=4$
 - **1.** What is the basis for an ordered set *X*?
 - **2.** Is the space \mathbb{R}_l connected? Justify your answer.
 - **3.** Show that subspace of a Hausdorff space is Hausdorff.
 - **4.** Define Quotient topology. Illustrate it with an example.
- /1105

(Turn Over)

(2)

B. Answer any **two** questions : 4×2=8

- 5. Let Y be an ordered set in the ordered topology. Let $f,g: X \to Y$ be continuous. Show that the set $\{x \in X \mid f(x) \le g(x)\}$ is closed in X.
- **6.** Show that every compact subspace of a Hausdorff space is closed.
- 7. Show that \mathbb{R}^{ω} in the box topology is not metrizable.
- **8.** In the finite complement topology on \mathbb{R} , to what point or points does the sequence

$$x_n = \frac{1}{n^3}$$
 converge? Justify.

- **C.** Answer *any* **one** questions : 8×1=8
 - 9. (i) Show that R[∞] in the uniform topology satisfies the first countability axiom but it does not satisfy the second countability axiom.
 - (ii) Is every metrizable space normal? Justify.

/1105

(Continued)

- **10.** (i) Let $p: X \to Y$ be a closed continuous surjective map such that $p^{-1}(\{y\})$ is compact for each $y \in Y$. Show that if X is regular, then so is Y. 4
 - (ii) Show that \mathbb{R}^{ω} in the product topology is connected. 4

 $\star \star \star$

PG/2nd sem/MTM-206/24