(6)

(ii) Transform the basis

 $\{(0,1,1,0),(-1,1,0,0),(1,2,0,-1),(-1,0,0,-1)\}$

of \mathbb{R}^4 into an orthonormal basis by using Gram-Schmidt orthogonalization process. 4

(iii) Show that a non-zero nilpotent operator is not diagonalizable. 2

 $\star \star \star$

Total Pages—06

PG/2nd Sem/MTM-203/24

2024

M.Sc. 2nd Semester Examination

APPLIED MATHEMATICS

PAPER : MTM-203

Full Marks : 40 *Time* : 2 hours

The figures in the right-hand margin indicate marks.

UNIT—I (20 Marks) (Abstract Algebra)

- **A.** Answer any **two** questions : $2 \times 2=4$
 - **1.** Show that any finite extension is algebraic.
 - **2.** Are the fields $\mathbb{Q}(\sqrt{2})$ and $\mathbb{Q}(i)$ isomorphic? Justify your answer.
 - **3.** Is \mathbb{C}/\mathbb{R} an algebraic field extension? Justify.
 - 4. Is every finite field perfect? Justify.

PG/2nd sem/MTM-203/24 BL24/5(121)-150

/1102

(2)

- **B.** Answer any **two** questions : 4×2=8
 - Prove that it is impossible to construct the regular 9-gon, by using straight edge and compass only.
 - **6.** Let $F \subset K$ be a field extension and $\alpha \in K$ be algebraic over F and $f(x) = irr(\alpha, F)$.
 - Let $n = \deg f$. Then show that —
 - (i) $F[\alpha] = F(\alpha) \simeq F[x]/(f(x));$
 - (ii) $\dim_F F(\alpha) = n$ and $\{1, \alpha, \alpha^2, \dots, \alpha^{n-1}\}$ is an *F*-basis of $F(\alpha)$.
 - 7. Let $f(x) = x^4 + x^2 + 1 \in \mathbb{Q}[x]$. Find the splitting field S of f(x) over \mathbb{Q} . Also find $[S:\mathbb{Q}]$. (2+2)
 - 8. Show that no finite field is algebraically closed. Show that the field C of complex numbers is an algebraic closure of the field R of real numbers. (2+2)
- **C.** Answer any **one** question : 8×1=8
 - **9.** (i) A regular polygon of *n* sides is constructible if and only if $n = 2^r p_1 p_2 \dots p_s$, where $r \in \mathbb{N}$ and p_1, p_2, \dots, p_s are distinct Fermat primes. 6
- /1102

(Continued)

- 8. What do you mean by dual space of vector space? Find the dual basis of the basis $\mathcal{B} = \{(1,-1,3), (0,1,-1), (0,3,-2)\}$ of \mathbb{R}^3 . (2+2)
- **C.** Answer any **one** questions : $8 \times 1=8$
 - **9.** (i) If V be a finite dimensional vector space over a field F, then prove that a bilinear form H on V is symmetric or asymmetric according as the matrix of H in any ordered basis is symmetric or asymmetric.
 - (ii) Define quadratic form. Find rank, index and signature of the quadratic form $x^2 + y^2 + z^2 + xy - yz - zx.$ (4+4)
 - **10.** (*i*) What do you mean by adjoint T^* of a linear operator T on an inner product space V? Let T_1 and T_2 be two linear operators on an inner product space V and assume that T_1^* , T_2^* exist. Show that

/1102

$$(T_1 + T_2)^* = T_1^* + T_2^* \tag{1+1}$$

(3)

- (ii) Let ζ be a complex primitive p^{th} root of unity where p is a prime number. Then show that $G(\mathbb{Q}(\zeta_p)/\mathbb{Q})$ is a cyclic group of order p-1.
- **10.** (*i*) Use the fact that $\alpha = 2\cos\left(\frac{2\pi}{5}\right)$ satisfies the equation $x^2 + x 1 = 0$ to conclude that the regular 5-gon is constructible by ruler and compass. 5
 - (*ii*) Show that the polynomial $f(x) = x^4 + x^2 + [1]$ is separable over \mathbb{Z}_2 .

UNIT-II (20 Marks)

(Linear Algebra)

- **A.** Answer any **two** questions : $2 \times 2 = 4$
 - **1.** Define rank of a bilinear form. When is a bilinear form said to be degenerate or non-degenerate?
 - **2.** Show that the quadratic form

 $Q(x,y,z) = x^2 + 2y^2 + 2z^2 + 2xy - 2xz - 4yz$ on \mathbb{R}^3 is positive semidefinite.

- 3. State Sylvester's Law of Inertia.
- **4.** Let $T : \mathbb{R}^2 \to \mathbb{R}^2$ be a linear operator defined by T(x,y) = (x,0) for all $(x,y) \in \mathbb{R}^2$. Find the minimal polynomial of T.

(4)

- **B.** Answer any **two** questions : $4 \times 2=8$
 - 5. Let T be the linear operator on $P_2(R)$ defined by

 $T(f(x)) = f(1) + f'(0)x + (f'(0) + f''(0))x^{2}.$ Test the diagonalizability of *T*. Find the eigen space and then find the coordinate vectors in relate to eigen space. 4

- 6. When is a linear operator T on an inner product space V said to be normal? Show that T is normal if and only if $||T(v)|| = ||T^*(v)||$ for all $v \in V$. (1+3)
- 7. Let V be a finite-dimensional inner product space and let T be a linear operator on V. Then, show that there exists a unique function $T^*: V \to V$ such that $\langle T(x), y \rangle = \langle x, T^*(y) \rangle$ for all $x, y \in V$. Furthermore, prove that T^* is linear. 4

/1102

(Turn Over)

/1102

(Continued)